Merge git://git.kernel.org/pub/scm/linux/kernel/git/x86/linux-2.6-x86
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / acpi / processor_idle.c
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27 *
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/latency.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44
45 /*
46 * Include the apic definitions for x86 to have the APIC timer related defines
47 * available also for UP (on SMP it gets magically included via linux/smp.h).
48 * asm/acpi.h is not an option, as it would require more include magic. Also
49 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
50 */
51 #ifdef CONFIG_X86
52 #include <asm/apic.h>
53 #endif
54
55 #include <asm/io.h>
56 #include <asm/uaccess.h>
57
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
60
61 #define ACPI_PROCESSOR_COMPONENT 0x01000000
62 #define ACPI_PROCESSOR_CLASS "processor"
63 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
64 ACPI_MODULE_NAME("processor_idle");
65 #define ACPI_PROCESSOR_FILE_POWER "power"
66 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
67 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
68 #ifndef CONFIG_CPU_IDLE
69 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
70 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
71 static void (*pm_idle_save) (void) __read_mostly;
72 #else
73 #define C2_OVERHEAD 1 /* 1us */
74 #define C3_OVERHEAD 1 /* 1us */
75 #endif
76 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
77
78 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
79 module_param(max_cstate, uint, 0000);
80 static unsigned int nocst __read_mostly;
81 module_param(nocst, uint, 0000);
82
83 #ifndef CONFIG_CPU_IDLE
84 /*
85 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
86 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
87 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
88 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
89 * reduce history for more aggressive entry into C3
90 */
91 static unsigned int bm_history __read_mostly =
92 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
93 module_param(bm_history, uint, 0644);
94
95 static int acpi_processor_set_power_policy(struct acpi_processor *pr);
96
97 #endif
98
99 /*
100 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
101 * For now disable this. Probably a bug somewhere else.
102 *
103 * To skip this limit, boot/load with a large max_cstate limit.
104 */
105 static int set_max_cstate(const struct dmi_system_id *id)
106 {
107 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
108 return 0;
109
110 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
111 " Override with \"processor.max_cstate=%d\"\n", id->ident,
112 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
113
114 max_cstate = (long)id->driver_data;
115
116 return 0;
117 }
118
119 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
120 callers to only run once -AK */
121 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
122 { set_max_cstate, "IBM ThinkPad R40e", {
123 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
124 DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
125 { set_max_cstate, "IBM ThinkPad R40e", {
126 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
127 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
128 { set_max_cstate, "IBM ThinkPad R40e", {
129 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
130 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
131 { set_max_cstate, "IBM ThinkPad R40e", {
132 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
133 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
134 { set_max_cstate, "IBM ThinkPad R40e", {
135 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
136 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
137 { set_max_cstate, "IBM ThinkPad R40e", {
138 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
139 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
140 { set_max_cstate, "IBM ThinkPad R40e", {
141 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
142 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
143 { set_max_cstate, "IBM ThinkPad R40e", {
144 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
145 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
146 { set_max_cstate, "IBM ThinkPad R40e", {
147 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
148 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
149 { set_max_cstate, "IBM ThinkPad R40e", {
150 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
151 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
152 { set_max_cstate, "IBM ThinkPad R40e", {
153 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
154 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
155 { set_max_cstate, "IBM ThinkPad R40e", {
156 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
157 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
158 { set_max_cstate, "IBM ThinkPad R40e", {
159 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
160 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
161 { set_max_cstate, "IBM ThinkPad R40e", {
162 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
163 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
164 { set_max_cstate, "IBM ThinkPad R40e", {
165 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
166 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
167 { set_max_cstate, "IBM ThinkPad R40e", {
168 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
169 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
170 { set_max_cstate, "Medion 41700", {
171 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
172 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
173 { set_max_cstate, "Clevo 5600D", {
174 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
175 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
176 (void *)2},
177 {},
178 };
179
180 static inline u32 ticks_elapsed(u32 t1, u32 t2)
181 {
182 if (t2 >= t1)
183 return (t2 - t1);
184 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
185 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
186 else
187 return ((0xFFFFFFFF - t1) + t2);
188 }
189
190 static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
191 {
192 if (t2 >= t1)
193 return PM_TIMER_TICKS_TO_US(t2 - t1);
194 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
195 return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
196 else
197 return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
198 }
199
200 static void acpi_safe_halt(void)
201 {
202 current_thread_info()->status &= ~TS_POLLING;
203 /*
204 * TS_POLLING-cleared state must be visible before we
205 * test NEED_RESCHED:
206 */
207 smp_mb();
208 if (!need_resched())
209 safe_halt();
210 current_thread_info()->status |= TS_POLLING;
211 }
212
213 #ifndef CONFIG_CPU_IDLE
214
215 static void
216 acpi_processor_power_activate(struct acpi_processor *pr,
217 struct acpi_processor_cx *new)
218 {
219 struct acpi_processor_cx *old;
220
221 if (!pr || !new)
222 return;
223
224 old = pr->power.state;
225
226 if (old)
227 old->promotion.count = 0;
228 new->demotion.count = 0;
229
230 /* Cleanup from old state. */
231 if (old) {
232 switch (old->type) {
233 case ACPI_STATE_C3:
234 /* Disable bus master reload */
235 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
236 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
237 break;
238 }
239 }
240
241 /* Prepare to use new state. */
242 switch (new->type) {
243 case ACPI_STATE_C3:
244 /* Enable bus master reload */
245 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
246 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
247 break;
248 }
249
250 pr->power.state = new;
251
252 return;
253 }
254
255 static atomic_t c3_cpu_count;
256
257 /* Common C-state entry for C2, C3, .. */
258 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
259 {
260 if (cstate->space_id == ACPI_CSTATE_FFH) {
261 /* Call into architectural FFH based C-state */
262 acpi_processor_ffh_cstate_enter(cstate);
263 } else {
264 int unused;
265 /* IO port based C-state */
266 inb(cstate->address);
267 /* Dummy wait op - must do something useless after P_LVL2 read
268 because chipsets cannot guarantee that STPCLK# signal
269 gets asserted in time to freeze execution properly. */
270 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
271 }
272 }
273 #endif /* !CONFIG_CPU_IDLE */
274
275 #ifdef ARCH_APICTIMER_STOPS_ON_C3
276
277 /*
278 * Some BIOS implementations switch to C3 in the published C2 state.
279 * This seems to be a common problem on AMD boxen, but other vendors
280 * are affected too. We pick the most conservative approach: we assume
281 * that the local APIC stops in both C2 and C3.
282 */
283 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
284 struct acpi_processor_cx *cx)
285 {
286 struct acpi_processor_power *pwr = &pr->power;
287 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
288
289 /*
290 * Check, if one of the previous states already marked the lapic
291 * unstable
292 */
293 if (pwr->timer_broadcast_on_state < state)
294 return;
295
296 if (cx->type >= type)
297 pr->power.timer_broadcast_on_state = state;
298 }
299
300 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
301 {
302 unsigned long reason;
303
304 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
305 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
306
307 clockevents_notify(reason, &pr->id);
308 }
309
310 /* Power(C) State timer broadcast control */
311 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
312 struct acpi_processor_cx *cx,
313 int broadcast)
314 {
315 int state = cx - pr->power.states;
316
317 if (state >= pr->power.timer_broadcast_on_state) {
318 unsigned long reason;
319
320 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
321 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
322 clockevents_notify(reason, &pr->id);
323 }
324 }
325
326 #else
327
328 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
329 struct acpi_processor_cx *cstate) { }
330 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
331 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
332 struct acpi_processor_cx *cx,
333 int broadcast)
334 {
335 }
336
337 #endif
338
339 /*
340 * Suspend / resume control
341 */
342 static int acpi_idle_suspend;
343
344 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
345 {
346 acpi_idle_suspend = 1;
347 return 0;
348 }
349
350 int acpi_processor_resume(struct acpi_device * device)
351 {
352 acpi_idle_suspend = 0;
353 return 0;
354 }
355
356 #ifndef CONFIG_CPU_IDLE
357 static void acpi_processor_idle(void)
358 {
359 struct acpi_processor *pr = NULL;
360 struct acpi_processor_cx *cx = NULL;
361 struct acpi_processor_cx *next_state = NULL;
362 int sleep_ticks = 0;
363 u32 t1, t2 = 0;
364
365 /*
366 * Interrupts must be disabled during bus mastering calculations and
367 * for C2/C3 transitions.
368 */
369 local_irq_disable();
370
371 pr = processors[smp_processor_id()];
372 if (!pr) {
373 local_irq_enable();
374 return;
375 }
376
377 /*
378 * Check whether we truly need to go idle, or should
379 * reschedule:
380 */
381 if (unlikely(need_resched())) {
382 local_irq_enable();
383 return;
384 }
385
386 cx = pr->power.state;
387 if (!cx || acpi_idle_suspend) {
388 if (pm_idle_save)
389 pm_idle_save();
390 else
391 acpi_safe_halt();
392 return;
393 }
394
395 /*
396 * Check BM Activity
397 * -----------------
398 * Check for bus mastering activity (if required), record, and check
399 * for demotion.
400 */
401 if (pr->flags.bm_check) {
402 u32 bm_status = 0;
403 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
404
405 if (diff > 31)
406 diff = 31;
407
408 pr->power.bm_activity <<= diff;
409
410 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
411 if (bm_status) {
412 pr->power.bm_activity |= 0x1;
413 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
414 }
415 /*
416 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
417 * the true state of bus mastering activity; forcing us to
418 * manually check the BMIDEA bit of each IDE channel.
419 */
420 else if (errata.piix4.bmisx) {
421 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
422 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
423 pr->power.bm_activity |= 0x1;
424 }
425
426 pr->power.bm_check_timestamp = jiffies;
427
428 /*
429 * If bus mastering is or was active this jiffy, demote
430 * to avoid a faulty transition. Note that the processor
431 * won't enter a low-power state during this call (to this
432 * function) but should upon the next.
433 *
434 * TBD: A better policy might be to fallback to the demotion
435 * state (use it for this quantum only) istead of
436 * demoting -- and rely on duration as our sole demotion
437 * qualification. This may, however, introduce DMA
438 * issues (e.g. floppy DMA transfer overrun/underrun).
439 */
440 if ((pr->power.bm_activity & 0x1) &&
441 cx->demotion.threshold.bm) {
442 local_irq_enable();
443 next_state = cx->demotion.state;
444 goto end;
445 }
446 }
447
448 #ifdef CONFIG_HOTPLUG_CPU
449 /*
450 * Check for P_LVL2_UP flag before entering C2 and above on
451 * an SMP system. We do it here instead of doing it at _CST/P_LVL
452 * detection phase, to work cleanly with logical CPU hotplug.
453 */
454 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
455 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
456 cx = &pr->power.states[ACPI_STATE_C1];
457 #endif
458
459 /*
460 * Sleep:
461 * ------
462 * Invoke the current Cx state to put the processor to sleep.
463 */
464 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
465 current_thread_info()->status &= ~TS_POLLING;
466 /*
467 * TS_POLLING-cleared state must be visible before we
468 * test NEED_RESCHED:
469 */
470 smp_mb();
471 if (need_resched()) {
472 current_thread_info()->status |= TS_POLLING;
473 local_irq_enable();
474 return;
475 }
476 }
477
478 switch (cx->type) {
479
480 case ACPI_STATE_C1:
481 /*
482 * Invoke C1.
483 * Use the appropriate idle routine, the one that would
484 * be used without acpi C-states.
485 */
486 if (pm_idle_save)
487 pm_idle_save();
488 else
489 acpi_safe_halt();
490
491 /*
492 * TBD: Can't get time duration while in C1, as resumes
493 * go to an ISR rather than here. Need to instrument
494 * base interrupt handler.
495 *
496 * Note: the TSC better not stop in C1, sched_clock() will
497 * skew otherwise.
498 */
499 sleep_ticks = 0xFFFFFFFF;
500 break;
501
502 case ACPI_STATE_C2:
503 /* Get start time (ticks) */
504 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
505 /* Tell the scheduler that we are going deep-idle: */
506 sched_clock_idle_sleep_event();
507 /* Invoke C2 */
508 acpi_state_timer_broadcast(pr, cx, 1);
509 acpi_cstate_enter(cx);
510 /* Get end time (ticks) */
511 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
512
513 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
514 /* TSC halts in C2, so notify users */
515 mark_tsc_unstable("possible TSC halt in C2");
516 #endif
517 /* Compute time (ticks) that we were actually asleep */
518 sleep_ticks = ticks_elapsed(t1, t2);
519
520 /* Tell the scheduler how much we idled: */
521 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
522
523 /* Re-enable interrupts */
524 local_irq_enable();
525 /* Do not account our idle-switching overhead: */
526 sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
527
528 current_thread_info()->status |= TS_POLLING;
529 acpi_state_timer_broadcast(pr, cx, 0);
530 break;
531
532 case ACPI_STATE_C3:
533 /*
534 * disable bus master
535 * bm_check implies we need ARB_DIS
536 * !bm_check implies we need cache flush
537 * bm_control implies whether we can do ARB_DIS
538 *
539 * That leaves a case where bm_check is set and bm_control is
540 * not set. In that case we cannot do much, we enter C3
541 * without doing anything.
542 */
543 if (pr->flags.bm_check && pr->flags.bm_control) {
544 if (atomic_inc_return(&c3_cpu_count) ==
545 num_online_cpus()) {
546 /*
547 * All CPUs are trying to go to C3
548 * Disable bus master arbitration
549 */
550 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
551 }
552 } else if (!pr->flags.bm_check) {
553 /* SMP with no shared cache... Invalidate cache */
554 ACPI_FLUSH_CPU_CACHE();
555 }
556
557 /* Get start time (ticks) */
558 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
559 /* Invoke C3 */
560 acpi_state_timer_broadcast(pr, cx, 1);
561 /* Tell the scheduler that we are going deep-idle: */
562 sched_clock_idle_sleep_event();
563 acpi_cstate_enter(cx);
564 /* Get end time (ticks) */
565 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
566 if (pr->flags.bm_check && pr->flags.bm_control) {
567 /* Enable bus master arbitration */
568 atomic_dec(&c3_cpu_count);
569 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
570 }
571
572 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
573 /* TSC halts in C3, so notify users */
574 mark_tsc_unstable("TSC halts in C3");
575 #endif
576 /* Compute time (ticks) that we were actually asleep */
577 sleep_ticks = ticks_elapsed(t1, t2);
578 /* Tell the scheduler how much we idled: */
579 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
580
581 /* Re-enable interrupts */
582 local_irq_enable();
583 /* Do not account our idle-switching overhead: */
584 sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
585
586 current_thread_info()->status |= TS_POLLING;
587 acpi_state_timer_broadcast(pr, cx, 0);
588 break;
589
590 default:
591 local_irq_enable();
592 return;
593 }
594 cx->usage++;
595 if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
596 cx->time += sleep_ticks;
597
598 next_state = pr->power.state;
599
600 #ifdef CONFIG_HOTPLUG_CPU
601 /* Don't do promotion/demotion */
602 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
603 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
604 next_state = cx;
605 goto end;
606 }
607 #endif
608
609 /*
610 * Promotion?
611 * ----------
612 * Track the number of longs (time asleep is greater than threshold)
613 * and promote when the count threshold is reached. Note that bus
614 * mastering activity may prevent promotions.
615 * Do not promote above max_cstate.
616 */
617 if (cx->promotion.state &&
618 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
619 if (sleep_ticks > cx->promotion.threshold.ticks &&
620 cx->promotion.state->latency <= system_latency_constraint()) {
621 cx->promotion.count++;
622 cx->demotion.count = 0;
623 if (cx->promotion.count >=
624 cx->promotion.threshold.count) {
625 if (pr->flags.bm_check) {
626 if (!
627 (pr->power.bm_activity & cx->
628 promotion.threshold.bm)) {
629 next_state =
630 cx->promotion.state;
631 goto end;
632 }
633 } else {
634 next_state = cx->promotion.state;
635 goto end;
636 }
637 }
638 }
639 }
640
641 /*
642 * Demotion?
643 * ---------
644 * Track the number of shorts (time asleep is less than time threshold)
645 * and demote when the usage threshold is reached.
646 */
647 if (cx->demotion.state) {
648 if (sleep_ticks < cx->demotion.threshold.ticks) {
649 cx->demotion.count++;
650 cx->promotion.count = 0;
651 if (cx->demotion.count >= cx->demotion.threshold.count) {
652 next_state = cx->demotion.state;
653 goto end;
654 }
655 }
656 }
657
658 end:
659 /*
660 * Demote if current state exceeds max_cstate
661 * or if the latency of the current state is unacceptable
662 */
663 if ((pr->power.state - pr->power.states) > max_cstate ||
664 pr->power.state->latency > system_latency_constraint()) {
665 if (cx->demotion.state)
666 next_state = cx->demotion.state;
667 }
668
669 /*
670 * New Cx State?
671 * -------------
672 * If we're going to start using a new Cx state we must clean up
673 * from the previous and prepare to use the new.
674 */
675 if (next_state != pr->power.state)
676 acpi_processor_power_activate(pr, next_state);
677 }
678
679 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
680 {
681 unsigned int i;
682 unsigned int state_is_set = 0;
683 struct acpi_processor_cx *lower = NULL;
684 struct acpi_processor_cx *higher = NULL;
685 struct acpi_processor_cx *cx;
686
687
688 if (!pr)
689 return -EINVAL;
690
691 /*
692 * This function sets the default Cx state policy (OS idle handler).
693 * Our scheme is to promote quickly to C2 but more conservatively
694 * to C3. We're favoring C2 for its characteristics of low latency
695 * (quick response), good power savings, and ability to allow bus
696 * mastering activity. Note that the Cx state policy is completely
697 * customizable and can be altered dynamically.
698 */
699
700 /* startup state */
701 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
702 cx = &pr->power.states[i];
703 if (!cx->valid)
704 continue;
705
706 if (!state_is_set)
707 pr->power.state = cx;
708 state_is_set++;
709 break;
710 }
711
712 if (!state_is_set)
713 return -ENODEV;
714
715 /* demotion */
716 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
717 cx = &pr->power.states[i];
718 if (!cx->valid)
719 continue;
720
721 if (lower) {
722 cx->demotion.state = lower;
723 cx->demotion.threshold.ticks = cx->latency_ticks;
724 cx->demotion.threshold.count = 1;
725 if (cx->type == ACPI_STATE_C3)
726 cx->demotion.threshold.bm = bm_history;
727 }
728
729 lower = cx;
730 }
731
732 /* promotion */
733 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
734 cx = &pr->power.states[i];
735 if (!cx->valid)
736 continue;
737
738 if (higher) {
739 cx->promotion.state = higher;
740 cx->promotion.threshold.ticks = cx->latency_ticks;
741 if (cx->type >= ACPI_STATE_C2)
742 cx->promotion.threshold.count = 4;
743 else
744 cx->promotion.threshold.count = 10;
745 if (higher->type == ACPI_STATE_C3)
746 cx->promotion.threshold.bm = bm_history;
747 }
748
749 higher = cx;
750 }
751
752 return 0;
753 }
754 #endif /* !CONFIG_CPU_IDLE */
755
756 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
757 {
758
759 if (!pr)
760 return -EINVAL;
761
762 if (!pr->pblk)
763 return -ENODEV;
764
765 /* if info is obtained from pblk/fadt, type equals state */
766 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
767 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
768
769 #ifndef CONFIG_HOTPLUG_CPU
770 /*
771 * Check for P_LVL2_UP flag before entering C2 and above on
772 * an SMP system.
773 */
774 if ((num_online_cpus() > 1) &&
775 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
776 return -ENODEV;
777 #endif
778
779 /* determine C2 and C3 address from pblk */
780 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
781 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
782
783 /* determine latencies from FADT */
784 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
785 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
786
787 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
788 "lvl2[0x%08x] lvl3[0x%08x]\n",
789 pr->power.states[ACPI_STATE_C2].address,
790 pr->power.states[ACPI_STATE_C3].address));
791
792 return 0;
793 }
794
795 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
796 {
797 if (!pr->power.states[ACPI_STATE_C1].valid) {
798 /* set the first C-State to C1 */
799 /* all processors need to support C1 */
800 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
801 pr->power.states[ACPI_STATE_C1].valid = 1;
802 }
803 /* the C0 state only exists as a filler in our array */
804 pr->power.states[ACPI_STATE_C0].valid = 1;
805 return 0;
806 }
807
808 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
809 {
810 acpi_status status = 0;
811 acpi_integer count;
812 int current_count;
813 int i;
814 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
815 union acpi_object *cst;
816
817
818 if (nocst)
819 return -ENODEV;
820
821 current_count = 0;
822
823 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
824 if (ACPI_FAILURE(status)) {
825 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
826 return -ENODEV;
827 }
828
829 cst = buffer.pointer;
830
831 /* There must be at least 2 elements */
832 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
833 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
834 status = -EFAULT;
835 goto end;
836 }
837
838 count = cst->package.elements[0].integer.value;
839
840 /* Validate number of power states. */
841 if (count < 1 || count != cst->package.count - 1) {
842 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
843 status = -EFAULT;
844 goto end;
845 }
846
847 /* Tell driver that at least _CST is supported. */
848 pr->flags.has_cst = 1;
849
850 for (i = 1; i <= count; i++) {
851 union acpi_object *element;
852 union acpi_object *obj;
853 struct acpi_power_register *reg;
854 struct acpi_processor_cx cx;
855
856 memset(&cx, 0, sizeof(cx));
857
858 element = &(cst->package.elements[i]);
859 if (element->type != ACPI_TYPE_PACKAGE)
860 continue;
861
862 if (element->package.count != 4)
863 continue;
864
865 obj = &(element->package.elements[0]);
866
867 if (obj->type != ACPI_TYPE_BUFFER)
868 continue;
869
870 reg = (struct acpi_power_register *)obj->buffer.pointer;
871
872 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
873 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
874 continue;
875
876 /* There should be an easy way to extract an integer... */
877 obj = &(element->package.elements[1]);
878 if (obj->type != ACPI_TYPE_INTEGER)
879 continue;
880
881 cx.type = obj->integer.value;
882 /*
883 * Some buggy BIOSes won't list C1 in _CST -
884 * Let acpi_processor_get_power_info_default() handle them later
885 */
886 if (i == 1 && cx.type != ACPI_STATE_C1)
887 current_count++;
888
889 cx.address = reg->address;
890 cx.index = current_count + 1;
891
892 cx.space_id = ACPI_CSTATE_SYSTEMIO;
893 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
894 if (acpi_processor_ffh_cstate_probe
895 (pr->id, &cx, reg) == 0) {
896 cx.space_id = ACPI_CSTATE_FFH;
897 } else if (cx.type != ACPI_STATE_C1) {
898 /*
899 * C1 is a special case where FIXED_HARDWARE
900 * can be handled in non-MWAIT way as well.
901 * In that case, save this _CST entry info.
902 * That is, we retain space_id of SYSTEM_IO for
903 * halt based C1.
904 * Otherwise, ignore this info and continue.
905 */
906 continue;
907 }
908 }
909
910 obj = &(element->package.elements[2]);
911 if (obj->type != ACPI_TYPE_INTEGER)
912 continue;
913
914 cx.latency = obj->integer.value;
915
916 obj = &(element->package.elements[3]);
917 if (obj->type != ACPI_TYPE_INTEGER)
918 continue;
919
920 cx.power = obj->integer.value;
921
922 current_count++;
923 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
924
925 /*
926 * We support total ACPI_PROCESSOR_MAX_POWER - 1
927 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
928 */
929 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
930 printk(KERN_WARNING
931 "Limiting number of power states to max (%d)\n",
932 ACPI_PROCESSOR_MAX_POWER);
933 printk(KERN_WARNING
934 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
935 break;
936 }
937 }
938
939 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
940 current_count));
941
942 /* Validate number of power states discovered */
943 if (current_count < 2)
944 status = -EFAULT;
945
946 end:
947 kfree(buffer.pointer);
948
949 return status;
950 }
951
952 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
953 {
954
955 if (!cx->address)
956 return;
957
958 /*
959 * C2 latency must be less than or equal to 100
960 * microseconds.
961 */
962 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
963 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
964 "latency too large [%d]\n", cx->latency));
965 return;
966 }
967
968 /*
969 * Otherwise we've met all of our C2 requirements.
970 * Normalize the C2 latency to expidite policy
971 */
972 cx->valid = 1;
973
974 #ifndef CONFIG_CPU_IDLE
975 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
976 #else
977 cx->latency_ticks = cx->latency;
978 #endif
979
980 return;
981 }
982
983 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
984 struct acpi_processor_cx *cx)
985 {
986 static int bm_check_flag;
987
988
989 if (!cx->address)
990 return;
991
992 /*
993 * C3 latency must be less than or equal to 1000
994 * microseconds.
995 */
996 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
997 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
998 "latency too large [%d]\n", cx->latency));
999 return;
1000 }
1001
1002 /*
1003 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1004 * DMA transfers are used by any ISA device to avoid livelock.
1005 * Note that we could disable Type-F DMA (as recommended by
1006 * the erratum), but this is known to disrupt certain ISA
1007 * devices thus we take the conservative approach.
1008 */
1009 else if (errata.piix4.fdma) {
1010 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1011 "C3 not supported on PIIX4 with Type-F DMA\n"));
1012 return;
1013 }
1014
1015 /* All the logic here assumes flags.bm_check is same across all CPUs */
1016 if (!bm_check_flag) {
1017 /* Determine whether bm_check is needed based on CPU */
1018 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
1019 bm_check_flag = pr->flags.bm_check;
1020 } else {
1021 pr->flags.bm_check = bm_check_flag;
1022 }
1023
1024 if (pr->flags.bm_check) {
1025 if (!pr->flags.bm_control) {
1026 if (pr->flags.has_cst != 1) {
1027 /* bus mastering control is necessary */
1028 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1029 "C3 support requires BM control\n"));
1030 return;
1031 } else {
1032 /* Here we enter C3 without bus mastering */
1033 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1034 "C3 support without BM control\n"));
1035 }
1036 }
1037 } else {
1038 /*
1039 * WBINVD should be set in fadt, for C3 state to be
1040 * supported on when bm_check is not required.
1041 */
1042 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1043 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1044 "Cache invalidation should work properly"
1045 " for C3 to be enabled on SMP systems\n"));
1046 return;
1047 }
1048 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1049 }
1050
1051 /*
1052 * Otherwise we've met all of our C3 requirements.
1053 * Normalize the C3 latency to expidite policy. Enable
1054 * checking of bus mastering status (bm_check) so we can
1055 * use this in our C3 policy
1056 */
1057 cx->valid = 1;
1058
1059 #ifndef CONFIG_CPU_IDLE
1060 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1061 #else
1062 cx->latency_ticks = cx->latency;
1063 #endif
1064
1065 return;
1066 }
1067
1068 static int acpi_processor_power_verify(struct acpi_processor *pr)
1069 {
1070 unsigned int i;
1071 unsigned int working = 0;
1072
1073 pr->power.timer_broadcast_on_state = INT_MAX;
1074
1075 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1076 struct acpi_processor_cx *cx = &pr->power.states[i];
1077
1078 switch (cx->type) {
1079 case ACPI_STATE_C1:
1080 cx->valid = 1;
1081 break;
1082
1083 case ACPI_STATE_C2:
1084 acpi_processor_power_verify_c2(cx);
1085 if (cx->valid)
1086 acpi_timer_check_state(i, pr, cx);
1087 break;
1088
1089 case ACPI_STATE_C3:
1090 acpi_processor_power_verify_c3(pr, cx);
1091 if (cx->valid)
1092 acpi_timer_check_state(i, pr, cx);
1093 break;
1094 }
1095
1096 if (cx->valid)
1097 working++;
1098 }
1099
1100 acpi_propagate_timer_broadcast(pr);
1101
1102 return (working);
1103 }
1104
1105 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1106 {
1107 unsigned int i;
1108 int result;
1109
1110
1111 /* NOTE: the idle thread may not be running while calling
1112 * this function */
1113
1114 /* Zero initialize all the C-states info. */
1115 memset(pr->power.states, 0, sizeof(pr->power.states));
1116
1117 result = acpi_processor_get_power_info_cst(pr);
1118 if (result == -ENODEV)
1119 result = acpi_processor_get_power_info_fadt(pr);
1120
1121 if (result)
1122 return result;
1123
1124 acpi_processor_get_power_info_default(pr);
1125
1126 pr->power.count = acpi_processor_power_verify(pr);
1127
1128 #ifndef CONFIG_CPU_IDLE
1129 /*
1130 * Set Default Policy
1131 * ------------------
1132 * Now that we know which states are supported, set the default
1133 * policy. Note that this policy can be changed dynamically
1134 * (e.g. encourage deeper sleeps to conserve battery life when
1135 * not on AC).
1136 */
1137 result = acpi_processor_set_power_policy(pr);
1138 if (result)
1139 return result;
1140 #endif
1141
1142 /*
1143 * if one state of type C2 or C3 is available, mark this
1144 * CPU as being "idle manageable"
1145 */
1146 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1147 if (pr->power.states[i].valid) {
1148 pr->power.count = i;
1149 if (pr->power.states[i].type >= ACPI_STATE_C2)
1150 pr->flags.power = 1;
1151 }
1152 }
1153
1154 return 0;
1155 }
1156
1157 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1158 {
1159 struct acpi_processor *pr = seq->private;
1160 unsigned int i;
1161
1162
1163 if (!pr)
1164 goto end;
1165
1166 seq_printf(seq, "active state: C%zd\n"
1167 "max_cstate: C%d\n"
1168 "bus master activity: %08x\n"
1169 "maximum allowed latency: %d usec\n",
1170 pr->power.state ? pr->power.state - pr->power.states : 0,
1171 max_cstate, (unsigned)pr->power.bm_activity,
1172 system_latency_constraint());
1173
1174 seq_puts(seq, "states:\n");
1175
1176 for (i = 1; i <= pr->power.count; i++) {
1177 seq_printf(seq, " %cC%d: ",
1178 (&pr->power.states[i] ==
1179 pr->power.state ? '*' : ' '), i);
1180
1181 if (!pr->power.states[i].valid) {
1182 seq_puts(seq, "<not supported>\n");
1183 continue;
1184 }
1185
1186 switch (pr->power.states[i].type) {
1187 case ACPI_STATE_C1:
1188 seq_printf(seq, "type[C1] ");
1189 break;
1190 case ACPI_STATE_C2:
1191 seq_printf(seq, "type[C2] ");
1192 break;
1193 case ACPI_STATE_C3:
1194 seq_printf(seq, "type[C3] ");
1195 break;
1196 default:
1197 seq_printf(seq, "type[--] ");
1198 break;
1199 }
1200
1201 if (pr->power.states[i].promotion.state)
1202 seq_printf(seq, "promotion[C%zd] ",
1203 (pr->power.states[i].promotion.state -
1204 pr->power.states));
1205 else
1206 seq_puts(seq, "promotion[--] ");
1207
1208 if (pr->power.states[i].demotion.state)
1209 seq_printf(seq, "demotion[C%zd] ",
1210 (pr->power.states[i].demotion.state -
1211 pr->power.states));
1212 else
1213 seq_puts(seq, "demotion[--] ");
1214
1215 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1216 pr->power.states[i].latency,
1217 pr->power.states[i].usage,
1218 (unsigned long long)pr->power.states[i].time);
1219 }
1220
1221 end:
1222 return 0;
1223 }
1224
1225 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1226 {
1227 return single_open(file, acpi_processor_power_seq_show,
1228 PDE(inode)->data);
1229 }
1230
1231 static const struct file_operations acpi_processor_power_fops = {
1232 .open = acpi_processor_power_open_fs,
1233 .read = seq_read,
1234 .llseek = seq_lseek,
1235 .release = single_release,
1236 };
1237
1238 #ifndef CONFIG_CPU_IDLE
1239
1240 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1241 {
1242 int result = 0;
1243
1244
1245 if (!pr)
1246 return -EINVAL;
1247
1248 if (nocst) {
1249 return -ENODEV;
1250 }
1251
1252 if (!pr->flags.power_setup_done)
1253 return -ENODEV;
1254
1255 /* Fall back to the default idle loop */
1256 pm_idle = pm_idle_save;
1257 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
1258
1259 pr->flags.power = 0;
1260 result = acpi_processor_get_power_info(pr);
1261 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1262 pm_idle = acpi_processor_idle;
1263
1264 return result;
1265 }
1266
1267 #ifdef CONFIG_SMP
1268 static void smp_callback(void *v)
1269 {
1270 /* we already woke the CPU up, nothing more to do */
1271 }
1272
1273 /*
1274 * This function gets called when a part of the kernel has a new latency
1275 * requirement. This means we need to get all processors out of their C-state,
1276 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1277 * wakes them all right up.
1278 */
1279 static int acpi_processor_latency_notify(struct notifier_block *b,
1280 unsigned long l, void *v)
1281 {
1282 smp_call_function(smp_callback, NULL, 0, 1);
1283 return NOTIFY_OK;
1284 }
1285
1286 static struct notifier_block acpi_processor_latency_notifier = {
1287 .notifier_call = acpi_processor_latency_notify,
1288 };
1289
1290 #endif
1291
1292 #else /* CONFIG_CPU_IDLE */
1293
1294 /**
1295 * acpi_idle_bm_check - checks if bus master activity was detected
1296 */
1297 static int acpi_idle_bm_check(void)
1298 {
1299 u32 bm_status = 0;
1300
1301 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
1302 if (bm_status)
1303 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1304 /*
1305 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1306 * the true state of bus mastering activity; forcing us to
1307 * manually check the BMIDEA bit of each IDE channel.
1308 */
1309 else if (errata.piix4.bmisx) {
1310 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
1311 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
1312 bm_status = 1;
1313 }
1314 return bm_status;
1315 }
1316
1317 /**
1318 * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1319 * @pr: the processor
1320 * @target: the new target state
1321 */
1322 static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
1323 struct acpi_processor_cx *target)
1324 {
1325 if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
1326 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1327 pr->flags.bm_rld_set = 0;
1328 }
1329
1330 if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
1331 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
1332 pr->flags.bm_rld_set = 1;
1333 }
1334 }
1335
1336 /**
1337 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1338 * @cx: cstate data
1339 */
1340 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
1341 {
1342 if (cx->space_id == ACPI_CSTATE_FFH) {
1343 /* Call into architectural FFH based C-state */
1344 acpi_processor_ffh_cstate_enter(cx);
1345 } else {
1346 int unused;
1347 /* IO port based C-state */
1348 inb(cx->address);
1349 /* Dummy wait op - must do something useless after P_LVL2 read
1350 because chipsets cannot guarantee that STPCLK# signal
1351 gets asserted in time to freeze execution properly. */
1352 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
1353 }
1354 }
1355
1356 /**
1357 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1358 * @dev: the target CPU
1359 * @state: the state data
1360 *
1361 * This is equivalent to the HALT instruction.
1362 */
1363 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
1364 struct cpuidle_state *state)
1365 {
1366 struct acpi_processor *pr;
1367 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1368 pr = processors[smp_processor_id()];
1369
1370 if (unlikely(!pr))
1371 return 0;
1372
1373 if (pr->flags.bm_check)
1374 acpi_idle_update_bm_rld(pr, cx);
1375
1376 acpi_safe_halt();
1377
1378 cx->usage++;
1379
1380 return 0;
1381 }
1382
1383 /**
1384 * acpi_idle_enter_simple - enters an ACPI state without BM handling
1385 * @dev: the target CPU
1386 * @state: the state data
1387 */
1388 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
1389 struct cpuidle_state *state)
1390 {
1391 struct acpi_processor *pr;
1392 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1393 u32 t1, t2;
1394 int sleep_ticks = 0;
1395
1396 pr = processors[smp_processor_id()];
1397
1398 if (unlikely(!pr))
1399 return 0;
1400
1401 if (acpi_idle_suspend)
1402 return(acpi_idle_enter_c1(dev, state));
1403
1404 if (pr->flags.bm_check)
1405 acpi_idle_update_bm_rld(pr, cx);
1406
1407 local_irq_disable();
1408 current_thread_info()->status &= ~TS_POLLING;
1409 /*
1410 * TS_POLLING-cleared state must be visible before we test
1411 * NEED_RESCHED:
1412 */
1413 smp_mb();
1414
1415 if (unlikely(need_resched())) {
1416 current_thread_info()->status |= TS_POLLING;
1417 local_irq_enable();
1418 return 0;
1419 }
1420
1421 if (cx->type == ACPI_STATE_C3)
1422 ACPI_FLUSH_CPU_CACHE();
1423
1424 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1425 /* Tell the scheduler that we are going deep-idle: */
1426 sched_clock_idle_sleep_event();
1427 acpi_state_timer_broadcast(pr, cx, 1);
1428 acpi_idle_do_entry(cx);
1429 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1430
1431 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1432 /* TSC could halt in idle, so notify users */
1433 mark_tsc_unstable("TSC halts in idle");;
1434 #endif
1435 sleep_ticks = ticks_elapsed(t1, t2);
1436
1437 /* Tell the scheduler how much we idled: */
1438 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1439
1440 local_irq_enable();
1441 current_thread_info()->status |= TS_POLLING;
1442
1443 cx->usage++;
1444
1445 acpi_state_timer_broadcast(pr, cx, 0);
1446 cx->time += sleep_ticks;
1447 return ticks_elapsed_in_us(t1, t2);
1448 }
1449
1450 static int c3_cpu_count;
1451 static DEFINE_SPINLOCK(c3_lock);
1452
1453 /**
1454 * acpi_idle_enter_bm - enters C3 with proper BM handling
1455 * @dev: the target CPU
1456 * @state: the state data
1457 *
1458 * If BM is detected, the deepest non-C3 idle state is entered instead.
1459 */
1460 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
1461 struct cpuidle_state *state)
1462 {
1463 struct acpi_processor *pr;
1464 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1465 u32 t1, t2;
1466 int sleep_ticks = 0;
1467
1468 pr = processors[smp_processor_id()];
1469
1470 if (unlikely(!pr))
1471 return 0;
1472
1473 if (acpi_idle_suspend)
1474 return(acpi_idle_enter_c1(dev, state));
1475
1476 if (acpi_idle_bm_check()) {
1477 if (dev->safe_state) {
1478 return dev->safe_state->enter(dev, dev->safe_state);
1479 } else {
1480 acpi_safe_halt();
1481 return 0;
1482 }
1483 }
1484
1485 local_irq_disable();
1486 current_thread_info()->status &= ~TS_POLLING;
1487 /*
1488 * TS_POLLING-cleared state must be visible before we test
1489 * NEED_RESCHED:
1490 */
1491 smp_mb();
1492
1493 if (unlikely(need_resched())) {
1494 current_thread_info()->status |= TS_POLLING;
1495 local_irq_enable();
1496 return 0;
1497 }
1498
1499 /* Tell the scheduler that we are going deep-idle: */
1500 sched_clock_idle_sleep_event();
1501 /*
1502 * Must be done before busmaster disable as we might need to
1503 * access HPET !
1504 */
1505 acpi_state_timer_broadcast(pr, cx, 1);
1506
1507 acpi_idle_update_bm_rld(pr, cx);
1508
1509 /*
1510 * disable bus master
1511 * bm_check implies we need ARB_DIS
1512 * !bm_check implies we need cache flush
1513 * bm_control implies whether we can do ARB_DIS
1514 *
1515 * That leaves a case where bm_check is set and bm_control is
1516 * not set. In that case we cannot do much, we enter C3
1517 * without doing anything.
1518 */
1519 if (pr->flags.bm_check && pr->flags.bm_control) {
1520 spin_lock(&c3_lock);
1521 c3_cpu_count++;
1522 /* Disable bus master arbitration when all CPUs are in C3 */
1523 if (c3_cpu_count == num_online_cpus())
1524 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
1525 spin_unlock(&c3_lock);
1526 } else if (!pr->flags.bm_check) {
1527 ACPI_FLUSH_CPU_CACHE();
1528 }
1529
1530 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1531 acpi_idle_do_entry(cx);
1532 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1533
1534 /* Re-enable bus master arbitration */
1535 if (pr->flags.bm_check && pr->flags.bm_control) {
1536 spin_lock(&c3_lock);
1537 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
1538 c3_cpu_count--;
1539 spin_unlock(&c3_lock);
1540 }
1541
1542 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1543 /* TSC could halt in idle, so notify users */
1544 mark_tsc_unstable("TSC halts in idle");
1545 #endif
1546 sleep_ticks = ticks_elapsed(t1, t2);
1547 /* Tell the scheduler how much we idled: */
1548 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1549
1550 local_irq_enable();
1551 current_thread_info()->status |= TS_POLLING;
1552
1553 cx->usage++;
1554
1555 acpi_state_timer_broadcast(pr, cx, 0);
1556 cx->time += sleep_ticks;
1557 return ticks_elapsed_in_us(t1, t2);
1558 }
1559
1560 struct cpuidle_driver acpi_idle_driver = {
1561 .name = "acpi_idle",
1562 .owner = THIS_MODULE,
1563 };
1564
1565 /**
1566 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1567 * @pr: the ACPI processor
1568 */
1569 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1570 {
1571 int i, count = 0;
1572 struct acpi_processor_cx *cx;
1573 struct cpuidle_state *state;
1574 struct cpuidle_device *dev = &pr->power.dev;
1575
1576 if (!pr->flags.power_setup_done)
1577 return -EINVAL;
1578
1579 if (pr->flags.power == 0) {
1580 return -EINVAL;
1581 }
1582
1583 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1584 cx = &pr->power.states[i];
1585 state = &dev->states[count];
1586
1587 if (!cx->valid)
1588 continue;
1589
1590 #ifdef CONFIG_HOTPLUG_CPU
1591 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1592 !pr->flags.has_cst &&
1593 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1594 continue;
1595 #endif
1596 cpuidle_set_statedata(state, cx);
1597
1598 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1599 state->exit_latency = cx->latency;
1600 state->target_residency = cx->latency * 6;
1601 state->power_usage = cx->power;
1602
1603 state->flags = 0;
1604 switch (cx->type) {
1605 case ACPI_STATE_C1:
1606 state->flags |= CPUIDLE_FLAG_SHALLOW;
1607 state->enter = acpi_idle_enter_c1;
1608 dev->safe_state = state;
1609 break;
1610
1611 case ACPI_STATE_C2:
1612 state->flags |= CPUIDLE_FLAG_BALANCED;
1613 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1614 state->enter = acpi_idle_enter_simple;
1615 dev->safe_state = state;
1616 break;
1617
1618 case ACPI_STATE_C3:
1619 state->flags |= CPUIDLE_FLAG_DEEP;
1620 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1621 state->flags |= CPUIDLE_FLAG_CHECK_BM;
1622 state->enter = pr->flags.bm_check ?
1623 acpi_idle_enter_bm :
1624 acpi_idle_enter_simple;
1625 break;
1626 }
1627
1628 count++;
1629 }
1630
1631 dev->state_count = count;
1632
1633 if (!count)
1634 return -EINVAL;
1635
1636 return 0;
1637 }
1638
1639 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1640 {
1641 int ret;
1642
1643 if (!pr)
1644 return -EINVAL;
1645
1646 if (nocst) {
1647 return -ENODEV;
1648 }
1649
1650 if (!pr->flags.power_setup_done)
1651 return -ENODEV;
1652
1653 cpuidle_pause_and_lock();
1654 cpuidle_disable_device(&pr->power.dev);
1655 acpi_processor_get_power_info(pr);
1656 acpi_processor_setup_cpuidle(pr);
1657 ret = cpuidle_enable_device(&pr->power.dev);
1658 cpuidle_resume_and_unlock();
1659
1660 return ret;
1661 }
1662
1663 #endif /* CONFIG_CPU_IDLE */
1664
1665 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1666 struct acpi_device *device)
1667 {
1668 acpi_status status = 0;
1669 static int first_run;
1670 struct proc_dir_entry *entry = NULL;
1671 unsigned int i;
1672
1673
1674 if (!first_run) {
1675 dmi_check_system(processor_power_dmi_table);
1676 max_cstate = acpi_processor_cstate_check(max_cstate);
1677 if (max_cstate < ACPI_C_STATES_MAX)
1678 printk(KERN_NOTICE
1679 "ACPI: processor limited to max C-state %d\n",
1680 max_cstate);
1681 first_run++;
1682 #if !defined (CONFIG_CPU_IDLE) && defined (CONFIG_SMP)
1683 register_latency_notifier(&acpi_processor_latency_notifier);
1684 #endif
1685 }
1686
1687 if (!pr)
1688 return -EINVAL;
1689
1690 if (acpi_gbl_FADT.cst_control && !nocst) {
1691 status =
1692 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1693 if (ACPI_FAILURE(status)) {
1694 ACPI_EXCEPTION((AE_INFO, status,
1695 "Notifying BIOS of _CST ability failed"));
1696 }
1697 }
1698
1699 acpi_processor_get_power_info(pr);
1700 pr->flags.power_setup_done = 1;
1701
1702 /*
1703 * Install the idle handler if processor power management is supported.
1704 * Note that we use previously set idle handler will be used on
1705 * platforms that only support C1.
1706 */
1707 if ((pr->flags.power) && (!boot_option_idle_override)) {
1708 #ifdef CONFIG_CPU_IDLE
1709 acpi_processor_setup_cpuidle(pr);
1710 pr->power.dev.cpu = pr->id;
1711 if (cpuidle_register_device(&pr->power.dev))
1712 return -EIO;
1713 #endif
1714
1715 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1716 for (i = 1; i <= pr->power.count; i++)
1717 if (pr->power.states[i].valid)
1718 printk(" C%d[C%d]", i,
1719 pr->power.states[i].type);
1720 printk(")\n");
1721
1722 #ifndef CONFIG_CPU_IDLE
1723 if (pr->id == 0) {
1724 pm_idle_save = pm_idle;
1725 pm_idle = acpi_processor_idle;
1726 }
1727 #endif
1728 }
1729
1730 /* 'power' [R] */
1731 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1732 S_IRUGO, acpi_device_dir(device));
1733 if (!entry)
1734 return -EIO;
1735 else {
1736 entry->proc_fops = &acpi_processor_power_fops;
1737 entry->data = acpi_driver_data(device);
1738 entry->owner = THIS_MODULE;
1739 }
1740
1741 return 0;
1742 }
1743
1744 int acpi_processor_power_exit(struct acpi_processor *pr,
1745 struct acpi_device *device)
1746 {
1747 #ifdef CONFIG_CPU_IDLE
1748 if ((pr->flags.power) && (!boot_option_idle_override))
1749 cpuidle_unregister_device(&pr->power.dev);
1750 #endif
1751 pr->flags.power_setup_done = 0;
1752
1753 if (acpi_device_dir(device))
1754 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1755 acpi_device_dir(device));
1756
1757 #ifndef CONFIG_CPU_IDLE
1758
1759 /* Unregister the idle handler when processor #0 is removed. */
1760 if (pr->id == 0) {
1761 pm_idle = pm_idle_save;
1762
1763 /*
1764 * We are about to unload the current idle thread pm callback
1765 * (pm_idle), Wait for all processors to update cached/local
1766 * copies of pm_idle before proceeding.
1767 */
1768 cpu_idle_wait();
1769 #ifdef CONFIG_SMP
1770 unregister_latency_notifier(&acpi_processor_latency_notifier);
1771 #endif
1772 }
1773 #endif
1774
1775 return 0;
1776 }