vmstat: Optimize zone counter modifications through the use of this cpu operations
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / acpi / processor_idle.c
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27 *
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/slab.h>
36 #include <linux/acpi.h>
37 #include <linux/dmi.h>
38 #include <linux/moduleparam.h>
39 #include <linux/sched.h> /* need_resched() */
40 #include <linux/pm_qos_params.h>
41 #include <linux/clockchips.h>
42 #include <linux/cpuidle.h>
43 #include <linux/irqflags.h>
44
45 /*
46 * Include the apic definitions for x86 to have the APIC timer related defines
47 * available also for UP (on SMP it gets magically included via linux/smp.h).
48 * asm/acpi.h is not an option, as it would require more include magic. Also
49 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
50 */
51 #ifdef CONFIG_X86
52 #include <asm/apic.h>
53 #endif
54
55 #include <asm/io.h>
56 #include <asm/uaccess.h>
57
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
60 #include <asm/processor.h>
61
62 #define PREFIX "ACPI: "
63
64 #define ACPI_PROCESSOR_CLASS "processor"
65 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
66 ACPI_MODULE_NAME("processor_idle");
67 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
68 #define C2_OVERHEAD 1 /* 1us */
69 #define C3_OVERHEAD 1 /* 1us */
70 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
71
72 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
73 module_param(max_cstate, uint, 0000);
74 static unsigned int nocst __read_mostly;
75 module_param(nocst, uint, 0000);
76 static int bm_check_disable __read_mostly;
77 module_param(bm_check_disable, uint, 0000);
78
79 static unsigned int latency_factor __read_mostly = 2;
80 module_param(latency_factor, uint, 0644);
81
82 /*
83 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
84 * For now disable this. Probably a bug somewhere else.
85 *
86 * To skip this limit, boot/load with a large max_cstate limit.
87 */
88 static int set_max_cstate(const struct dmi_system_id *id)
89 {
90 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
91 return 0;
92
93 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
94 " Override with \"processor.max_cstate=%d\"\n", id->ident,
95 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
96
97 max_cstate = (long)id->driver_data;
98
99 return 0;
100 }
101
102 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
103 callers to only run once -AK */
104 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
105 { set_max_cstate, "Clevo 5600D", {
106 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
107 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
108 (void *)2},
109 { set_max_cstate, "Pavilion zv5000", {
110 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
111 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
112 (void *)1},
113 { set_max_cstate, "Asus L8400B", {
114 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
115 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
116 (void *)1},
117 {},
118 };
119
120
121 /*
122 * Callers should disable interrupts before the call and enable
123 * interrupts after return.
124 */
125 static void acpi_safe_halt(void)
126 {
127 current_thread_info()->status &= ~TS_POLLING;
128 /*
129 * TS_POLLING-cleared state must be visible before we
130 * test NEED_RESCHED:
131 */
132 smp_mb();
133 if (!need_resched()) {
134 safe_halt();
135 local_irq_disable();
136 }
137 current_thread_info()->status |= TS_POLLING;
138 }
139
140 #ifdef ARCH_APICTIMER_STOPS_ON_C3
141
142 /*
143 * Some BIOS implementations switch to C3 in the published C2 state.
144 * This seems to be a common problem on AMD boxen, but other vendors
145 * are affected too. We pick the most conservative approach: we assume
146 * that the local APIC stops in both C2 and C3.
147 */
148 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
149 struct acpi_processor_cx *cx)
150 {
151 struct acpi_processor_power *pwr = &pr->power;
152 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
153
154 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
155 return;
156
157 if (c1e_detected)
158 type = ACPI_STATE_C1;
159
160 /*
161 * Check, if one of the previous states already marked the lapic
162 * unstable
163 */
164 if (pwr->timer_broadcast_on_state < state)
165 return;
166
167 if (cx->type >= type)
168 pr->power.timer_broadcast_on_state = state;
169 }
170
171 static void __lapic_timer_propagate_broadcast(void *arg)
172 {
173 struct acpi_processor *pr = (struct acpi_processor *) arg;
174 unsigned long reason;
175
176 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
177 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
178
179 clockevents_notify(reason, &pr->id);
180 }
181
182 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
183 {
184 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
185 (void *)pr, 1);
186 }
187
188 /* Power(C) State timer broadcast control */
189 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
190 struct acpi_processor_cx *cx,
191 int broadcast)
192 {
193 int state = cx - pr->power.states;
194
195 if (state >= pr->power.timer_broadcast_on_state) {
196 unsigned long reason;
197
198 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
199 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
200 clockevents_notify(reason, &pr->id);
201 }
202 }
203
204 #else
205
206 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
207 struct acpi_processor_cx *cstate) { }
208 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
209 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
210 struct acpi_processor_cx *cx,
211 int broadcast)
212 {
213 }
214
215 #endif
216
217 /*
218 * Suspend / resume control
219 */
220 static int acpi_idle_suspend;
221 static u32 saved_bm_rld;
222
223 static void acpi_idle_bm_rld_save(void)
224 {
225 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
226 }
227 static void acpi_idle_bm_rld_restore(void)
228 {
229 u32 resumed_bm_rld;
230
231 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
232
233 if (resumed_bm_rld != saved_bm_rld)
234 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
235 }
236
237 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
238 {
239 if (acpi_idle_suspend == 1)
240 return 0;
241
242 acpi_idle_bm_rld_save();
243 acpi_idle_suspend = 1;
244 return 0;
245 }
246
247 int acpi_processor_resume(struct acpi_device * device)
248 {
249 if (acpi_idle_suspend == 0)
250 return 0;
251
252 acpi_idle_bm_rld_restore();
253 acpi_idle_suspend = 0;
254 return 0;
255 }
256
257 #if defined(CONFIG_X86)
258 static void tsc_check_state(int state)
259 {
260 switch (boot_cpu_data.x86_vendor) {
261 case X86_VENDOR_AMD:
262 case X86_VENDOR_INTEL:
263 /*
264 * AMD Fam10h TSC will tick in all
265 * C/P/S0/S1 states when this bit is set.
266 */
267 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
268 return;
269
270 /*FALL THROUGH*/
271 default:
272 /* TSC could halt in idle, so notify users */
273 if (state > ACPI_STATE_C1)
274 mark_tsc_unstable("TSC halts in idle");
275 }
276 }
277 #else
278 static void tsc_check_state(int state) { return; }
279 #endif
280
281 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
282 {
283
284 if (!pr)
285 return -EINVAL;
286
287 if (!pr->pblk)
288 return -ENODEV;
289
290 /* if info is obtained from pblk/fadt, type equals state */
291 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
292 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
293
294 #ifndef CONFIG_HOTPLUG_CPU
295 /*
296 * Check for P_LVL2_UP flag before entering C2 and above on
297 * an SMP system.
298 */
299 if ((num_online_cpus() > 1) &&
300 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
301 return -ENODEV;
302 #endif
303
304 /* determine C2 and C3 address from pblk */
305 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
306 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
307
308 /* determine latencies from FADT */
309 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
310 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
311
312 /*
313 * FADT specified C2 latency must be less than or equal to
314 * 100 microseconds.
315 */
316 if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
317 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
318 "C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency));
319 /* invalidate C2 */
320 pr->power.states[ACPI_STATE_C2].address = 0;
321 }
322
323 /*
324 * FADT supplied C3 latency must be less than or equal to
325 * 1000 microseconds.
326 */
327 if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
328 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
329 "C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency));
330 /* invalidate C3 */
331 pr->power.states[ACPI_STATE_C3].address = 0;
332 }
333
334 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
335 "lvl2[0x%08x] lvl3[0x%08x]\n",
336 pr->power.states[ACPI_STATE_C2].address,
337 pr->power.states[ACPI_STATE_C3].address));
338
339 return 0;
340 }
341
342 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
343 {
344 if (!pr->power.states[ACPI_STATE_C1].valid) {
345 /* set the first C-State to C1 */
346 /* all processors need to support C1 */
347 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
348 pr->power.states[ACPI_STATE_C1].valid = 1;
349 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
350 }
351 /* the C0 state only exists as a filler in our array */
352 pr->power.states[ACPI_STATE_C0].valid = 1;
353 return 0;
354 }
355
356 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
357 {
358 acpi_status status = 0;
359 u64 count;
360 int current_count;
361 int i;
362 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
363 union acpi_object *cst;
364
365
366 if (nocst)
367 return -ENODEV;
368
369 current_count = 0;
370
371 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
372 if (ACPI_FAILURE(status)) {
373 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
374 return -ENODEV;
375 }
376
377 cst = buffer.pointer;
378
379 /* There must be at least 2 elements */
380 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
381 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
382 status = -EFAULT;
383 goto end;
384 }
385
386 count = cst->package.elements[0].integer.value;
387
388 /* Validate number of power states. */
389 if (count < 1 || count != cst->package.count - 1) {
390 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
391 status = -EFAULT;
392 goto end;
393 }
394
395 /* Tell driver that at least _CST is supported. */
396 pr->flags.has_cst = 1;
397
398 for (i = 1; i <= count; i++) {
399 union acpi_object *element;
400 union acpi_object *obj;
401 struct acpi_power_register *reg;
402 struct acpi_processor_cx cx;
403
404 memset(&cx, 0, sizeof(cx));
405
406 element = &(cst->package.elements[i]);
407 if (element->type != ACPI_TYPE_PACKAGE)
408 continue;
409
410 if (element->package.count != 4)
411 continue;
412
413 obj = &(element->package.elements[0]);
414
415 if (obj->type != ACPI_TYPE_BUFFER)
416 continue;
417
418 reg = (struct acpi_power_register *)obj->buffer.pointer;
419
420 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
421 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
422 continue;
423
424 /* There should be an easy way to extract an integer... */
425 obj = &(element->package.elements[1]);
426 if (obj->type != ACPI_TYPE_INTEGER)
427 continue;
428
429 cx.type = obj->integer.value;
430 /*
431 * Some buggy BIOSes won't list C1 in _CST -
432 * Let acpi_processor_get_power_info_default() handle them later
433 */
434 if (i == 1 && cx.type != ACPI_STATE_C1)
435 current_count++;
436
437 cx.address = reg->address;
438 cx.index = current_count + 1;
439
440 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
441 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
442 if (acpi_processor_ffh_cstate_probe
443 (pr->id, &cx, reg) == 0) {
444 cx.entry_method = ACPI_CSTATE_FFH;
445 } else if (cx.type == ACPI_STATE_C1) {
446 /*
447 * C1 is a special case where FIXED_HARDWARE
448 * can be handled in non-MWAIT way as well.
449 * In that case, save this _CST entry info.
450 * Otherwise, ignore this info and continue.
451 */
452 cx.entry_method = ACPI_CSTATE_HALT;
453 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
454 } else {
455 continue;
456 }
457 if (cx.type == ACPI_STATE_C1 &&
458 (idle_halt || idle_nomwait)) {
459 /*
460 * In most cases the C1 space_id obtained from
461 * _CST object is FIXED_HARDWARE access mode.
462 * But when the option of idle=halt is added,
463 * the entry_method type should be changed from
464 * CSTATE_FFH to CSTATE_HALT.
465 * When the option of idle=nomwait is added,
466 * the C1 entry_method type should be
467 * CSTATE_HALT.
468 */
469 cx.entry_method = ACPI_CSTATE_HALT;
470 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
471 }
472 } else {
473 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
474 cx.address);
475 }
476
477 if (cx.type == ACPI_STATE_C1) {
478 cx.valid = 1;
479 }
480
481 obj = &(element->package.elements[2]);
482 if (obj->type != ACPI_TYPE_INTEGER)
483 continue;
484
485 cx.latency = obj->integer.value;
486
487 obj = &(element->package.elements[3]);
488 if (obj->type != ACPI_TYPE_INTEGER)
489 continue;
490
491 cx.power = obj->integer.value;
492
493 current_count++;
494 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
495
496 /*
497 * We support total ACPI_PROCESSOR_MAX_POWER - 1
498 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
499 */
500 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
501 printk(KERN_WARNING
502 "Limiting number of power states to max (%d)\n",
503 ACPI_PROCESSOR_MAX_POWER);
504 printk(KERN_WARNING
505 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
506 break;
507 }
508 }
509
510 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
511 current_count));
512
513 /* Validate number of power states discovered */
514 if (current_count < 2)
515 status = -EFAULT;
516
517 end:
518 kfree(buffer.pointer);
519
520 return status;
521 }
522
523 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
524 struct acpi_processor_cx *cx)
525 {
526 static int bm_check_flag = -1;
527 static int bm_control_flag = -1;
528
529
530 if (!cx->address)
531 return;
532
533 /*
534 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
535 * DMA transfers are used by any ISA device to avoid livelock.
536 * Note that we could disable Type-F DMA (as recommended by
537 * the erratum), but this is known to disrupt certain ISA
538 * devices thus we take the conservative approach.
539 */
540 else if (errata.piix4.fdma) {
541 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
542 "C3 not supported on PIIX4 with Type-F DMA\n"));
543 return;
544 }
545
546 /* All the logic here assumes flags.bm_check is same across all CPUs */
547 if (bm_check_flag == -1) {
548 /* Determine whether bm_check is needed based on CPU */
549 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
550 bm_check_flag = pr->flags.bm_check;
551 bm_control_flag = pr->flags.bm_control;
552 } else {
553 pr->flags.bm_check = bm_check_flag;
554 pr->flags.bm_control = bm_control_flag;
555 }
556
557 if (pr->flags.bm_check) {
558 if (!pr->flags.bm_control) {
559 if (pr->flags.has_cst != 1) {
560 /* bus mastering control is necessary */
561 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
562 "C3 support requires BM control\n"));
563 return;
564 } else {
565 /* Here we enter C3 without bus mastering */
566 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
567 "C3 support without BM control\n"));
568 }
569 }
570 } else {
571 /*
572 * WBINVD should be set in fadt, for C3 state to be
573 * supported on when bm_check is not required.
574 */
575 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
576 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
577 "Cache invalidation should work properly"
578 " for C3 to be enabled on SMP systems\n"));
579 return;
580 }
581 }
582
583 /*
584 * Otherwise we've met all of our C3 requirements.
585 * Normalize the C3 latency to expidite policy. Enable
586 * checking of bus mastering status (bm_check) so we can
587 * use this in our C3 policy
588 */
589 cx->valid = 1;
590
591 cx->latency_ticks = cx->latency;
592 /*
593 * On older chipsets, BM_RLD needs to be set
594 * in order for Bus Master activity to wake the
595 * system from C3. Newer chipsets handle DMA
596 * during C3 automatically and BM_RLD is a NOP.
597 * In either case, the proper way to
598 * handle BM_RLD is to set it and leave it set.
599 */
600 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
601
602 return;
603 }
604
605 static int acpi_processor_power_verify(struct acpi_processor *pr)
606 {
607 unsigned int i;
608 unsigned int working = 0;
609
610 pr->power.timer_broadcast_on_state = INT_MAX;
611
612 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
613 struct acpi_processor_cx *cx = &pr->power.states[i];
614
615 switch (cx->type) {
616 case ACPI_STATE_C1:
617 cx->valid = 1;
618 break;
619
620 case ACPI_STATE_C2:
621 if (!cx->address)
622 break;
623 cx->valid = 1;
624 cx->latency_ticks = cx->latency; /* Normalize latency */
625 break;
626
627 case ACPI_STATE_C3:
628 acpi_processor_power_verify_c3(pr, cx);
629 break;
630 }
631 if (!cx->valid)
632 continue;
633
634 lapic_timer_check_state(i, pr, cx);
635 tsc_check_state(cx->type);
636 working++;
637 }
638
639 lapic_timer_propagate_broadcast(pr);
640
641 return (working);
642 }
643
644 static int acpi_processor_get_power_info(struct acpi_processor *pr)
645 {
646 unsigned int i;
647 int result;
648
649
650 /* NOTE: the idle thread may not be running while calling
651 * this function */
652
653 /* Zero initialize all the C-states info. */
654 memset(pr->power.states, 0, sizeof(pr->power.states));
655
656 result = acpi_processor_get_power_info_cst(pr);
657 if (result == -ENODEV)
658 result = acpi_processor_get_power_info_fadt(pr);
659
660 if (result)
661 return result;
662
663 acpi_processor_get_power_info_default(pr);
664
665 pr->power.count = acpi_processor_power_verify(pr);
666
667 /*
668 * if one state of type C2 or C3 is available, mark this
669 * CPU as being "idle manageable"
670 */
671 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
672 if (pr->power.states[i].valid) {
673 pr->power.count = i;
674 if (pr->power.states[i].type >= ACPI_STATE_C2)
675 pr->flags.power = 1;
676 }
677 }
678
679 return 0;
680 }
681
682 /**
683 * acpi_idle_bm_check - checks if bus master activity was detected
684 */
685 static int acpi_idle_bm_check(void)
686 {
687 u32 bm_status = 0;
688
689 if (bm_check_disable)
690 return 0;
691
692 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
693 if (bm_status)
694 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
695 /*
696 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
697 * the true state of bus mastering activity; forcing us to
698 * manually check the BMIDEA bit of each IDE channel.
699 */
700 else if (errata.piix4.bmisx) {
701 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
702 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
703 bm_status = 1;
704 }
705 return bm_status;
706 }
707
708 /**
709 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
710 * @cx: cstate data
711 *
712 * Caller disables interrupt before call and enables interrupt after return.
713 */
714 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
715 {
716 /* Don't trace irqs off for idle */
717 stop_critical_timings();
718 if (cx->entry_method == ACPI_CSTATE_FFH) {
719 /* Call into architectural FFH based C-state */
720 acpi_processor_ffh_cstate_enter(cx);
721 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
722 acpi_safe_halt();
723 } else {
724 /* IO port based C-state */
725 inb(cx->address);
726 /* Dummy wait op - must do something useless after P_LVL2 read
727 because chipsets cannot guarantee that STPCLK# signal
728 gets asserted in time to freeze execution properly. */
729 inl(acpi_gbl_FADT.xpm_timer_block.address);
730 }
731 start_critical_timings();
732 }
733
734 /**
735 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
736 * @dev: the target CPU
737 * @state: the state data
738 *
739 * This is equivalent to the HALT instruction.
740 */
741 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
742 struct cpuidle_state *state)
743 {
744 ktime_t kt1, kt2;
745 s64 idle_time;
746 struct acpi_processor *pr;
747 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
748
749 pr = __get_cpu_var(processors);
750
751 if (unlikely(!pr))
752 return 0;
753
754 local_irq_disable();
755
756 /* Do not access any ACPI IO ports in suspend path */
757 if (acpi_idle_suspend) {
758 local_irq_enable();
759 cpu_relax();
760 return 0;
761 }
762
763 lapic_timer_state_broadcast(pr, cx, 1);
764 kt1 = ktime_get_real();
765 acpi_idle_do_entry(cx);
766 kt2 = ktime_get_real();
767 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
768
769 local_irq_enable();
770 cx->usage++;
771 lapic_timer_state_broadcast(pr, cx, 0);
772
773 return idle_time;
774 }
775
776 /**
777 * acpi_idle_enter_simple - enters an ACPI state without BM handling
778 * @dev: the target CPU
779 * @state: the state data
780 */
781 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
782 struct cpuidle_state *state)
783 {
784 struct acpi_processor *pr;
785 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
786 ktime_t kt1, kt2;
787 s64 idle_time_ns;
788 s64 idle_time;
789
790 pr = __get_cpu_var(processors);
791
792 if (unlikely(!pr))
793 return 0;
794
795 if (acpi_idle_suspend)
796 return(acpi_idle_enter_c1(dev, state));
797
798 local_irq_disable();
799
800 if (cx->entry_method != ACPI_CSTATE_FFH) {
801 current_thread_info()->status &= ~TS_POLLING;
802 /*
803 * TS_POLLING-cleared state must be visible before we test
804 * NEED_RESCHED:
805 */
806 smp_mb();
807
808 if (unlikely(need_resched())) {
809 current_thread_info()->status |= TS_POLLING;
810 local_irq_enable();
811 return 0;
812 }
813 }
814
815 /*
816 * Must be done before busmaster disable as we might need to
817 * access HPET !
818 */
819 lapic_timer_state_broadcast(pr, cx, 1);
820
821 if (cx->type == ACPI_STATE_C3)
822 ACPI_FLUSH_CPU_CACHE();
823
824 kt1 = ktime_get_real();
825 /* Tell the scheduler that we are going deep-idle: */
826 sched_clock_idle_sleep_event();
827 acpi_idle_do_entry(cx);
828 kt2 = ktime_get_real();
829 idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
830 idle_time = idle_time_ns;
831 do_div(idle_time, NSEC_PER_USEC);
832
833 /* Tell the scheduler how much we idled: */
834 sched_clock_idle_wakeup_event(idle_time_ns);
835
836 local_irq_enable();
837 if (cx->entry_method != ACPI_CSTATE_FFH)
838 current_thread_info()->status |= TS_POLLING;
839
840 cx->usage++;
841
842 lapic_timer_state_broadcast(pr, cx, 0);
843 cx->time += idle_time;
844 return idle_time;
845 }
846
847 static int c3_cpu_count;
848 static DEFINE_SPINLOCK(c3_lock);
849
850 /**
851 * acpi_idle_enter_bm - enters C3 with proper BM handling
852 * @dev: the target CPU
853 * @state: the state data
854 *
855 * If BM is detected, the deepest non-C3 idle state is entered instead.
856 */
857 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
858 struct cpuidle_state *state)
859 {
860 struct acpi_processor *pr;
861 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
862 ktime_t kt1, kt2;
863 s64 idle_time_ns;
864 s64 idle_time;
865
866
867 pr = __get_cpu_var(processors);
868
869 if (unlikely(!pr))
870 return 0;
871
872 if (acpi_idle_suspend)
873 return(acpi_idle_enter_c1(dev, state));
874
875 if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
876 if (dev->safe_state) {
877 dev->last_state = dev->safe_state;
878 return dev->safe_state->enter(dev, dev->safe_state);
879 } else {
880 local_irq_disable();
881 acpi_safe_halt();
882 local_irq_enable();
883 return 0;
884 }
885 }
886
887 local_irq_disable();
888
889 if (cx->entry_method != ACPI_CSTATE_FFH) {
890 current_thread_info()->status &= ~TS_POLLING;
891 /*
892 * TS_POLLING-cleared state must be visible before we test
893 * NEED_RESCHED:
894 */
895 smp_mb();
896
897 if (unlikely(need_resched())) {
898 current_thread_info()->status |= TS_POLLING;
899 local_irq_enable();
900 return 0;
901 }
902 }
903
904 acpi_unlazy_tlb(smp_processor_id());
905
906 /* Tell the scheduler that we are going deep-idle: */
907 sched_clock_idle_sleep_event();
908 /*
909 * Must be done before busmaster disable as we might need to
910 * access HPET !
911 */
912 lapic_timer_state_broadcast(pr, cx, 1);
913
914 kt1 = ktime_get_real();
915 /*
916 * disable bus master
917 * bm_check implies we need ARB_DIS
918 * !bm_check implies we need cache flush
919 * bm_control implies whether we can do ARB_DIS
920 *
921 * That leaves a case where bm_check is set and bm_control is
922 * not set. In that case we cannot do much, we enter C3
923 * without doing anything.
924 */
925 if (pr->flags.bm_check && pr->flags.bm_control) {
926 spin_lock(&c3_lock);
927 c3_cpu_count++;
928 /* Disable bus master arbitration when all CPUs are in C3 */
929 if (c3_cpu_count == num_online_cpus())
930 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
931 spin_unlock(&c3_lock);
932 } else if (!pr->flags.bm_check) {
933 ACPI_FLUSH_CPU_CACHE();
934 }
935
936 acpi_idle_do_entry(cx);
937
938 /* Re-enable bus master arbitration */
939 if (pr->flags.bm_check && pr->flags.bm_control) {
940 spin_lock(&c3_lock);
941 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
942 c3_cpu_count--;
943 spin_unlock(&c3_lock);
944 }
945 kt2 = ktime_get_real();
946 idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
947 idle_time = idle_time_ns;
948 do_div(idle_time, NSEC_PER_USEC);
949
950 /* Tell the scheduler how much we idled: */
951 sched_clock_idle_wakeup_event(idle_time_ns);
952
953 local_irq_enable();
954 if (cx->entry_method != ACPI_CSTATE_FFH)
955 current_thread_info()->status |= TS_POLLING;
956
957 cx->usage++;
958
959 lapic_timer_state_broadcast(pr, cx, 0);
960 cx->time += idle_time;
961 return idle_time;
962 }
963
964 struct cpuidle_driver acpi_idle_driver = {
965 .name = "acpi_idle",
966 .owner = THIS_MODULE,
967 };
968
969 /**
970 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
971 * @pr: the ACPI processor
972 */
973 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
974 {
975 int i, count = CPUIDLE_DRIVER_STATE_START;
976 struct acpi_processor_cx *cx;
977 struct cpuidle_state *state;
978 struct cpuidle_device *dev = &pr->power.dev;
979
980 if (!pr->flags.power_setup_done)
981 return -EINVAL;
982
983 if (pr->flags.power == 0) {
984 return -EINVAL;
985 }
986
987 dev->cpu = pr->id;
988 for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
989 dev->states[i].name[0] = '\0';
990 dev->states[i].desc[0] = '\0';
991 }
992
993 if (max_cstate == 0)
994 max_cstate = 1;
995
996 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
997 cx = &pr->power.states[i];
998 state = &dev->states[count];
999
1000 if (!cx->valid)
1001 continue;
1002
1003 #ifdef CONFIG_HOTPLUG_CPU
1004 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1005 !pr->flags.has_cst &&
1006 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1007 continue;
1008 #endif
1009 cpuidle_set_statedata(state, cx);
1010
1011 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1012 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1013 state->exit_latency = cx->latency;
1014 state->target_residency = cx->latency * latency_factor;
1015
1016 state->flags = 0;
1017 switch (cx->type) {
1018 case ACPI_STATE_C1:
1019 state->flags |= CPUIDLE_FLAG_SHALLOW;
1020 if (cx->entry_method == ACPI_CSTATE_FFH)
1021 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1022
1023 state->enter = acpi_idle_enter_c1;
1024 dev->safe_state = state;
1025 break;
1026
1027 case ACPI_STATE_C2:
1028 state->flags |= CPUIDLE_FLAG_BALANCED;
1029 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1030 state->enter = acpi_idle_enter_simple;
1031 dev->safe_state = state;
1032 break;
1033
1034 case ACPI_STATE_C3:
1035 state->flags |= CPUIDLE_FLAG_DEEP;
1036 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1037 state->flags |= CPUIDLE_FLAG_CHECK_BM;
1038 state->enter = pr->flags.bm_check ?
1039 acpi_idle_enter_bm :
1040 acpi_idle_enter_simple;
1041 break;
1042 }
1043
1044 count++;
1045 if (count == CPUIDLE_STATE_MAX)
1046 break;
1047 }
1048
1049 dev->state_count = count;
1050
1051 if (!count)
1052 return -EINVAL;
1053
1054 return 0;
1055 }
1056
1057 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1058 {
1059 int ret = 0;
1060
1061 if (boot_option_idle_override)
1062 return 0;
1063
1064 if (!pr)
1065 return -EINVAL;
1066
1067 if (nocst) {
1068 return -ENODEV;
1069 }
1070
1071 if (!pr->flags.power_setup_done)
1072 return -ENODEV;
1073
1074 cpuidle_pause_and_lock();
1075 cpuidle_disable_device(&pr->power.dev);
1076 acpi_processor_get_power_info(pr);
1077 if (pr->flags.power) {
1078 acpi_processor_setup_cpuidle(pr);
1079 ret = cpuidle_enable_device(&pr->power.dev);
1080 }
1081 cpuidle_resume_and_unlock();
1082
1083 return ret;
1084 }
1085
1086 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1087 struct acpi_device *device)
1088 {
1089 acpi_status status = 0;
1090 static int first_run;
1091
1092 if (boot_option_idle_override)
1093 return 0;
1094
1095 if (!first_run) {
1096 if (idle_halt) {
1097 /*
1098 * When the boot option of "idle=halt" is added, halt
1099 * is used for CPU IDLE.
1100 * In such case C2/C3 is meaningless. So the max_cstate
1101 * is set to one.
1102 */
1103 max_cstate = 1;
1104 }
1105 dmi_check_system(processor_power_dmi_table);
1106 max_cstate = acpi_processor_cstate_check(max_cstate);
1107 if (max_cstate < ACPI_C_STATES_MAX)
1108 printk(KERN_NOTICE
1109 "ACPI: processor limited to max C-state %d\n",
1110 max_cstate);
1111 first_run++;
1112 }
1113
1114 if (!pr)
1115 return -EINVAL;
1116
1117 if (acpi_gbl_FADT.cst_control && !nocst) {
1118 status =
1119 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1120 if (ACPI_FAILURE(status)) {
1121 ACPI_EXCEPTION((AE_INFO, status,
1122 "Notifying BIOS of _CST ability failed"));
1123 }
1124 }
1125
1126 acpi_processor_get_power_info(pr);
1127 pr->flags.power_setup_done = 1;
1128
1129 /*
1130 * Install the idle handler if processor power management is supported.
1131 * Note that we use previously set idle handler will be used on
1132 * platforms that only support C1.
1133 */
1134 if (pr->flags.power) {
1135 acpi_processor_setup_cpuidle(pr);
1136 if (cpuidle_register_device(&pr->power.dev))
1137 return -EIO;
1138 }
1139 return 0;
1140 }
1141
1142 int acpi_processor_power_exit(struct acpi_processor *pr,
1143 struct acpi_device *device)
1144 {
1145 if (boot_option_idle_override)
1146 return 0;
1147
1148 cpuidle_unregister_device(&pr->power.dev);
1149 pr->flags.power_setup_done = 0;
1150
1151 return 0;
1152 }