x86: don't disable TSC in any C states on AMD Fam10h
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / acpi / processor_idle.c
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27 *
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/latency.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44
45 /*
46 * Include the apic definitions for x86 to have the APIC timer related defines
47 * available also for UP (on SMP it gets magically included via linux/smp.h).
48 * asm/acpi.h is not an option, as it would require more include magic. Also
49 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
50 */
51 #ifdef CONFIG_X86
52 #include <asm/apic.h>
53 #endif
54
55 #include <asm/io.h>
56 #include <asm/uaccess.h>
57
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
60
61 #define ACPI_PROCESSOR_COMPONENT 0x01000000
62 #define ACPI_PROCESSOR_CLASS "processor"
63 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
64 ACPI_MODULE_NAME("processor_idle");
65 #define ACPI_PROCESSOR_FILE_POWER "power"
66 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
67 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
68 #ifndef CONFIG_CPU_IDLE
69 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
70 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
71 static void (*pm_idle_save) (void) __read_mostly;
72 #else
73 #define C2_OVERHEAD 1 /* 1us */
74 #define C3_OVERHEAD 1 /* 1us */
75 #endif
76 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
77
78 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
79 #ifdef CONFIG_CPU_IDLE
80 module_param(max_cstate, uint, 0000);
81 #else
82 module_param(max_cstate, uint, 0644);
83 #endif
84 static unsigned int nocst __read_mostly;
85 module_param(nocst, uint, 0000);
86
87 #ifndef CONFIG_CPU_IDLE
88 /*
89 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
90 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
91 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
92 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
93 * reduce history for more aggressive entry into C3
94 */
95 static unsigned int bm_history __read_mostly =
96 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
97 module_param(bm_history, uint, 0644);
98
99 static int acpi_processor_set_power_policy(struct acpi_processor *pr);
100
101 #endif
102
103 /*
104 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
105 * For now disable this. Probably a bug somewhere else.
106 *
107 * To skip this limit, boot/load with a large max_cstate limit.
108 */
109 static int set_max_cstate(const struct dmi_system_id *id)
110 {
111 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
112 return 0;
113
114 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
115 " Override with \"processor.max_cstate=%d\"\n", id->ident,
116 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
117
118 max_cstate = (long)id->driver_data;
119
120 return 0;
121 }
122
123 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
124 callers to only run once -AK */
125 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
126 { set_max_cstate, "IBM ThinkPad R40e", {
127 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
128 DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
129 { set_max_cstate, "IBM ThinkPad R40e", {
130 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
131 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
132 { set_max_cstate, "IBM ThinkPad R40e", {
133 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
134 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
135 { set_max_cstate, "IBM ThinkPad R40e", {
136 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
137 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
138 { set_max_cstate, "IBM ThinkPad R40e", {
139 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
140 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
141 { set_max_cstate, "IBM ThinkPad R40e", {
142 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
143 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
144 { set_max_cstate, "IBM ThinkPad R40e", {
145 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
146 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
147 { set_max_cstate, "IBM ThinkPad R40e", {
148 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
149 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
150 { set_max_cstate, "IBM ThinkPad R40e", {
151 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
152 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
153 { set_max_cstate, "IBM ThinkPad R40e", {
154 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
155 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
156 { set_max_cstate, "IBM ThinkPad R40e", {
157 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
158 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
159 { set_max_cstate, "IBM ThinkPad R40e", {
160 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
161 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
162 { set_max_cstate, "IBM ThinkPad R40e", {
163 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
164 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
165 { set_max_cstate, "IBM ThinkPad R40e", {
166 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
167 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
168 { set_max_cstate, "IBM ThinkPad R40e", {
169 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
170 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
171 { set_max_cstate, "IBM ThinkPad R40e", {
172 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
173 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
174 { set_max_cstate, "Medion 41700", {
175 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
176 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
177 { set_max_cstate, "Clevo 5600D", {
178 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
179 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
180 (void *)2},
181 {},
182 };
183
184 static inline u32 ticks_elapsed(u32 t1, u32 t2)
185 {
186 if (t2 >= t1)
187 return (t2 - t1);
188 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
189 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
190 else
191 return ((0xFFFFFFFF - t1) + t2);
192 }
193
194 static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
195 {
196 if (t2 >= t1)
197 return PM_TIMER_TICKS_TO_US(t2 - t1);
198 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
199 return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
200 else
201 return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
202 }
203
204 static void acpi_safe_halt(void)
205 {
206 current_thread_info()->status &= ~TS_POLLING;
207 /*
208 * TS_POLLING-cleared state must be visible before we
209 * test NEED_RESCHED:
210 */
211 smp_mb();
212 if (!need_resched())
213 safe_halt();
214 current_thread_info()->status |= TS_POLLING;
215 }
216
217 #ifndef CONFIG_CPU_IDLE
218
219 static void
220 acpi_processor_power_activate(struct acpi_processor *pr,
221 struct acpi_processor_cx *new)
222 {
223 struct acpi_processor_cx *old;
224
225 if (!pr || !new)
226 return;
227
228 old = pr->power.state;
229
230 if (old)
231 old->promotion.count = 0;
232 new->demotion.count = 0;
233
234 /* Cleanup from old state. */
235 if (old) {
236 switch (old->type) {
237 case ACPI_STATE_C3:
238 /* Disable bus master reload */
239 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
240 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
241 break;
242 }
243 }
244
245 /* Prepare to use new state. */
246 switch (new->type) {
247 case ACPI_STATE_C3:
248 /* Enable bus master reload */
249 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
250 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
251 break;
252 }
253
254 pr->power.state = new;
255
256 return;
257 }
258
259 static atomic_t c3_cpu_count;
260
261 /* Common C-state entry for C2, C3, .. */
262 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
263 {
264 if (cstate->space_id == ACPI_CSTATE_FFH) {
265 /* Call into architectural FFH based C-state */
266 acpi_processor_ffh_cstate_enter(cstate);
267 } else {
268 int unused;
269 /* IO port based C-state */
270 inb(cstate->address);
271 /* Dummy wait op - must do something useless after P_LVL2 read
272 because chipsets cannot guarantee that STPCLK# signal
273 gets asserted in time to freeze execution properly. */
274 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
275 }
276 }
277 #endif /* !CONFIG_CPU_IDLE */
278
279 #ifdef ARCH_APICTIMER_STOPS_ON_C3
280
281 /*
282 * Some BIOS implementations switch to C3 in the published C2 state.
283 * This seems to be a common problem on AMD boxen, but other vendors
284 * are affected too. We pick the most conservative approach: we assume
285 * that the local APIC stops in both C2 and C3.
286 */
287 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
288 struct acpi_processor_cx *cx)
289 {
290 struct acpi_processor_power *pwr = &pr->power;
291 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
292
293 /*
294 * Check, if one of the previous states already marked the lapic
295 * unstable
296 */
297 if (pwr->timer_broadcast_on_state < state)
298 return;
299
300 if (cx->type >= type)
301 pr->power.timer_broadcast_on_state = state;
302 }
303
304 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
305 {
306 unsigned long reason;
307
308 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
309 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
310
311 clockevents_notify(reason, &pr->id);
312 }
313
314 /* Power(C) State timer broadcast control */
315 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
316 struct acpi_processor_cx *cx,
317 int broadcast)
318 {
319 int state = cx - pr->power.states;
320
321 if (state >= pr->power.timer_broadcast_on_state) {
322 unsigned long reason;
323
324 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
325 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
326 clockevents_notify(reason, &pr->id);
327 }
328 }
329
330 #else
331
332 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
333 struct acpi_processor_cx *cstate) { }
334 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
335 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
336 struct acpi_processor_cx *cx,
337 int broadcast)
338 {
339 }
340
341 #endif
342
343 /*
344 * Suspend / resume control
345 */
346 static int acpi_idle_suspend;
347
348 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
349 {
350 acpi_idle_suspend = 1;
351 return 0;
352 }
353
354 int acpi_processor_resume(struct acpi_device * device)
355 {
356 acpi_idle_suspend = 0;
357 return 0;
358 }
359
360 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
361 static int tsc_halts_in_c(int state)
362 {
363 switch (boot_cpu_data.x86_vendor) {
364 case X86_VENDOR_AMD:
365 /*
366 * AMD Fam10h TSC will tick in all
367 * C/P/S0/S1 states when this bit is set.
368 */
369 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
370 return 0;
371 /*FALL THROUGH*/
372 case X86_VENDOR_INTEL:
373 /* Several cases known where TSC halts in C2 too */
374 default:
375 return state > ACPI_STATE_C1;
376 }
377 }
378 #endif
379
380 #ifndef CONFIG_CPU_IDLE
381 static void acpi_processor_idle(void)
382 {
383 struct acpi_processor *pr = NULL;
384 struct acpi_processor_cx *cx = NULL;
385 struct acpi_processor_cx *next_state = NULL;
386 int sleep_ticks = 0;
387 u32 t1, t2 = 0;
388
389 /*
390 * Interrupts must be disabled during bus mastering calculations and
391 * for C2/C3 transitions.
392 */
393 local_irq_disable();
394
395 pr = processors[smp_processor_id()];
396 if (!pr) {
397 local_irq_enable();
398 return;
399 }
400
401 /*
402 * Check whether we truly need to go idle, or should
403 * reschedule:
404 */
405 if (unlikely(need_resched())) {
406 local_irq_enable();
407 return;
408 }
409
410 cx = pr->power.state;
411 if (!cx || acpi_idle_suspend) {
412 if (pm_idle_save)
413 pm_idle_save();
414 else
415 acpi_safe_halt();
416 return;
417 }
418
419 /*
420 * Check BM Activity
421 * -----------------
422 * Check for bus mastering activity (if required), record, and check
423 * for demotion.
424 */
425 if (pr->flags.bm_check) {
426 u32 bm_status = 0;
427 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
428
429 if (diff > 31)
430 diff = 31;
431
432 pr->power.bm_activity <<= diff;
433
434 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
435 if (bm_status) {
436 pr->power.bm_activity |= 0x1;
437 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
438 }
439 /*
440 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
441 * the true state of bus mastering activity; forcing us to
442 * manually check the BMIDEA bit of each IDE channel.
443 */
444 else if (errata.piix4.bmisx) {
445 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
446 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
447 pr->power.bm_activity |= 0x1;
448 }
449
450 pr->power.bm_check_timestamp = jiffies;
451
452 /*
453 * If bus mastering is or was active this jiffy, demote
454 * to avoid a faulty transition. Note that the processor
455 * won't enter a low-power state during this call (to this
456 * function) but should upon the next.
457 *
458 * TBD: A better policy might be to fallback to the demotion
459 * state (use it for this quantum only) istead of
460 * demoting -- and rely on duration as our sole demotion
461 * qualification. This may, however, introduce DMA
462 * issues (e.g. floppy DMA transfer overrun/underrun).
463 */
464 if ((pr->power.bm_activity & 0x1) &&
465 cx->demotion.threshold.bm) {
466 local_irq_enable();
467 next_state = cx->demotion.state;
468 goto end;
469 }
470 }
471
472 #ifdef CONFIG_HOTPLUG_CPU
473 /*
474 * Check for P_LVL2_UP flag before entering C2 and above on
475 * an SMP system. We do it here instead of doing it at _CST/P_LVL
476 * detection phase, to work cleanly with logical CPU hotplug.
477 */
478 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
479 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
480 cx = &pr->power.states[ACPI_STATE_C1];
481 #endif
482
483 /*
484 * Sleep:
485 * ------
486 * Invoke the current Cx state to put the processor to sleep.
487 */
488 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
489 current_thread_info()->status &= ~TS_POLLING;
490 /*
491 * TS_POLLING-cleared state must be visible before we
492 * test NEED_RESCHED:
493 */
494 smp_mb();
495 if (need_resched()) {
496 current_thread_info()->status |= TS_POLLING;
497 local_irq_enable();
498 return;
499 }
500 }
501
502 switch (cx->type) {
503
504 case ACPI_STATE_C1:
505 /*
506 * Invoke C1.
507 * Use the appropriate idle routine, the one that would
508 * be used without acpi C-states.
509 */
510 if (pm_idle_save)
511 pm_idle_save();
512 else
513 acpi_safe_halt();
514
515 /*
516 * TBD: Can't get time duration while in C1, as resumes
517 * go to an ISR rather than here. Need to instrument
518 * base interrupt handler.
519 *
520 * Note: the TSC better not stop in C1, sched_clock() will
521 * skew otherwise.
522 */
523 sleep_ticks = 0xFFFFFFFF;
524 break;
525
526 case ACPI_STATE_C2:
527 /* Get start time (ticks) */
528 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
529 /* Tell the scheduler that we are going deep-idle: */
530 sched_clock_idle_sleep_event();
531 /* Invoke C2 */
532 acpi_state_timer_broadcast(pr, cx, 1);
533 acpi_cstate_enter(cx);
534 /* Get end time (ticks) */
535 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
536
537 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
538 /* TSC halts in C2, so notify users */
539 if (tsc_halts_in_c(ACPI_STATE_C2))
540 mark_tsc_unstable("possible TSC halt in C2");
541 #endif
542 /* Compute time (ticks) that we were actually asleep */
543 sleep_ticks = ticks_elapsed(t1, t2);
544
545 /* Tell the scheduler how much we idled: */
546 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
547
548 /* Re-enable interrupts */
549 local_irq_enable();
550 /* Do not account our idle-switching overhead: */
551 sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
552
553 current_thread_info()->status |= TS_POLLING;
554 acpi_state_timer_broadcast(pr, cx, 0);
555 break;
556
557 case ACPI_STATE_C3:
558 acpi_unlazy_tlb(smp_processor_id());
559 /*
560 * Must be done before busmaster disable as we might
561 * need to access HPET !
562 */
563 acpi_state_timer_broadcast(pr, cx, 1);
564 /*
565 * disable bus master
566 * bm_check implies we need ARB_DIS
567 * !bm_check implies we need cache flush
568 * bm_control implies whether we can do ARB_DIS
569 *
570 * That leaves a case where bm_check is set and bm_control is
571 * not set. In that case we cannot do much, we enter C3
572 * without doing anything.
573 */
574 if (pr->flags.bm_check && pr->flags.bm_control) {
575 if (atomic_inc_return(&c3_cpu_count) ==
576 num_online_cpus()) {
577 /*
578 * All CPUs are trying to go to C3
579 * Disable bus master arbitration
580 */
581 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
582 }
583 } else if (!pr->flags.bm_check) {
584 /* SMP with no shared cache... Invalidate cache */
585 ACPI_FLUSH_CPU_CACHE();
586 }
587
588 /* Get start time (ticks) */
589 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
590 /* Invoke C3 */
591 /* Tell the scheduler that we are going deep-idle: */
592 sched_clock_idle_sleep_event();
593 acpi_cstate_enter(cx);
594 /* Get end time (ticks) */
595 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
596 if (pr->flags.bm_check && pr->flags.bm_control) {
597 /* Enable bus master arbitration */
598 atomic_dec(&c3_cpu_count);
599 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
600 }
601
602 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
603 /* TSC halts in C3, so notify users */
604 if (tsc_halts_in_c(ACPI_STATE_C3))
605 mark_tsc_unstable("TSC halts in C3");
606 #endif
607 /* Compute time (ticks) that we were actually asleep */
608 sleep_ticks = ticks_elapsed(t1, t2);
609 /* Tell the scheduler how much we idled: */
610 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
611
612 /* Re-enable interrupts */
613 local_irq_enable();
614 /* Do not account our idle-switching overhead: */
615 sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
616
617 current_thread_info()->status |= TS_POLLING;
618 acpi_state_timer_broadcast(pr, cx, 0);
619 break;
620
621 default:
622 local_irq_enable();
623 return;
624 }
625 cx->usage++;
626 if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
627 cx->time += sleep_ticks;
628
629 next_state = pr->power.state;
630
631 #ifdef CONFIG_HOTPLUG_CPU
632 /* Don't do promotion/demotion */
633 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
634 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
635 next_state = cx;
636 goto end;
637 }
638 #endif
639
640 /*
641 * Promotion?
642 * ----------
643 * Track the number of longs (time asleep is greater than threshold)
644 * and promote when the count threshold is reached. Note that bus
645 * mastering activity may prevent promotions.
646 * Do not promote above max_cstate.
647 */
648 if (cx->promotion.state &&
649 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
650 if (sleep_ticks > cx->promotion.threshold.ticks &&
651 cx->promotion.state->latency <= system_latency_constraint()) {
652 cx->promotion.count++;
653 cx->demotion.count = 0;
654 if (cx->promotion.count >=
655 cx->promotion.threshold.count) {
656 if (pr->flags.bm_check) {
657 if (!
658 (pr->power.bm_activity & cx->
659 promotion.threshold.bm)) {
660 next_state =
661 cx->promotion.state;
662 goto end;
663 }
664 } else {
665 next_state = cx->promotion.state;
666 goto end;
667 }
668 }
669 }
670 }
671
672 /*
673 * Demotion?
674 * ---------
675 * Track the number of shorts (time asleep is less than time threshold)
676 * and demote when the usage threshold is reached.
677 */
678 if (cx->demotion.state) {
679 if (sleep_ticks < cx->demotion.threshold.ticks) {
680 cx->demotion.count++;
681 cx->promotion.count = 0;
682 if (cx->demotion.count >= cx->demotion.threshold.count) {
683 next_state = cx->demotion.state;
684 goto end;
685 }
686 }
687 }
688
689 end:
690 /*
691 * Demote if current state exceeds max_cstate
692 * or if the latency of the current state is unacceptable
693 */
694 if ((pr->power.state - pr->power.states) > max_cstate ||
695 pr->power.state->latency > system_latency_constraint()) {
696 if (cx->demotion.state)
697 next_state = cx->demotion.state;
698 }
699
700 /*
701 * New Cx State?
702 * -------------
703 * If we're going to start using a new Cx state we must clean up
704 * from the previous and prepare to use the new.
705 */
706 if (next_state != pr->power.state)
707 acpi_processor_power_activate(pr, next_state);
708 }
709
710 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
711 {
712 unsigned int i;
713 unsigned int state_is_set = 0;
714 struct acpi_processor_cx *lower = NULL;
715 struct acpi_processor_cx *higher = NULL;
716 struct acpi_processor_cx *cx;
717
718
719 if (!pr)
720 return -EINVAL;
721
722 /*
723 * This function sets the default Cx state policy (OS idle handler).
724 * Our scheme is to promote quickly to C2 but more conservatively
725 * to C3. We're favoring C2 for its characteristics of low latency
726 * (quick response), good power savings, and ability to allow bus
727 * mastering activity. Note that the Cx state policy is completely
728 * customizable and can be altered dynamically.
729 */
730
731 /* startup state */
732 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
733 cx = &pr->power.states[i];
734 if (!cx->valid)
735 continue;
736
737 if (!state_is_set)
738 pr->power.state = cx;
739 state_is_set++;
740 break;
741 }
742
743 if (!state_is_set)
744 return -ENODEV;
745
746 /* demotion */
747 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
748 cx = &pr->power.states[i];
749 if (!cx->valid)
750 continue;
751
752 if (lower) {
753 cx->demotion.state = lower;
754 cx->demotion.threshold.ticks = cx->latency_ticks;
755 cx->demotion.threshold.count = 1;
756 if (cx->type == ACPI_STATE_C3)
757 cx->demotion.threshold.bm = bm_history;
758 }
759
760 lower = cx;
761 }
762
763 /* promotion */
764 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
765 cx = &pr->power.states[i];
766 if (!cx->valid)
767 continue;
768
769 if (higher) {
770 cx->promotion.state = higher;
771 cx->promotion.threshold.ticks = cx->latency_ticks;
772 if (cx->type >= ACPI_STATE_C2)
773 cx->promotion.threshold.count = 4;
774 else
775 cx->promotion.threshold.count = 10;
776 if (higher->type == ACPI_STATE_C3)
777 cx->promotion.threshold.bm = bm_history;
778 }
779
780 higher = cx;
781 }
782
783 return 0;
784 }
785 #endif /* !CONFIG_CPU_IDLE */
786
787 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
788 {
789
790 if (!pr)
791 return -EINVAL;
792
793 if (!pr->pblk)
794 return -ENODEV;
795
796 /* if info is obtained from pblk/fadt, type equals state */
797 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
798 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
799
800 #ifndef CONFIG_HOTPLUG_CPU
801 /*
802 * Check for P_LVL2_UP flag before entering C2 and above on
803 * an SMP system.
804 */
805 if ((num_online_cpus() > 1) &&
806 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
807 return -ENODEV;
808 #endif
809
810 /* determine C2 and C3 address from pblk */
811 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
812 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
813
814 /* determine latencies from FADT */
815 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
816 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
817
818 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
819 "lvl2[0x%08x] lvl3[0x%08x]\n",
820 pr->power.states[ACPI_STATE_C2].address,
821 pr->power.states[ACPI_STATE_C3].address));
822
823 return 0;
824 }
825
826 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
827 {
828 if (!pr->power.states[ACPI_STATE_C1].valid) {
829 /* set the first C-State to C1 */
830 /* all processors need to support C1 */
831 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
832 pr->power.states[ACPI_STATE_C1].valid = 1;
833 }
834 /* the C0 state only exists as a filler in our array */
835 pr->power.states[ACPI_STATE_C0].valid = 1;
836 return 0;
837 }
838
839 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
840 {
841 acpi_status status = 0;
842 acpi_integer count;
843 int current_count;
844 int i;
845 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
846 union acpi_object *cst;
847
848
849 if (nocst)
850 return -ENODEV;
851
852 current_count = 0;
853
854 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
855 if (ACPI_FAILURE(status)) {
856 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
857 return -ENODEV;
858 }
859
860 cst = buffer.pointer;
861
862 /* There must be at least 2 elements */
863 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
864 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
865 status = -EFAULT;
866 goto end;
867 }
868
869 count = cst->package.elements[0].integer.value;
870
871 /* Validate number of power states. */
872 if (count < 1 || count != cst->package.count - 1) {
873 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
874 status = -EFAULT;
875 goto end;
876 }
877
878 /* Tell driver that at least _CST is supported. */
879 pr->flags.has_cst = 1;
880
881 for (i = 1; i <= count; i++) {
882 union acpi_object *element;
883 union acpi_object *obj;
884 struct acpi_power_register *reg;
885 struct acpi_processor_cx cx;
886
887 memset(&cx, 0, sizeof(cx));
888
889 element = &(cst->package.elements[i]);
890 if (element->type != ACPI_TYPE_PACKAGE)
891 continue;
892
893 if (element->package.count != 4)
894 continue;
895
896 obj = &(element->package.elements[0]);
897
898 if (obj->type != ACPI_TYPE_BUFFER)
899 continue;
900
901 reg = (struct acpi_power_register *)obj->buffer.pointer;
902
903 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
904 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
905 continue;
906
907 /* There should be an easy way to extract an integer... */
908 obj = &(element->package.elements[1]);
909 if (obj->type != ACPI_TYPE_INTEGER)
910 continue;
911
912 cx.type = obj->integer.value;
913 /*
914 * Some buggy BIOSes won't list C1 in _CST -
915 * Let acpi_processor_get_power_info_default() handle them later
916 */
917 if (i == 1 && cx.type != ACPI_STATE_C1)
918 current_count++;
919
920 cx.address = reg->address;
921 cx.index = current_count + 1;
922
923 cx.space_id = ACPI_CSTATE_SYSTEMIO;
924 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
925 if (acpi_processor_ffh_cstate_probe
926 (pr->id, &cx, reg) == 0) {
927 cx.space_id = ACPI_CSTATE_FFH;
928 } else if (cx.type != ACPI_STATE_C1) {
929 /*
930 * C1 is a special case where FIXED_HARDWARE
931 * can be handled in non-MWAIT way as well.
932 * In that case, save this _CST entry info.
933 * That is, we retain space_id of SYSTEM_IO for
934 * halt based C1.
935 * Otherwise, ignore this info and continue.
936 */
937 continue;
938 }
939 }
940
941 obj = &(element->package.elements[2]);
942 if (obj->type != ACPI_TYPE_INTEGER)
943 continue;
944
945 cx.latency = obj->integer.value;
946
947 obj = &(element->package.elements[3]);
948 if (obj->type != ACPI_TYPE_INTEGER)
949 continue;
950
951 cx.power = obj->integer.value;
952
953 current_count++;
954 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
955
956 /*
957 * We support total ACPI_PROCESSOR_MAX_POWER - 1
958 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
959 */
960 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
961 printk(KERN_WARNING
962 "Limiting number of power states to max (%d)\n",
963 ACPI_PROCESSOR_MAX_POWER);
964 printk(KERN_WARNING
965 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
966 break;
967 }
968 }
969
970 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
971 current_count));
972
973 /* Validate number of power states discovered */
974 if (current_count < 2)
975 status = -EFAULT;
976
977 end:
978 kfree(buffer.pointer);
979
980 return status;
981 }
982
983 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
984 {
985
986 if (!cx->address)
987 return;
988
989 /*
990 * C2 latency must be less than or equal to 100
991 * microseconds.
992 */
993 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
994 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
995 "latency too large [%d]\n", cx->latency));
996 return;
997 }
998
999 /*
1000 * Otherwise we've met all of our C2 requirements.
1001 * Normalize the C2 latency to expidite policy
1002 */
1003 cx->valid = 1;
1004
1005 #ifndef CONFIG_CPU_IDLE
1006 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1007 #else
1008 cx->latency_ticks = cx->latency;
1009 #endif
1010
1011 return;
1012 }
1013
1014 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
1015 struct acpi_processor_cx *cx)
1016 {
1017 static int bm_check_flag;
1018
1019
1020 if (!cx->address)
1021 return;
1022
1023 /*
1024 * C3 latency must be less than or equal to 1000
1025 * microseconds.
1026 */
1027 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
1028 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1029 "latency too large [%d]\n", cx->latency));
1030 return;
1031 }
1032
1033 /*
1034 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1035 * DMA transfers are used by any ISA device to avoid livelock.
1036 * Note that we could disable Type-F DMA (as recommended by
1037 * the erratum), but this is known to disrupt certain ISA
1038 * devices thus we take the conservative approach.
1039 */
1040 else if (errata.piix4.fdma) {
1041 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1042 "C3 not supported on PIIX4 with Type-F DMA\n"));
1043 return;
1044 }
1045
1046 /* All the logic here assumes flags.bm_check is same across all CPUs */
1047 if (!bm_check_flag) {
1048 /* Determine whether bm_check is needed based on CPU */
1049 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
1050 bm_check_flag = pr->flags.bm_check;
1051 } else {
1052 pr->flags.bm_check = bm_check_flag;
1053 }
1054
1055 if (pr->flags.bm_check) {
1056 if (!pr->flags.bm_control) {
1057 if (pr->flags.has_cst != 1) {
1058 /* bus mastering control is necessary */
1059 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1060 "C3 support requires BM control\n"));
1061 return;
1062 } else {
1063 /* Here we enter C3 without bus mastering */
1064 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1065 "C3 support without BM control\n"));
1066 }
1067 }
1068 } else {
1069 /*
1070 * WBINVD should be set in fadt, for C3 state to be
1071 * supported on when bm_check is not required.
1072 */
1073 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1074 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1075 "Cache invalidation should work properly"
1076 " for C3 to be enabled on SMP systems\n"));
1077 return;
1078 }
1079 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1080 }
1081
1082 /*
1083 * Otherwise we've met all of our C3 requirements.
1084 * Normalize the C3 latency to expidite policy. Enable
1085 * checking of bus mastering status (bm_check) so we can
1086 * use this in our C3 policy
1087 */
1088 cx->valid = 1;
1089
1090 #ifndef CONFIG_CPU_IDLE
1091 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1092 #else
1093 cx->latency_ticks = cx->latency;
1094 #endif
1095
1096 return;
1097 }
1098
1099 static int acpi_processor_power_verify(struct acpi_processor *pr)
1100 {
1101 unsigned int i;
1102 unsigned int working = 0;
1103
1104 pr->power.timer_broadcast_on_state = INT_MAX;
1105
1106 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1107 struct acpi_processor_cx *cx = &pr->power.states[i];
1108
1109 switch (cx->type) {
1110 case ACPI_STATE_C1:
1111 cx->valid = 1;
1112 break;
1113
1114 case ACPI_STATE_C2:
1115 acpi_processor_power_verify_c2(cx);
1116 if (cx->valid)
1117 acpi_timer_check_state(i, pr, cx);
1118 break;
1119
1120 case ACPI_STATE_C3:
1121 acpi_processor_power_verify_c3(pr, cx);
1122 if (cx->valid)
1123 acpi_timer_check_state(i, pr, cx);
1124 break;
1125 }
1126
1127 if (cx->valid)
1128 working++;
1129 }
1130
1131 acpi_propagate_timer_broadcast(pr);
1132
1133 return (working);
1134 }
1135
1136 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1137 {
1138 unsigned int i;
1139 int result;
1140
1141
1142 /* NOTE: the idle thread may not be running while calling
1143 * this function */
1144
1145 /* Zero initialize all the C-states info. */
1146 memset(pr->power.states, 0, sizeof(pr->power.states));
1147
1148 result = acpi_processor_get_power_info_cst(pr);
1149 if (result == -ENODEV)
1150 result = acpi_processor_get_power_info_fadt(pr);
1151
1152 if (result)
1153 return result;
1154
1155 acpi_processor_get_power_info_default(pr);
1156
1157 pr->power.count = acpi_processor_power_verify(pr);
1158
1159 #ifndef CONFIG_CPU_IDLE
1160 /*
1161 * Set Default Policy
1162 * ------------------
1163 * Now that we know which states are supported, set the default
1164 * policy. Note that this policy can be changed dynamically
1165 * (e.g. encourage deeper sleeps to conserve battery life when
1166 * not on AC).
1167 */
1168 result = acpi_processor_set_power_policy(pr);
1169 if (result)
1170 return result;
1171 #endif
1172
1173 /*
1174 * if one state of type C2 or C3 is available, mark this
1175 * CPU as being "idle manageable"
1176 */
1177 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1178 if (pr->power.states[i].valid) {
1179 pr->power.count = i;
1180 if (pr->power.states[i].type >= ACPI_STATE_C2)
1181 pr->flags.power = 1;
1182 }
1183 }
1184
1185 return 0;
1186 }
1187
1188 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1189 {
1190 struct acpi_processor *pr = seq->private;
1191 unsigned int i;
1192
1193
1194 if (!pr)
1195 goto end;
1196
1197 seq_printf(seq, "active state: C%zd\n"
1198 "max_cstate: C%d\n"
1199 "bus master activity: %08x\n"
1200 "maximum allowed latency: %d usec\n",
1201 pr->power.state ? pr->power.state - pr->power.states : 0,
1202 max_cstate, (unsigned)pr->power.bm_activity,
1203 system_latency_constraint());
1204
1205 seq_puts(seq, "states:\n");
1206
1207 for (i = 1; i <= pr->power.count; i++) {
1208 seq_printf(seq, " %cC%d: ",
1209 (&pr->power.states[i] ==
1210 pr->power.state ? '*' : ' '), i);
1211
1212 if (!pr->power.states[i].valid) {
1213 seq_puts(seq, "<not supported>\n");
1214 continue;
1215 }
1216
1217 switch (pr->power.states[i].type) {
1218 case ACPI_STATE_C1:
1219 seq_printf(seq, "type[C1] ");
1220 break;
1221 case ACPI_STATE_C2:
1222 seq_printf(seq, "type[C2] ");
1223 break;
1224 case ACPI_STATE_C3:
1225 seq_printf(seq, "type[C3] ");
1226 break;
1227 default:
1228 seq_printf(seq, "type[--] ");
1229 break;
1230 }
1231
1232 if (pr->power.states[i].promotion.state)
1233 seq_printf(seq, "promotion[C%zd] ",
1234 (pr->power.states[i].promotion.state -
1235 pr->power.states));
1236 else
1237 seq_puts(seq, "promotion[--] ");
1238
1239 if (pr->power.states[i].demotion.state)
1240 seq_printf(seq, "demotion[C%zd] ",
1241 (pr->power.states[i].demotion.state -
1242 pr->power.states));
1243 else
1244 seq_puts(seq, "demotion[--] ");
1245
1246 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1247 pr->power.states[i].latency,
1248 pr->power.states[i].usage,
1249 (unsigned long long)pr->power.states[i].time);
1250 }
1251
1252 end:
1253 return 0;
1254 }
1255
1256 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1257 {
1258 return single_open(file, acpi_processor_power_seq_show,
1259 PDE(inode)->data);
1260 }
1261
1262 static const struct file_operations acpi_processor_power_fops = {
1263 .open = acpi_processor_power_open_fs,
1264 .read = seq_read,
1265 .llseek = seq_lseek,
1266 .release = single_release,
1267 };
1268
1269 #ifndef CONFIG_CPU_IDLE
1270
1271 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1272 {
1273 int result = 0;
1274
1275
1276 if (!pr)
1277 return -EINVAL;
1278
1279 if (nocst) {
1280 return -ENODEV;
1281 }
1282
1283 if (!pr->flags.power_setup_done)
1284 return -ENODEV;
1285
1286 /* Fall back to the default idle loop */
1287 pm_idle = pm_idle_save;
1288 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
1289
1290 pr->flags.power = 0;
1291 result = acpi_processor_get_power_info(pr);
1292 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1293 pm_idle = acpi_processor_idle;
1294
1295 return result;
1296 }
1297
1298 #ifdef CONFIG_SMP
1299 static void smp_callback(void *v)
1300 {
1301 /* we already woke the CPU up, nothing more to do */
1302 }
1303
1304 /*
1305 * This function gets called when a part of the kernel has a new latency
1306 * requirement. This means we need to get all processors out of their C-state,
1307 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1308 * wakes them all right up.
1309 */
1310 static int acpi_processor_latency_notify(struct notifier_block *b,
1311 unsigned long l, void *v)
1312 {
1313 smp_call_function(smp_callback, NULL, 0, 1);
1314 return NOTIFY_OK;
1315 }
1316
1317 static struct notifier_block acpi_processor_latency_notifier = {
1318 .notifier_call = acpi_processor_latency_notify,
1319 };
1320
1321 #endif
1322
1323 #else /* CONFIG_CPU_IDLE */
1324
1325 /**
1326 * acpi_idle_bm_check - checks if bus master activity was detected
1327 */
1328 static int acpi_idle_bm_check(void)
1329 {
1330 u32 bm_status = 0;
1331
1332 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
1333 if (bm_status)
1334 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1335 /*
1336 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1337 * the true state of bus mastering activity; forcing us to
1338 * manually check the BMIDEA bit of each IDE channel.
1339 */
1340 else if (errata.piix4.bmisx) {
1341 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
1342 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
1343 bm_status = 1;
1344 }
1345 return bm_status;
1346 }
1347
1348 /**
1349 * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1350 * @pr: the processor
1351 * @target: the new target state
1352 */
1353 static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
1354 struct acpi_processor_cx *target)
1355 {
1356 if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
1357 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1358 pr->flags.bm_rld_set = 0;
1359 }
1360
1361 if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
1362 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
1363 pr->flags.bm_rld_set = 1;
1364 }
1365 }
1366
1367 /**
1368 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1369 * @cx: cstate data
1370 */
1371 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
1372 {
1373 if (cx->space_id == ACPI_CSTATE_FFH) {
1374 /* Call into architectural FFH based C-state */
1375 acpi_processor_ffh_cstate_enter(cx);
1376 } else {
1377 int unused;
1378 /* IO port based C-state */
1379 inb(cx->address);
1380 /* Dummy wait op - must do something useless after P_LVL2 read
1381 because chipsets cannot guarantee that STPCLK# signal
1382 gets asserted in time to freeze execution properly. */
1383 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
1384 }
1385 }
1386
1387 /**
1388 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1389 * @dev: the target CPU
1390 * @state: the state data
1391 *
1392 * This is equivalent to the HALT instruction.
1393 */
1394 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
1395 struct cpuidle_state *state)
1396 {
1397 struct acpi_processor *pr;
1398 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1399 pr = processors[smp_processor_id()];
1400
1401 if (unlikely(!pr))
1402 return 0;
1403
1404 if (pr->flags.bm_check)
1405 acpi_idle_update_bm_rld(pr, cx);
1406
1407 acpi_safe_halt();
1408
1409 cx->usage++;
1410
1411 return 0;
1412 }
1413
1414 /**
1415 * acpi_idle_enter_simple - enters an ACPI state without BM handling
1416 * @dev: the target CPU
1417 * @state: the state data
1418 */
1419 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
1420 struct cpuidle_state *state)
1421 {
1422 struct acpi_processor *pr;
1423 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1424 u32 t1, t2;
1425 int sleep_ticks = 0;
1426
1427 pr = processors[smp_processor_id()];
1428
1429 if (unlikely(!pr))
1430 return 0;
1431
1432 if (acpi_idle_suspend)
1433 return(acpi_idle_enter_c1(dev, state));
1434
1435 local_irq_disable();
1436 current_thread_info()->status &= ~TS_POLLING;
1437 /*
1438 * TS_POLLING-cleared state must be visible before we test
1439 * NEED_RESCHED:
1440 */
1441 smp_mb();
1442
1443 if (unlikely(need_resched())) {
1444 current_thread_info()->status |= TS_POLLING;
1445 local_irq_enable();
1446 return 0;
1447 }
1448
1449 acpi_unlazy_tlb(smp_processor_id());
1450 /*
1451 * Must be done before busmaster disable as we might need to
1452 * access HPET !
1453 */
1454 acpi_state_timer_broadcast(pr, cx, 1);
1455
1456 if (pr->flags.bm_check)
1457 acpi_idle_update_bm_rld(pr, cx);
1458
1459 if (cx->type == ACPI_STATE_C3)
1460 ACPI_FLUSH_CPU_CACHE();
1461
1462 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1463 /* Tell the scheduler that we are going deep-idle: */
1464 sched_clock_idle_sleep_event();
1465 acpi_idle_do_entry(cx);
1466 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1467
1468 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1469 /* TSC could halt in idle, so notify users */
1470 if (tsc_halts_in_c(cx->type))
1471 mark_tsc_unstable("TSC halts in idle");;
1472 #endif
1473 sleep_ticks = ticks_elapsed(t1, t2);
1474
1475 /* Tell the scheduler how much we idled: */
1476 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1477
1478 local_irq_enable();
1479 current_thread_info()->status |= TS_POLLING;
1480
1481 cx->usage++;
1482
1483 acpi_state_timer_broadcast(pr, cx, 0);
1484 cx->time += sleep_ticks;
1485 return ticks_elapsed_in_us(t1, t2);
1486 }
1487
1488 static int c3_cpu_count;
1489 static DEFINE_SPINLOCK(c3_lock);
1490
1491 /**
1492 * acpi_idle_enter_bm - enters C3 with proper BM handling
1493 * @dev: the target CPU
1494 * @state: the state data
1495 *
1496 * If BM is detected, the deepest non-C3 idle state is entered instead.
1497 */
1498 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
1499 struct cpuidle_state *state)
1500 {
1501 struct acpi_processor *pr;
1502 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1503 u32 t1, t2;
1504 int sleep_ticks = 0;
1505
1506 pr = processors[smp_processor_id()];
1507
1508 if (unlikely(!pr))
1509 return 0;
1510
1511 if (acpi_idle_suspend)
1512 return(acpi_idle_enter_c1(dev, state));
1513
1514 if (acpi_idle_bm_check()) {
1515 if (dev->safe_state) {
1516 return dev->safe_state->enter(dev, dev->safe_state);
1517 } else {
1518 acpi_safe_halt();
1519 return 0;
1520 }
1521 }
1522
1523 local_irq_disable();
1524 current_thread_info()->status &= ~TS_POLLING;
1525 /*
1526 * TS_POLLING-cleared state must be visible before we test
1527 * NEED_RESCHED:
1528 */
1529 smp_mb();
1530
1531 if (unlikely(need_resched())) {
1532 current_thread_info()->status |= TS_POLLING;
1533 local_irq_enable();
1534 return 0;
1535 }
1536
1537 /* Tell the scheduler that we are going deep-idle: */
1538 sched_clock_idle_sleep_event();
1539 /*
1540 * Must be done before busmaster disable as we might need to
1541 * access HPET !
1542 */
1543 acpi_state_timer_broadcast(pr, cx, 1);
1544
1545 acpi_idle_update_bm_rld(pr, cx);
1546
1547 /*
1548 * disable bus master
1549 * bm_check implies we need ARB_DIS
1550 * !bm_check implies we need cache flush
1551 * bm_control implies whether we can do ARB_DIS
1552 *
1553 * That leaves a case where bm_check is set and bm_control is
1554 * not set. In that case we cannot do much, we enter C3
1555 * without doing anything.
1556 */
1557 if (pr->flags.bm_check && pr->flags.bm_control) {
1558 spin_lock(&c3_lock);
1559 c3_cpu_count++;
1560 /* Disable bus master arbitration when all CPUs are in C3 */
1561 if (c3_cpu_count == num_online_cpus())
1562 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
1563 spin_unlock(&c3_lock);
1564 } else if (!pr->flags.bm_check) {
1565 ACPI_FLUSH_CPU_CACHE();
1566 }
1567
1568 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1569 acpi_idle_do_entry(cx);
1570 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1571
1572 /* Re-enable bus master arbitration */
1573 if (pr->flags.bm_check && pr->flags.bm_control) {
1574 spin_lock(&c3_lock);
1575 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
1576 c3_cpu_count--;
1577 spin_unlock(&c3_lock);
1578 }
1579
1580 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1581 /* TSC could halt in idle, so notify users */
1582 if (tsc_halts_in_c(ACPI_STATE_C3))
1583 mark_tsc_unstable("TSC halts in idle");
1584 #endif
1585 sleep_ticks = ticks_elapsed(t1, t2);
1586 /* Tell the scheduler how much we idled: */
1587 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1588
1589 local_irq_enable();
1590 current_thread_info()->status |= TS_POLLING;
1591
1592 cx->usage++;
1593
1594 acpi_state_timer_broadcast(pr, cx, 0);
1595 cx->time += sleep_ticks;
1596 return ticks_elapsed_in_us(t1, t2);
1597 }
1598
1599 struct cpuidle_driver acpi_idle_driver = {
1600 .name = "acpi_idle",
1601 .owner = THIS_MODULE,
1602 };
1603
1604 /**
1605 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1606 * @pr: the ACPI processor
1607 */
1608 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1609 {
1610 int i, count = 0;
1611 struct acpi_processor_cx *cx;
1612 struct cpuidle_state *state;
1613 struct cpuidle_device *dev = &pr->power.dev;
1614
1615 if (!pr->flags.power_setup_done)
1616 return -EINVAL;
1617
1618 if (pr->flags.power == 0) {
1619 return -EINVAL;
1620 }
1621
1622 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1623 cx = &pr->power.states[i];
1624 state = &dev->states[count];
1625
1626 if (!cx->valid)
1627 continue;
1628
1629 #ifdef CONFIG_HOTPLUG_CPU
1630 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1631 !pr->flags.has_cst &&
1632 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1633 continue;
1634 #endif
1635 cpuidle_set_statedata(state, cx);
1636
1637 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1638 state->exit_latency = cx->latency;
1639 state->target_residency = cx->latency * 6;
1640 state->power_usage = cx->power;
1641
1642 state->flags = 0;
1643 switch (cx->type) {
1644 case ACPI_STATE_C1:
1645 state->flags |= CPUIDLE_FLAG_SHALLOW;
1646 state->enter = acpi_idle_enter_c1;
1647 dev->safe_state = state;
1648 break;
1649
1650 case ACPI_STATE_C2:
1651 state->flags |= CPUIDLE_FLAG_BALANCED;
1652 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1653 state->enter = acpi_idle_enter_simple;
1654 dev->safe_state = state;
1655 break;
1656
1657 case ACPI_STATE_C3:
1658 state->flags |= CPUIDLE_FLAG_DEEP;
1659 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1660 state->flags |= CPUIDLE_FLAG_CHECK_BM;
1661 state->enter = pr->flags.bm_check ?
1662 acpi_idle_enter_bm :
1663 acpi_idle_enter_simple;
1664 break;
1665 }
1666
1667 count++;
1668 }
1669
1670 dev->state_count = count;
1671
1672 if (!count)
1673 return -EINVAL;
1674
1675 return 0;
1676 }
1677
1678 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1679 {
1680 int ret;
1681
1682 if (!pr)
1683 return -EINVAL;
1684
1685 if (nocst) {
1686 return -ENODEV;
1687 }
1688
1689 if (!pr->flags.power_setup_done)
1690 return -ENODEV;
1691
1692 cpuidle_pause_and_lock();
1693 cpuidle_disable_device(&pr->power.dev);
1694 acpi_processor_get_power_info(pr);
1695 acpi_processor_setup_cpuidle(pr);
1696 ret = cpuidle_enable_device(&pr->power.dev);
1697 cpuidle_resume_and_unlock();
1698
1699 return ret;
1700 }
1701
1702 #endif /* CONFIG_CPU_IDLE */
1703
1704 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1705 struct acpi_device *device)
1706 {
1707 acpi_status status = 0;
1708 static int first_run;
1709 struct proc_dir_entry *entry = NULL;
1710 unsigned int i;
1711
1712
1713 if (!first_run) {
1714 dmi_check_system(processor_power_dmi_table);
1715 max_cstate = acpi_processor_cstate_check(max_cstate);
1716 if (max_cstate < ACPI_C_STATES_MAX)
1717 printk(KERN_NOTICE
1718 "ACPI: processor limited to max C-state %d\n",
1719 max_cstate);
1720 first_run++;
1721 #if !defined (CONFIG_CPU_IDLE) && defined (CONFIG_SMP)
1722 register_latency_notifier(&acpi_processor_latency_notifier);
1723 #endif
1724 }
1725
1726 if (!pr)
1727 return -EINVAL;
1728
1729 if (acpi_gbl_FADT.cst_control && !nocst) {
1730 status =
1731 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1732 if (ACPI_FAILURE(status)) {
1733 ACPI_EXCEPTION((AE_INFO, status,
1734 "Notifying BIOS of _CST ability failed"));
1735 }
1736 }
1737
1738 acpi_processor_get_power_info(pr);
1739 pr->flags.power_setup_done = 1;
1740
1741 /*
1742 * Install the idle handler if processor power management is supported.
1743 * Note that we use previously set idle handler will be used on
1744 * platforms that only support C1.
1745 */
1746 if ((pr->flags.power) && (!boot_option_idle_override)) {
1747 #ifdef CONFIG_CPU_IDLE
1748 acpi_processor_setup_cpuidle(pr);
1749 pr->power.dev.cpu = pr->id;
1750 if (cpuidle_register_device(&pr->power.dev))
1751 return -EIO;
1752 #endif
1753
1754 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1755 for (i = 1; i <= pr->power.count; i++)
1756 if (pr->power.states[i].valid)
1757 printk(" C%d[C%d]", i,
1758 pr->power.states[i].type);
1759 printk(")\n");
1760
1761 #ifndef CONFIG_CPU_IDLE
1762 if (pr->id == 0) {
1763 pm_idle_save = pm_idle;
1764 pm_idle = acpi_processor_idle;
1765 }
1766 #endif
1767 }
1768
1769 /* 'power' [R] */
1770 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1771 S_IRUGO, acpi_device_dir(device));
1772 if (!entry)
1773 return -EIO;
1774 else {
1775 entry->proc_fops = &acpi_processor_power_fops;
1776 entry->data = acpi_driver_data(device);
1777 entry->owner = THIS_MODULE;
1778 }
1779
1780 return 0;
1781 }
1782
1783 int acpi_processor_power_exit(struct acpi_processor *pr,
1784 struct acpi_device *device)
1785 {
1786 #ifdef CONFIG_CPU_IDLE
1787 if ((pr->flags.power) && (!boot_option_idle_override))
1788 cpuidle_unregister_device(&pr->power.dev);
1789 #endif
1790 pr->flags.power_setup_done = 0;
1791
1792 if (acpi_device_dir(device))
1793 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1794 acpi_device_dir(device));
1795
1796 #ifndef CONFIG_CPU_IDLE
1797
1798 /* Unregister the idle handler when processor #0 is removed. */
1799 if (pr->id == 0) {
1800 pm_idle = pm_idle_save;
1801
1802 /*
1803 * We are about to unload the current idle thread pm callback
1804 * (pm_idle), Wait for all processors to update cached/local
1805 * copies of pm_idle before proceeding.
1806 */
1807 cpu_idle_wait();
1808 #ifdef CONFIG_SMP
1809 unregister_latency_notifier(&acpi_processor_latency_notifier);
1810 #endif
1811 }
1812 #endif
1813
1814 return 0;
1815 }