include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / ata / pata_octeon_cf.c
1 /*
2 * Driver for the Octeon bootbus compact flash.
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 2005 - 2009 Cavium Networks
9 * Copyright (C) 2008 Wind River Systems
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/libata.h>
15 #include <linux/irq.h>
16 #include <linux/slab.h>
17 #include <linux/platform_device.h>
18 #include <linux/workqueue.h>
19 #include <scsi/scsi_host.h>
20
21 #include <asm/octeon/octeon.h>
22
23 /*
24 * The Octeon bootbus compact flash interface is connected in at least
25 * 3 different configurations on various evaluation boards:
26 *
27 * -- 8 bits no irq, no DMA
28 * -- 16 bits no irq, no DMA
29 * -- 16 bits True IDE mode with DMA, but no irq.
30 *
31 * In the last case the DMA engine can generate an interrupt when the
32 * transfer is complete. For the first two cases only PIO is supported.
33 *
34 */
35
36 #define DRV_NAME "pata_octeon_cf"
37 #define DRV_VERSION "2.1"
38
39
40 struct octeon_cf_port {
41 struct workqueue_struct *wq;
42 struct delayed_work delayed_finish;
43 struct ata_port *ap;
44 int dma_finished;
45 };
46
47 static struct scsi_host_template octeon_cf_sht = {
48 ATA_PIO_SHT(DRV_NAME),
49 };
50
51 /**
52 * Convert nanosecond based time to setting used in the
53 * boot bus timing register, based on timing multiple
54 */
55 static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs)
56 {
57 unsigned int val;
58
59 /*
60 * Compute # of eclock periods to get desired duration in
61 * nanoseconds.
62 */
63 val = DIV_ROUND_UP(nsecs * (octeon_get_clock_rate() / 1000000),
64 1000 * tim_mult);
65
66 return val;
67 }
68
69 static void octeon_cf_set_boot_reg_cfg(int cs)
70 {
71 union cvmx_mio_boot_reg_cfgx reg_cfg;
72 reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
73 reg_cfg.s.dmack = 0; /* Don't assert DMACK on access */
74 reg_cfg.s.tim_mult = 2; /* Timing mutiplier 2x */
75 reg_cfg.s.rd_dly = 0; /* Sample on falling edge of BOOT_OE */
76 reg_cfg.s.sam = 0; /* Don't combine write and output enable */
77 reg_cfg.s.we_ext = 0; /* No write enable extension */
78 reg_cfg.s.oe_ext = 0; /* No read enable extension */
79 reg_cfg.s.en = 1; /* Enable this region */
80 reg_cfg.s.orbit = 0; /* Don't combine with previous region */
81 reg_cfg.s.ale = 0; /* Don't do address multiplexing */
82 cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64);
83 }
84
85 /**
86 * Called after libata determines the needed PIO mode. This
87 * function programs the Octeon bootbus regions to support the
88 * timing requirements of the PIO mode.
89 *
90 * @ap: ATA port information
91 * @dev: ATA device
92 */
93 static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev)
94 {
95 struct octeon_cf_data *ocd = ap->dev->platform_data;
96 union cvmx_mio_boot_reg_timx reg_tim;
97 int cs = ocd->base_region;
98 int T;
99 struct ata_timing timing;
100
101 int use_iordy;
102 int trh;
103 int pause;
104 /* These names are timing parameters from the ATA spec */
105 int t1;
106 int t2;
107 int t2i;
108
109 T = (int)(2000000000000LL / octeon_get_clock_rate());
110
111 if (ata_timing_compute(dev, dev->pio_mode, &timing, T, T))
112 BUG();
113
114 t1 = timing.setup;
115 if (t1)
116 t1--;
117 t2 = timing.active;
118 if (t2)
119 t2--;
120 t2i = timing.act8b;
121 if (t2i)
122 t2i--;
123
124 trh = ns_to_tim_reg(2, 20);
125 if (trh)
126 trh--;
127
128 pause = timing.cycle - timing.active - timing.setup - trh;
129 if (pause)
130 pause--;
131
132 octeon_cf_set_boot_reg_cfg(cs);
133 if (ocd->dma_engine >= 0)
134 /* True IDE mode, program both chip selects. */
135 octeon_cf_set_boot_reg_cfg(cs + 1);
136
137
138 use_iordy = ata_pio_need_iordy(dev);
139
140 reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cs));
141 /* Disable page mode */
142 reg_tim.s.pagem = 0;
143 /* Enable dynamic timing */
144 reg_tim.s.waitm = use_iordy;
145 /* Pages are disabled */
146 reg_tim.s.pages = 0;
147 /* We don't use multiplexed address mode */
148 reg_tim.s.ale = 0;
149 /* Not used */
150 reg_tim.s.page = 0;
151 /* Time after IORDY to coninue to assert the data */
152 reg_tim.s.wait = 0;
153 /* Time to wait to complete the cycle. */
154 reg_tim.s.pause = pause;
155 /* How long to hold after a write to de-assert CE. */
156 reg_tim.s.wr_hld = trh;
157 /* How long to wait after a read to de-assert CE. */
158 reg_tim.s.rd_hld = trh;
159 /* How long write enable is asserted */
160 reg_tim.s.we = t2;
161 /* How long read enable is asserted */
162 reg_tim.s.oe = t2;
163 /* Time after CE that read/write starts */
164 reg_tim.s.ce = ns_to_tim_reg(2, 5);
165 /* Time before CE that address is valid */
166 reg_tim.s.adr = 0;
167
168 /* Program the bootbus region timing for the data port chip select. */
169 cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cs), reg_tim.u64);
170 if (ocd->dma_engine >= 0)
171 /* True IDE mode, program both chip selects. */
172 cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cs + 1), reg_tim.u64);
173 }
174
175 static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev)
176 {
177 struct octeon_cf_data *ocd = dev->link->ap->dev->platform_data;
178 union cvmx_mio_boot_dma_timx dma_tim;
179 unsigned int oe_a;
180 unsigned int oe_n;
181 unsigned int dma_ackh;
182 unsigned int dma_arq;
183 unsigned int pause;
184 unsigned int T0, Tkr, Td;
185 unsigned int tim_mult;
186
187 const struct ata_timing *timing;
188
189 timing = ata_timing_find_mode(dev->dma_mode);
190 T0 = timing->cycle;
191 Td = timing->active;
192 Tkr = timing->recover;
193 dma_ackh = timing->dmack_hold;
194
195 dma_tim.u64 = 0;
196 /* dma_tim.s.tim_mult = 0 --> 4x */
197 tim_mult = 4;
198
199 /* not spec'ed, value in eclocks, not affected by tim_mult */
200 dma_arq = 8;
201 pause = 25 - dma_arq * 1000 /
202 (octeon_get_clock_rate() / 1000000); /* Tz */
203
204 oe_a = Td;
205 /* Tkr from cf spec, lengthened to meet T0 */
206 oe_n = max(T0 - oe_a, Tkr);
207
208 dma_tim.s.dmack_pi = 1;
209
210 dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n);
211 dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a);
212
213 /*
214 * This is tI, C.F. spec. says 0, but Sony CF card requires
215 * more, we use 20 nS.
216 */
217 dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20);
218 dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh);
219
220 dma_tim.s.dmarq = dma_arq;
221 dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause);
222
223 dma_tim.s.rd_dly = 0; /* Sample right on edge */
224
225 /* writes only */
226 dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n);
227 dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a);
228
229 pr_debug("ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60,
230 ns_to_tim_reg(tim_mult, 60));
231 pr_debug("oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: "
232 "%d, dmarq: %d, pause: %d\n",
233 dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s,
234 dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause);
235
236 cvmx_write_csr(CVMX_MIO_BOOT_DMA_TIMX(ocd->dma_engine),
237 dma_tim.u64);
238
239 }
240
241 /**
242 * Handle an 8 bit I/O request.
243 *
244 * @dev: Device to access
245 * @buffer: Data buffer
246 * @buflen: Length of the buffer.
247 * @rw: True to write.
248 */
249 static unsigned int octeon_cf_data_xfer8(struct ata_device *dev,
250 unsigned char *buffer,
251 unsigned int buflen,
252 int rw)
253 {
254 struct ata_port *ap = dev->link->ap;
255 void __iomem *data_addr = ap->ioaddr.data_addr;
256 unsigned long words;
257 int count;
258
259 words = buflen;
260 if (rw) {
261 count = 16;
262 while (words--) {
263 iowrite8(*buffer, data_addr);
264 buffer++;
265 /*
266 * Every 16 writes do a read so the bootbus
267 * FIFO doesn't fill up.
268 */
269 if (--count == 0) {
270 ioread8(ap->ioaddr.altstatus_addr);
271 count = 16;
272 }
273 }
274 } else {
275 ioread8_rep(data_addr, buffer, words);
276 }
277 return buflen;
278 }
279
280 /**
281 * Handle a 16 bit I/O request.
282 *
283 * @dev: Device to access
284 * @buffer: Data buffer
285 * @buflen: Length of the buffer.
286 * @rw: True to write.
287 */
288 static unsigned int octeon_cf_data_xfer16(struct ata_device *dev,
289 unsigned char *buffer,
290 unsigned int buflen,
291 int rw)
292 {
293 struct ata_port *ap = dev->link->ap;
294 void __iomem *data_addr = ap->ioaddr.data_addr;
295 unsigned long words;
296 int count;
297
298 words = buflen / 2;
299 if (rw) {
300 count = 16;
301 while (words--) {
302 iowrite16(*(uint16_t *)buffer, data_addr);
303 buffer += sizeof(uint16_t);
304 /*
305 * Every 16 writes do a read so the bootbus
306 * FIFO doesn't fill up.
307 */
308 if (--count == 0) {
309 ioread8(ap->ioaddr.altstatus_addr);
310 count = 16;
311 }
312 }
313 } else {
314 while (words--) {
315 *(uint16_t *)buffer = ioread16(data_addr);
316 buffer += sizeof(uint16_t);
317 }
318 }
319 /* Transfer trailing 1 byte, if any. */
320 if (unlikely(buflen & 0x01)) {
321 __le16 align_buf[1] = { 0 };
322
323 if (rw == READ) {
324 align_buf[0] = cpu_to_le16(ioread16(data_addr));
325 memcpy(buffer, align_buf, 1);
326 } else {
327 memcpy(align_buf, buffer, 1);
328 iowrite16(le16_to_cpu(align_buf[0]), data_addr);
329 }
330 words++;
331 }
332 return buflen;
333 }
334
335 /**
336 * Read the taskfile for 16bit non-True IDE only.
337 */
338 static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf)
339 {
340 u16 blob;
341 /* The base of the registers is at ioaddr.data_addr. */
342 void __iomem *base = ap->ioaddr.data_addr;
343
344 blob = __raw_readw(base + 0xc);
345 tf->feature = blob >> 8;
346
347 blob = __raw_readw(base + 2);
348 tf->nsect = blob & 0xff;
349 tf->lbal = blob >> 8;
350
351 blob = __raw_readw(base + 4);
352 tf->lbam = blob & 0xff;
353 tf->lbah = blob >> 8;
354
355 blob = __raw_readw(base + 6);
356 tf->device = blob & 0xff;
357 tf->command = blob >> 8;
358
359 if (tf->flags & ATA_TFLAG_LBA48) {
360 if (likely(ap->ioaddr.ctl_addr)) {
361 iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr);
362
363 blob = __raw_readw(base + 0xc);
364 tf->hob_feature = blob >> 8;
365
366 blob = __raw_readw(base + 2);
367 tf->hob_nsect = blob & 0xff;
368 tf->hob_lbal = blob >> 8;
369
370 blob = __raw_readw(base + 4);
371 tf->hob_lbam = blob & 0xff;
372 tf->hob_lbah = blob >> 8;
373
374 iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
375 ap->last_ctl = tf->ctl;
376 } else {
377 WARN_ON(1);
378 }
379 }
380 }
381
382 static u8 octeon_cf_check_status16(struct ata_port *ap)
383 {
384 u16 blob;
385 void __iomem *base = ap->ioaddr.data_addr;
386
387 blob = __raw_readw(base + 6);
388 return blob >> 8;
389 }
390
391 static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes,
392 unsigned long deadline)
393 {
394 struct ata_port *ap = link->ap;
395 void __iomem *base = ap->ioaddr.data_addr;
396 int rc;
397 u8 err;
398
399 DPRINTK("about to softreset\n");
400 __raw_writew(ap->ctl, base + 0xe);
401 udelay(20);
402 __raw_writew(ap->ctl | ATA_SRST, base + 0xe);
403 udelay(20);
404 __raw_writew(ap->ctl, base + 0xe);
405
406 rc = ata_sff_wait_after_reset(link, 1, deadline);
407 if (rc) {
408 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
409 return rc;
410 }
411
412 /* determine by signature whether we have ATA or ATAPI devices */
413 classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err);
414 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
415 return 0;
416 }
417
418 /**
419 * Load the taskfile for 16bit non-True IDE only. The device_addr is
420 * not loaded, we do this as part of octeon_cf_exec_command16.
421 */
422 static void octeon_cf_tf_load16(struct ata_port *ap,
423 const struct ata_taskfile *tf)
424 {
425 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
426 /* The base of the registers is at ioaddr.data_addr. */
427 void __iomem *base = ap->ioaddr.data_addr;
428
429 if (tf->ctl != ap->last_ctl) {
430 iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
431 ap->last_ctl = tf->ctl;
432 ata_wait_idle(ap);
433 }
434 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
435 __raw_writew(tf->hob_feature << 8, base + 0xc);
436 __raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2);
437 __raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4);
438 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
439 tf->hob_feature,
440 tf->hob_nsect,
441 tf->hob_lbal,
442 tf->hob_lbam,
443 tf->hob_lbah);
444 }
445 if (is_addr) {
446 __raw_writew(tf->feature << 8, base + 0xc);
447 __raw_writew(tf->nsect | tf->lbal << 8, base + 2);
448 __raw_writew(tf->lbam | tf->lbah << 8, base + 4);
449 VPRINTK("feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
450 tf->feature,
451 tf->nsect,
452 tf->lbal,
453 tf->lbam,
454 tf->lbah);
455 }
456 ata_wait_idle(ap);
457 }
458
459
460 static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device)
461 {
462 /* There is only one device, do nothing. */
463 return;
464 }
465
466 /*
467 * Issue ATA command to host controller. The device_addr is also sent
468 * as it must be written in a combined write with the command.
469 */
470 static void octeon_cf_exec_command16(struct ata_port *ap,
471 const struct ata_taskfile *tf)
472 {
473 /* The base of the registers is at ioaddr.data_addr. */
474 void __iomem *base = ap->ioaddr.data_addr;
475 u16 blob;
476
477 if (tf->flags & ATA_TFLAG_DEVICE) {
478 VPRINTK("device 0x%X\n", tf->device);
479 blob = tf->device;
480 } else {
481 blob = 0;
482 }
483
484 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
485 blob |= (tf->command << 8);
486 __raw_writew(blob, base + 6);
487
488
489 ata_wait_idle(ap);
490 }
491
492 static u8 octeon_cf_irq_on(struct ata_port *ap)
493 {
494 return 0;
495 }
496
497 static void octeon_cf_irq_clear(struct ata_port *ap)
498 {
499 return;
500 }
501
502 static void octeon_cf_dma_setup(struct ata_queued_cmd *qc)
503 {
504 struct ata_port *ap = qc->ap;
505 struct octeon_cf_port *cf_port;
506
507 cf_port = ap->private_data;
508 DPRINTK("ENTER\n");
509 /* issue r/w command */
510 qc->cursg = qc->sg;
511 cf_port->dma_finished = 0;
512 ap->ops->sff_exec_command(ap, &qc->tf);
513 DPRINTK("EXIT\n");
514 }
515
516 /**
517 * Start a DMA transfer that was already setup
518 *
519 * @qc: Information about the DMA
520 */
521 static void octeon_cf_dma_start(struct ata_queued_cmd *qc)
522 {
523 struct octeon_cf_data *ocd = qc->ap->dev->platform_data;
524 union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg;
525 union cvmx_mio_boot_dma_intx mio_boot_dma_int;
526 struct scatterlist *sg;
527
528 VPRINTK("%d scatterlists\n", qc->n_elem);
529
530 /* Get the scatter list entry we need to DMA into */
531 sg = qc->cursg;
532 BUG_ON(!sg);
533
534 /*
535 * Clear the DMA complete status.
536 */
537 mio_boot_dma_int.u64 = 0;
538 mio_boot_dma_int.s.done = 1;
539 cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine),
540 mio_boot_dma_int.u64);
541
542 /* Enable the interrupt. */
543 cvmx_write_csr(CVMX_MIO_BOOT_DMA_INT_ENX(ocd->dma_engine),
544 mio_boot_dma_int.u64);
545
546 /* Set the direction of the DMA */
547 mio_boot_dma_cfg.u64 = 0;
548 mio_boot_dma_cfg.s.en = 1;
549 mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0);
550
551 /*
552 * Don't stop the DMA if the device deasserts DMARQ. Many
553 * compact flashes deassert DMARQ for a short time between
554 * sectors. Instead of stopping and restarting the DMA, we'll
555 * let the hardware do it. If the DMA is really stopped early
556 * due to an error condition, a later timeout will force us to
557 * stop.
558 */
559 mio_boot_dma_cfg.s.clr = 0;
560
561 /* Size is specified in 16bit words and minus one notation */
562 mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1;
563
564 /* We need to swap the high and low bytes of every 16 bits */
565 mio_boot_dma_cfg.s.swap8 = 1;
566
567 mio_boot_dma_cfg.s.adr = sg_dma_address(sg);
568
569 VPRINTK("%s %d bytes address=%p\n",
570 (mio_boot_dma_cfg.s.rw) ? "write" : "read", sg->length,
571 (void *)(unsigned long)mio_boot_dma_cfg.s.adr);
572
573 cvmx_write_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine),
574 mio_boot_dma_cfg.u64);
575 }
576
577 /**
578 *
579 * LOCKING:
580 * spin_lock_irqsave(host lock)
581 *
582 */
583 static unsigned int octeon_cf_dma_finished(struct ata_port *ap,
584 struct ata_queued_cmd *qc)
585 {
586 struct ata_eh_info *ehi = &ap->link.eh_info;
587 struct octeon_cf_data *ocd = ap->dev->platform_data;
588 union cvmx_mio_boot_dma_cfgx dma_cfg;
589 union cvmx_mio_boot_dma_intx dma_int;
590 struct octeon_cf_port *cf_port;
591 u8 status;
592
593 VPRINTK("ata%u: protocol %d task_state %d\n",
594 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
595
596
597 if (ap->hsm_task_state != HSM_ST_LAST)
598 return 0;
599
600 cf_port = ap->private_data;
601
602 dma_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine));
603 if (dma_cfg.s.size != 0xfffff) {
604 /* Error, the transfer was not complete. */
605 qc->err_mask |= AC_ERR_HOST_BUS;
606 ap->hsm_task_state = HSM_ST_ERR;
607 }
608
609 /* Stop and clear the dma engine. */
610 dma_cfg.u64 = 0;
611 dma_cfg.s.size = -1;
612 cvmx_write_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine), dma_cfg.u64);
613
614 /* Disable the interrupt. */
615 dma_int.u64 = 0;
616 cvmx_write_csr(CVMX_MIO_BOOT_DMA_INT_ENX(ocd->dma_engine), dma_int.u64);
617
618 /* Clear the DMA complete status */
619 dma_int.s.done = 1;
620 cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine), dma_int.u64);
621
622 status = ap->ops->sff_check_status(ap);
623
624 ata_sff_hsm_move(ap, qc, status, 0);
625
626 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA))
627 ata_ehi_push_desc(ehi, "DMA stat 0x%x", status);
628
629 return 1;
630 }
631
632 /*
633 * Check if any queued commands have more DMAs, if so start the next
634 * transfer, else do end of transfer handling.
635 */
636 static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance)
637 {
638 struct ata_host *host = dev_instance;
639 struct octeon_cf_port *cf_port;
640 int i;
641 unsigned int handled = 0;
642 unsigned long flags;
643
644 spin_lock_irqsave(&host->lock, flags);
645
646 DPRINTK("ENTER\n");
647 for (i = 0; i < host->n_ports; i++) {
648 u8 status;
649 struct ata_port *ap;
650 struct ata_queued_cmd *qc;
651 union cvmx_mio_boot_dma_intx dma_int;
652 union cvmx_mio_boot_dma_cfgx dma_cfg;
653 struct octeon_cf_data *ocd;
654
655 ap = host->ports[i];
656 ocd = ap->dev->platform_data;
657
658 if (ap->flags & ATA_FLAG_DISABLED)
659 continue;
660
661 ocd = ap->dev->platform_data;
662 cf_port = ap->private_data;
663 dma_int.u64 =
664 cvmx_read_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine));
665 dma_cfg.u64 =
666 cvmx_read_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine));
667
668 qc = ata_qc_from_tag(ap, ap->link.active_tag);
669
670 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
671 (qc->flags & ATA_QCFLAG_ACTIVE)) {
672 if (dma_int.s.done && !dma_cfg.s.en) {
673 if (!sg_is_last(qc->cursg)) {
674 qc->cursg = sg_next(qc->cursg);
675 handled = 1;
676 octeon_cf_dma_start(qc);
677 continue;
678 } else {
679 cf_port->dma_finished = 1;
680 }
681 }
682 if (!cf_port->dma_finished)
683 continue;
684 status = ioread8(ap->ioaddr.altstatus_addr);
685 if (status & (ATA_BUSY | ATA_DRQ)) {
686 /*
687 * We are busy, try to handle it
688 * later. This is the DMA finished
689 * interrupt, and it could take a
690 * little while for the card to be
691 * ready for more commands.
692 */
693 /* Clear DMA irq. */
694 dma_int.u64 = 0;
695 dma_int.s.done = 1;
696 cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine),
697 dma_int.u64);
698
699 queue_delayed_work(cf_port->wq,
700 &cf_port->delayed_finish, 1);
701 handled = 1;
702 } else {
703 handled |= octeon_cf_dma_finished(ap, qc);
704 }
705 }
706 }
707 spin_unlock_irqrestore(&host->lock, flags);
708 DPRINTK("EXIT\n");
709 return IRQ_RETVAL(handled);
710 }
711
712 static void octeon_cf_delayed_finish(struct work_struct *work)
713 {
714 struct octeon_cf_port *cf_port = container_of(work,
715 struct octeon_cf_port,
716 delayed_finish.work);
717 struct ata_port *ap = cf_port->ap;
718 struct ata_host *host = ap->host;
719 struct ata_queued_cmd *qc;
720 unsigned long flags;
721 u8 status;
722
723 spin_lock_irqsave(&host->lock, flags);
724
725 /*
726 * If the port is not waiting for completion, it must have
727 * handled it previously. The hsm_task_state is
728 * protected by host->lock.
729 */
730 if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished)
731 goto out;
732
733 status = ioread8(ap->ioaddr.altstatus_addr);
734 if (status & (ATA_BUSY | ATA_DRQ)) {
735 /* Still busy, try again. */
736 queue_delayed_work(cf_port->wq,
737 &cf_port->delayed_finish, 1);
738 goto out;
739 }
740 qc = ata_qc_from_tag(ap, ap->link.active_tag);
741 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
742 (qc->flags & ATA_QCFLAG_ACTIVE))
743 octeon_cf_dma_finished(ap, qc);
744 out:
745 spin_unlock_irqrestore(&host->lock, flags);
746 }
747
748 static void octeon_cf_dev_config(struct ata_device *dev)
749 {
750 /*
751 * A maximum of 2^20 - 1 16 bit transfers are possible with
752 * the bootbus DMA. So we need to throttle max_sectors to
753 * (2^12 - 1 == 4095) to assure that this can never happen.
754 */
755 dev->max_sectors = min(dev->max_sectors, 4095U);
756 }
757
758 /*
759 * Trap if driver tries to do standard bmdma commands. They are not
760 * supported.
761 */
762 static void unreachable_qc(struct ata_queued_cmd *qc)
763 {
764 BUG();
765 }
766
767 static u8 unreachable_port(struct ata_port *ap)
768 {
769 BUG();
770 }
771
772 /*
773 * We don't do ATAPI DMA so return 0.
774 */
775 static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc)
776 {
777 return 0;
778 }
779
780 static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc)
781 {
782 struct ata_port *ap = qc->ap;
783
784 switch (qc->tf.protocol) {
785 case ATA_PROT_DMA:
786 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
787
788 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
789 octeon_cf_dma_setup(qc); /* set up dma */
790 octeon_cf_dma_start(qc); /* initiate dma */
791 ap->hsm_task_state = HSM_ST_LAST;
792 break;
793
794 case ATAPI_PROT_DMA:
795 dev_err(ap->dev, "Error, ATAPI not supported\n");
796 BUG();
797
798 default:
799 return ata_sff_qc_issue(qc);
800 }
801
802 return 0;
803 }
804
805 static struct ata_port_operations octeon_cf_ops = {
806 .inherits = &ata_sff_port_ops,
807 .check_atapi_dma = octeon_cf_check_atapi_dma,
808 .qc_prep = ata_noop_qc_prep,
809 .qc_issue = octeon_cf_qc_issue,
810 .sff_dev_select = octeon_cf_dev_select,
811 .sff_irq_on = octeon_cf_irq_on,
812 .sff_irq_clear = octeon_cf_irq_clear,
813 .bmdma_setup = unreachable_qc,
814 .bmdma_start = unreachable_qc,
815 .bmdma_stop = unreachable_qc,
816 .bmdma_status = unreachable_port,
817 .cable_detect = ata_cable_40wire,
818 .set_piomode = octeon_cf_set_piomode,
819 .set_dmamode = octeon_cf_set_dmamode,
820 .dev_config = octeon_cf_dev_config,
821 };
822
823 static int __devinit octeon_cf_probe(struct platform_device *pdev)
824 {
825 struct resource *res_cs0, *res_cs1;
826
827 void __iomem *cs0;
828 void __iomem *cs1 = NULL;
829 struct ata_host *host;
830 struct ata_port *ap;
831 struct octeon_cf_data *ocd;
832 int irq = 0;
833 irq_handler_t irq_handler = NULL;
834 void __iomem *base;
835 struct octeon_cf_port *cf_port;
836
837 res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
838
839 if (!res_cs0)
840 return -EINVAL;
841
842 ocd = pdev->dev.platform_data;
843
844 cs0 = devm_ioremap_nocache(&pdev->dev, res_cs0->start,
845 resource_size(res_cs0));
846
847 if (!cs0)
848 return -ENOMEM;
849
850 /* Determine from availability of DMA if True IDE mode or not */
851 if (ocd->dma_engine >= 0) {
852 res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
853 if (!res_cs1)
854 return -EINVAL;
855
856 cs1 = devm_ioremap_nocache(&pdev->dev, res_cs1->start,
857 resource_size(res_cs1));
858
859 if (!cs1)
860 return -ENOMEM;
861 }
862
863 cf_port = kzalloc(sizeof(*cf_port), GFP_KERNEL);
864 if (!cf_port)
865 return -ENOMEM;
866
867 /* allocate host */
868 host = ata_host_alloc(&pdev->dev, 1);
869 if (!host)
870 goto free_cf_port;
871
872 ap = host->ports[0];
873 ap->private_data = cf_port;
874 cf_port->ap = ap;
875 ap->ops = &octeon_cf_ops;
876 ap->pio_mask = ATA_PIO6;
877 ap->flags |= ATA_FLAG_MMIO | ATA_FLAG_NO_LEGACY
878 | ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING;
879
880 base = cs0 + ocd->base_region_bias;
881 if (!ocd->is16bit) {
882 ap->ioaddr.cmd_addr = base;
883 ata_sff_std_ports(&ap->ioaddr);
884
885 ap->ioaddr.altstatus_addr = base + 0xe;
886 ap->ioaddr.ctl_addr = base + 0xe;
887 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8;
888 } else if (cs1) {
889 /* Presence of cs1 indicates True IDE mode. */
890 ap->ioaddr.cmd_addr = base + (ATA_REG_CMD << 1) + 1;
891 ap->ioaddr.data_addr = base + (ATA_REG_DATA << 1);
892 ap->ioaddr.error_addr = base + (ATA_REG_ERR << 1) + 1;
893 ap->ioaddr.feature_addr = base + (ATA_REG_FEATURE << 1) + 1;
894 ap->ioaddr.nsect_addr = base + (ATA_REG_NSECT << 1) + 1;
895 ap->ioaddr.lbal_addr = base + (ATA_REG_LBAL << 1) + 1;
896 ap->ioaddr.lbam_addr = base + (ATA_REG_LBAM << 1) + 1;
897 ap->ioaddr.lbah_addr = base + (ATA_REG_LBAH << 1) + 1;
898 ap->ioaddr.device_addr = base + (ATA_REG_DEVICE << 1) + 1;
899 ap->ioaddr.status_addr = base + (ATA_REG_STATUS << 1) + 1;
900 ap->ioaddr.command_addr = base + (ATA_REG_CMD << 1) + 1;
901 ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1;
902 ap->ioaddr.ctl_addr = cs1 + (6 << 1) + 1;
903 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
904
905 ap->mwdma_mask = ATA_MWDMA4;
906 irq = platform_get_irq(pdev, 0);
907 irq_handler = octeon_cf_interrupt;
908
909 /* True IDE mode needs delayed work to poll for not-busy. */
910 cf_port->wq = create_singlethread_workqueue(DRV_NAME);
911 if (!cf_port->wq)
912 goto free_cf_port;
913 INIT_DELAYED_WORK(&cf_port->delayed_finish,
914 octeon_cf_delayed_finish);
915
916 } else {
917 /* 16 bit but not True IDE */
918 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
919 octeon_cf_ops.softreset = octeon_cf_softreset16;
920 octeon_cf_ops.sff_check_status = octeon_cf_check_status16;
921 octeon_cf_ops.sff_tf_read = octeon_cf_tf_read16;
922 octeon_cf_ops.sff_tf_load = octeon_cf_tf_load16;
923 octeon_cf_ops.sff_exec_command = octeon_cf_exec_command16;
924
925 ap->ioaddr.data_addr = base + ATA_REG_DATA;
926 ap->ioaddr.nsect_addr = base + ATA_REG_NSECT;
927 ap->ioaddr.lbal_addr = base + ATA_REG_LBAL;
928 ap->ioaddr.ctl_addr = base + 0xe;
929 ap->ioaddr.altstatus_addr = base + 0xe;
930 }
931
932 ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr);
933
934
935 dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n",
936 (ocd->is16bit) ? 16 : 8,
937 (cs1) ? ", True IDE" : "");
938
939
940 return ata_host_activate(host, irq, irq_handler, 0, &octeon_cf_sht);
941
942 free_cf_port:
943 kfree(cf_port);
944 return -ENOMEM;
945 }
946
947 static struct platform_driver octeon_cf_driver = {
948 .probe = octeon_cf_probe,
949 .driver = {
950 .name = DRV_NAME,
951 .owner = THIS_MODULE,
952 },
953 };
954
955 static int __init octeon_cf_init(void)
956 {
957 return platform_driver_register(&octeon_cf_driver);
958 }
959
960
961 MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
962 MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA");
963 MODULE_LICENSE("GPL");
964 MODULE_VERSION(DRV_VERSION);
965 MODULE_ALIAS("platform:" DRV_NAME);
966
967 module_init(octeon_cf_init);