libata: Add atapi_dmadir force flag
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / ata / sata_vsc.c
1 /*
2 * sata_vsc.c - Vitesse VSC7174 4 port DPA SATA
3 *
4 * Maintained by: Jeremy Higdon @ SGI
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2004 SGI
9 *
10 * Bits from Jeff Garzik, Copyright RedHat, Inc.
11 *
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; see the file COPYING. If not, write to
25 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 *
28 * libata documentation is available via 'make {ps|pdf}docs',
29 * as Documentation/DocBook/libata.*
30 *
31 * Vitesse hardware documentation presumably available under NDA.
32 * Intel 31244 (same hardware interface) documentation presumably
33 * available from http://developer.intel.com/
34 *
35 */
36
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/init.h>
41 #include <linux/blkdev.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/dma-mapping.h>
45 #include <linux/device.h>
46 #include <scsi/scsi_host.h>
47 #include <linux/libata.h>
48
49 #define DRV_NAME "sata_vsc"
50 #define DRV_VERSION "2.3"
51
52 enum {
53 VSC_MMIO_BAR = 0,
54
55 /* Interrupt register offsets (from chip base address) */
56 VSC_SATA_INT_STAT_OFFSET = 0x00,
57 VSC_SATA_INT_MASK_OFFSET = 0x04,
58
59 /* Taskfile registers offsets */
60 VSC_SATA_TF_CMD_OFFSET = 0x00,
61 VSC_SATA_TF_DATA_OFFSET = 0x00,
62 VSC_SATA_TF_ERROR_OFFSET = 0x04,
63 VSC_SATA_TF_FEATURE_OFFSET = 0x06,
64 VSC_SATA_TF_NSECT_OFFSET = 0x08,
65 VSC_SATA_TF_LBAL_OFFSET = 0x0c,
66 VSC_SATA_TF_LBAM_OFFSET = 0x10,
67 VSC_SATA_TF_LBAH_OFFSET = 0x14,
68 VSC_SATA_TF_DEVICE_OFFSET = 0x18,
69 VSC_SATA_TF_STATUS_OFFSET = 0x1c,
70 VSC_SATA_TF_COMMAND_OFFSET = 0x1d,
71 VSC_SATA_TF_ALTSTATUS_OFFSET = 0x28,
72 VSC_SATA_TF_CTL_OFFSET = 0x29,
73
74 /* DMA base */
75 VSC_SATA_UP_DESCRIPTOR_OFFSET = 0x64,
76 VSC_SATA_UP_DATA_BUFFER_OFFSET = 0x6C,
77 VSC_SATA_DMA_CMD_OFFSET = 0x70,
78
79 /* SCRs base */
80 VSC_SATA_SCR_STATUS_OFFSET = 0x100,
81 VSC_SATA_SCR_ERROR_OFFSET = 0x104,
82 VSC_SATA_SCR_CONTROL_OFFSET = 0x108,
83
84 /* Port stride */
85 VSC_SATA_PORT_OFFSET = 0x200,
86
87 /* Error interrupt status bit offsets */
88 VSC_SATA_INT_ERROR_CRC = 0x40,
89 VSC_SATA_INT_ERROR_T = 0x20,
90 VSC_SATA_INT_ERROR_P = 0x10,
91 VSC_SATA_INT_ERROR_R = 0x8,
92 VSC_SATA_INT_ERROR_E = 0x4,
93 VSC_SATA_INT_ERROR_M = 0x2,
94 VSC_SATA_INT_PHY_CHANGE = 0x1,
95 VSC_SATA_INT_ERROR = (VSC_SATA_INT_ERROR_CRC | VSC_SATA_INT_ERROR_T | \
96 VSC_SATA_INT_ERROR_P | VSC_SATA_INT_ERROR_R | \
97 VSC_SATA_INT_ERROR_E | VSC_SATA_INT_ERROR_M | \
98 VSC_SATA_INT_PHY_CHANGE),
99 };
100
101 static int vsc_sata_scr_read(struct ata_link *link,
102 unsigned int sc_reg, u32 *val)
103 {
104 if (sc_reg > SCR_CONTROL)
105 return -EINVAL;
106 *val = readl(link->ap->ioaddr.scr_addr + (sc_reg * 4));
107 return 0;
108 }
109
110
111 static int vsc_sata_scr_write(struct ata_link *link,
112 unsigned int sc_reg, u32 val)
113 {
114 if (sc_reg > SCR_CONTROL)
115 return -EINVAL;
116 writel(val, link->ap->ioaddr.scr_addr + (sc_reg * 4));
117 return 0;
118 }
119
120
121 static void vsc_freeze(struct ata_port *ap)
122 {
123 void __iomem *mask_addr;
124
125 mask_addr = ap->host->iomap[VSC_MMIO_BAR] +
126 VSC_SATA_INT_MASK_OFFSET + ap->port_no;
127
128 writeb(0, mask_addr);
129 }
130
131
132 static void vsc_thaw(struct ata_port *ap)
133 {
134 void __iomem *mask_addr;
135
136 mask_addr = ap->host->iomap[VSC_MMIO_BAR] +
137 VSC_SATA_INT_MASK_OFFSET + ap->port_no;
138
139 writeb(0xff, mask_addr);
140 }
141
142
143 static void vsc_intr_mask_update(struct ata_port *ap, u8 ctl)
144 {
145 void __iomem *mask_addr;
146 u8 mask;
147
148 mask_addr = ap->host->iomap[VSC_MMIO_BAR] +
149 VSC_SATA_INT_MASK_OFFSET + ap->port_no;
150 mask = readb(mask_addr);
151 if (ctl & ATA_NIEN)
152 mask |= 0x80;
153 else
154 mask &= 0x7F;
155 writeb(mask, mask_addr);
156 }
157
158
159 static void vsc_sata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
160 {
161 struct ata_ioports *ioaddr = &ap->ioaddr;
162 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
163
164 /*
165 * The only thing the ctl register is used for is SRST.
166 * That is not enabled or disabled via tf_load.
167 * However, if ATA_NIEN is changed, then we need to change
168 * the interrupt register.
169 */
170 if ((tf->ctl & ATA_NIEN) != (ap->last_ctl & ATA_NIEN)) {
171 ap->last_ctl = tf->ctl;
172 vsc_intr_mask_update(ap, tf->ctl & ATA_NIEN);
173 }
174 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
175 writew(tf->feature | (((u16)tf->hob_feature) << 8),
176 ioaddr->feature_addr);
177 writew(tf->nsect | (((u16)tf->hob_nsect) << 8),
178 ioaddr->nsect_addr);
179 writew(tf->lbal | (((u16)tf->hob_lbal) << 8),
180 ioaddr->lbal_addr);
181 writew(tf->lbam | (((u16)tf->hob_lbam) << 8),
182 ioaddr->lbam_addr);
183 writew(tf->lbah | (((u16)tf->hob_lbah) << 8),
184 ioaddr->lbah_addr);
185 } else if (is_addr) {
186 writew(tf->feature, ioaddr->feature_addr);
187 writew(tf->nsect, ioaddr->nsect_addr);
188 writew(tf->lbal, ioaddr->lbal_addr);
189 writew(tf->lbam, ioaddr->lbam_addr);
190 writew(tf->lbah, ioaddr->lbah_addr);
191 }
192
193 if (tf->flags & ATA_TFLAG_DEVICE)
194 writeb(tf->device, ioaddr->device_addr);
195
196 ata_wait_idle(ap);
197 }
198
199
200 static void vsc_sata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
201 {
202 struct ata_ioports *ioaddr = &ap->ioaddr;
203 u16 nsect, lbal, lbam, lbah, feature;
204
205 tf->command = ata_sff_check_status(ap);
206 tf->device = readw(ioaddr->device_addr);
207 feature = readw(ioaddr->error_addr);
208 nsect = readw(ioaddr->nsect_addr);
209 lbal = readw(ioaddr->lbal_addr);
210 lbam = readw(ioaddr->lbam_addr);
211 lbah = readw(ioaddr->lbah_addr);
212
213 tf->feature = feature;
214 tf->nsect = nsect;
215 tf->lbal = lbal;
216 tf->lbam = lbam;
217 tf->lbah = lbah;
218
219 if (tf->flags & ATA_TFLAG_LBA48) {
220 tf->hob_feature = feature >> 8;
221 tf->hob_nsect = nsect >> 8;
222 tf->hob_lbal = lbal >> 8;
223 tf->hob_lbam = lbam >> 8;
224 tf->hob_lbah = lbah >> 8;
225 }
226 }
227
228 static inline void vsc_error_intr(u8 port_status, struct ata_port *ap)
229 {
230 if (port_status & (VSC_SATA_INT_PHY_CHANGE | VSC_SATA_INT_ERROR_M))
231 ata_port_freeze(ap);
232 else
233 ata_port_abort(ap);
234 }
235
236 static void vsc_port_intr(u8 port_status, struct ata_port *ap)
237 {
238 struct ata_queued_cmd *qc;
239 int handled = 0;
240
241 if (unlikely(port_status & VSC_SATA_INT_ERROR)) {
242 vsc_error_intr(port_status, ap);
243 return;
244 }
245
246 qc = ata_qc_from_tag(ap, ap->link.active_tag);
247 if (qc && likely(!(qc->tf.flags & ATA_TFLAG_POLLING)))
248 handled = ata_bmdma_port_intr(ap, qc);
249
250 /* We received an interrupt during a polled command,
251 * or some other spurious condition. Interrupt reporting
252 * with this hardware is fairly reliable so it is safe to
253 * simply clear the interrupt
254 */
255 if (unlikely(!handled))
256 ap->ops->sff_check_status(ap);
257 }
258
259 /*
260 * vsc_sata_interrupt
261 *
262 * Read the interrupt register and process for the devices that have
263 * them pending.
264 */
265 static irqreturn_t vsc_sata_interrupt(int irq, void *dev_instance)
266 {
267 struct ata_host *host = dev_instance;
268 unsigned int i;
269 unsigned int handled = 0;
270 u32 status;
271
272 status = readl(host->iomap[VSC_MMIO_BAR] + VSC_SATA_INT_STAT_OFFSET);
273
274 if (unlikely(status == 0xffffffff || status == 0)) {
275 if (status)
276 dev_err(host->dev,
277 ": IRQ status == 0xffffffff, PCI fault or device removal?\n");
278 goto out;
279 }
280
281 spin_lock(&host->lock);
282
283 for (i = 0; i < host->n_ports; i++) {
284 u8 port_status = (status >> (8 * i)) & 0xff;
285 if (port_status) {
286 vsc_port_intr(port_status, host->ports[i]);
287 handled++;
288 }
289 }
290
291 spin_unlock(&host->lock);
292 out:
293 return IRQ_RETVAL(handled);
294 }
295
296
297 static struct scsi_host_template vsc_sata_sht = {
298 ATA_BMDMA_SHT(DRV_NAME),
299 };
300
301
302 static struct ata_port_operations vsc_sata_ops = {
303 .inherits = &ata_bmdma_port_ops,
304 /* The IRQ handling is not quite standard SFF behaviour so we
305 cannot use the default lost interrupt handler */
306 .lost_interrupt = ATA_OP_NULL,
307 .sff_tf_load = vsc_sata_tf_load,
308 .sff_tf_read = vsc_sata_tf_read,
309 .freeze = vsc_freeze,
310 .thaw = vsc_thaw,
311 .scr_read = vsc_sata_scr_read,
312 .scr_write = vsc_sata_scr_write,
313 };
314
315 static void vsc_sata_setup_port(struct ata_ioports *port, void __iomem *base)
316 {
317 port->cmd_addr = base + VSC_SATA_TF_CMD_OFFSET;
318 port->data_addr = base + VSC_SATA_TF_DATA_OFFSET;
319 port->error_addr = base + VSC_SATA_TF_ERROR_OFFSET;
320 port->feature_addr = base + VSC_SATA_TF_FEATURE_OFFSET;
321 port->nsect_addr = base + VSC_SATA_TF_NSECT_OFFSET;
322 port->lbal_addr = base + VSC_SATA_TF_LBAL_OFFSET;
323 port->lbam_addr = base + VSC_SATA_TF_LBAM_OFFSET;
324 port->lbah_addr = base + VSC_SATA_TF_LBAH_OFFSET;
325 port->device_addr = base + VSC_SATA_TF_DEVICE_OFFSET;
326 port->status_addr = base + VSC_SATA_TF_STATUS_OFFSET;
327 port->command_addr = base + VSC_SATA_TF_COMMAND_OFFSET;
328 port->altstatus_addr = base + VSC_SATA_TF_ALTSTATUS_OFFSET;
329 port->ctl_addr = base + VSC_SATA_TF_CTL_OFFSET;
330 port->bmdma_addr = base + VSC_SATA_DMA_CMD_OFFSET;
331 port->scr_addr = base + VSC_SATA_SCR_STATUS_OFFSET;
332 writel(0, base + VSC_SATA_UP_DESCRIPTOR_OFFSET);
333 writel(0, base + VSC_SATA_UP_DATA_BUFFER_OFFSET);
334 }
335
336
337 static int vsc_sata_init_one(struct pci_dev *pdev,
338 const struct pci_device_id *ent)
339 {
340 static const struct ata_port_info pi = {
341 .flags = ATA_FLAG_SATA,
342 .pio_mask = ATA_PIO4,
343 .mwdma_mask = ATA_MWDMA2,
344 .udma_mask = ATA_UDMA6,
345 .port_ops = &vsc_sata_ops,
346 };
347 const struct ata_port_info *ppi[] = { &pi, NULL };
348 struct ata_host *host;
349 void __iomem *mmio_base;
350 int i, rc;
351 u8 cls;
352
353 ata_print_version_once(&pdev->dev, DRV_VERSION);
354
355 /* allocate host */
356 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 4);
357 if (!host)
358 return -ENOMEM;
359
360 rc = pcim_enable_device(pdev);
361 if (rc)
362 return rc;
363
364 /* check if we have needed resource mapped */
365 if (pci_resource_len(pdev, 0) == 0)
366 return -ENODEV;
367
368 /* map IO regions and initialize host accordingly */
369 rc = pcim_iomap_regions(pdev, 1 << VSC_MMIO_BAR, DRV_NAME);
370 if (rc == -EBUSY)
371 pcim_pin_device(pdev);
372 if (rc)
373 return rc;
374 host->iomap = pcim_iomap_table(pdev);
375
376 mmio_base = host->iomap[VSC_MMIO_BAR];
377
378 for (i = 0; i < host->n_ports; i++) {
379 struct ata_port *ap = host->ports[i];
380 unsigned int offset = (i + 1) * VSC_SATA_PORT_OFFSET;
381
382 vsc_sata_setup_port(&ap->ioaddr, mmio_base + offset);
383
384 ata_port_pbar_desc(ap, VSC_MMIO_BAR, -1, "mmio");
385 ata_port_pbar_desc(ap, VSC_MMIO_BAR, offset, "port");
386 }
387
388 /*
389 * Use 32 bit DMA mask, because 64 bit address support is poor.
390 */
391 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
392 if (rc)
393 return rc;
394 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
395 if (rc)
396 return rc;
397
398 /*
399 * Due to a bug in the chip, the default cache line size can't be
400 * used (unless the default is non-zero).
401 */
402 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cls);
403 if (cls == 0x00)
404 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x80);
405
406 if (pci_enable_msi(pdev) == 0)
407 pci_intx(pdev, 0);
408
409 /*
410 * Config offset 0x98 is "Extended Control and Status Register 0"
411 * Default value is (1 << 28). All bits except bit 28 are reserved in
412 * DPA mode. If bit 28 is set, LED 0 reflects all ports' activity.
413 * If bit 28 is clear, each port has its own LED.
414 */
415 pci_write_config_dword(pdev, 0x98, 0);
416
417 pci_set_master(pdev);
418 return ata_host_activate(host, pdev->irq, vsc_sata_interrupt,
419 IRQF_SHARED, &vsc_sata_sht);
420 }
421
422 static const struct pci_device_id vsc_sata_pci_tbl[] = {
423 { PCI_VENDOR_ID_VITESSE, 0x7174,
424 PCI_ANY_ID, PCI_ANY_ID, 0x10600, 0xFFFFFF, 0 },
425 { PCI_VENDOR_ID_INTEL, 0x3200,
426 PCI_ANY_ID, PCI_ANY_ID, 0x10600, 0xFFFFFF, 0 },
427
428 { } /* terminate list */
429 };
430
431 static struct pci_driver vsc_sata_pci_driver = {
432 .name = DRV_NAME,
433 .id_table = vsc_sata_pci_tbl,
434 .probe = vsc_sata_init_one,
435 .remove = ata_pci_remove_one,
436 };
437
438 module_pci_driver(vsc_sata_pci_driver);
439
440 MODULE_AUTHOR("Jeremy Higdon");
441 MODULE_DESCRIPTION("low-level driver for Vitesse VSC7174 SATA controller");
442 MODULE_LICENSE("GPL");
443 MODULE_DEVICE_TABLE(pci, vsc_sata_pci_tbl);
444 MODULE_VERSION(DRV_VERSION);