acpi: fix section mismatch warning in pnpacpi
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / acpi / processor_idle.c
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27 *
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44
45 /*
46 * Include the apic definitions for x86 to have the APIC timer related defines
47 * available also for UP (on SMP it gets magically included via linux/smp.h).
48 * asm/acpi.h is not an option, as it would require more include magic. Also
49 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
50 */
51 #ifdef CONFIG_X86
52 #include <asm/apic.h>
53 #endif
54
55 #include <asm/io.h>
56 #include <asm/uaccess.h>
57
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
60
61 #define ACPI_PROCESSOR_COMPONENT 0x01000000
62 #define ACPI_PROCESSOR_CLASS "processor"
63 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
64 ACPI_MODULE_NAME("processor_idle");
65 #define ACPI_PROCESSOR_FILE_POWER "power"
66 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
67 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
68 #ifndef CONFIG_CPU_IDLE
69 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
70 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
71 static void (*pm_idle_save) (void) __read_mostly;
72 #else
73 #define C2_OVERHEAD 1 /* 1us */
74 #define C3_OVERHEAD 1 /* 1us */
75 #endif
76 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
77
78 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
79 #ifdef CONFIG_CPU_IDLE
80 module_param(max_cstate, uint, 0000);
81 #else
82 module_param(max_cstate, uint, 0644);
83 #endif
84 static unsigned int nocst __read_mostly;
85 module_param(nocst, uint, 0000);
86
87 #ifndef CONFIG_CPU_IDLE
88 /*
89 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
90 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
91 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
92 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
93 * reduce history for more aggressive entry into C3
94 */
95 static unsigned int bm_history __read_mostly =
96 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
97 module_param(bm_history, uint, 0644);
98
99 static int acpi_processor_set_power_policy(struct acpi_processor *pr);
100
101 #else /* CONFIG_CPU_IDLE */
102 static unsigned int latency_factor __read_mostly = 2;
103 module_param(latency_factor, uint, 0644);
104 #endif
105
106 /*
107 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
108 * For now disable this. Probably a bug somewhere else.
109 *
110 * To skip this limit, boot/load with a large max_cstate limit.
111 */
112 static int set_max_cstate(const struct dmi_system_id *id)
113 {
114 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
115 return 0;
116
117 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
118 " Override with \"processor.max_cstate=%d\"\n", id->ident,
119 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
120
121 max_cstate = (long)id->driver_data;
122
123 return 0;
124 }
125
126 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
127 callers to only run once -AK */
128 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
129 { set_max_cstate, "IBM ThinkPad R40e", {
130 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
131 DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
132 { set_max_cstate, "IBM ThinkPad R40e", {
133 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
134 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
135 { set_max_cstate, "IBM ThinkPad R40e", {
136 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
137 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
138 { set_max_cstate, "IBM ThinkPad R40e", {
139 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
140 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
141 { set_max_cstate, "IBM ThinkPad R40e", {
142 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
143 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
144 { set_max_cstate, "IBM ThinkPad R40e", {
145 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
146 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
147 { set_max_cstate, "IBM ThinkPad R40e", {
148 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
149 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
150 { set_max_cstate, "IBM ThinkPad R40e", {
151 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
152 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
153 { set_max_cstate, "IBM ThinkPad R40e", {
154 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
155 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
156 { set_max_cstate, "IBM ThinkPad R40e", {
157 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
158 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
159 { set_max_cstate, "IBM ThinkPad R40e", {
160 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
161 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
162 { set_max_cstate, "IBM ThinkPad R40e", {
163 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
164 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
165 { set_max_cstate, "IBM ThinkPad R40e", {
166 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
167 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
168 { set_max_cstate, "IBM ThinkPad R40e", {
169 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
170 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
171 { set_max_cstate, "IBM ThinkPad R40e", {
172 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
173 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
174 { set_max_cstate, "IBM ThinkPad R40e", {
175 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
176 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
177 { set_max_cstate, "Medion 41700", {
178 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
179 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
180 { set_max_cstate, "Clevo 5600D", {
181 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
182 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
183 (void *)2},
184 {},
185 };
186
187 static inline u32 ticks_elapsed(u32 t1, u32 t2)
188 {
189 if (t2 >= t1)
190 return (t2 - t1);
191 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
192 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
193 else
194 return ((0xFFFFFFFF - t1) + t2);
195 }
196
197 static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
198 {
199 if (t2 >= t1)
200 return PM_TIMER_TICKS_TO_US(t2 - t1);
201 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
202 return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
203 else
204 return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
205 }
206
207 /*
208 * Callers should disable interrupts before the call and enable
209 * interrupts after return.
210 */
211 static void acpi_safe_halt(void)
212 {
213 current_thread_info()->status &= ~TS_POLLING;
214 /*
215 * TS_POLLING-cleared state must be visible before we
216 * test NEED_RESCHED:
217 */
218 smp_mb();
219 if (!need_resched()) {
220 safe_halt();
221 local_irq_disable();
222 }
223 current_thread_info()->status |= TS_POLLING;
224 }
225
226 #ifndef CONFIG_CPU_IDLE
227
228 static void
229 acpi_processor_power_activate(struct acpi_processor *pr,
230 struct acpi_processor_cx *new)
231 {
232 struct acpi_processor_cx *old;
233
234 if (!pr || !new)
235 return;
236
237 old = pr->power.state;
238
239 if (old)
240 old->promotion.count = 0;
241 new->demotion.count = 0;
242
243 /* Cleanup from old state. */
244 if (old) {
245 switch (old->type) {
246 case ACPI_STATE_C3:
247 /* Disable bus master reload */
248 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
249 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
250 break;
251 }
252 }
253
254 /* Prepare to use new state. */
255 switch (new->type) {
256 case ACPI_STATE_C3:
257 /* Enable bus master reload */
258 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
259 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
260 break;
261 }
262
263 pr->power.state = new;
264
265 return;
266 }
267
268 static atomic_t c3_cpu_count;
269
270 /* Common C-state entry for C2, C3, .. */
271 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
272 {
273 if (cstate->entry_method == ACPI_CSTATE_FFH) {
274 /* Call into architectural FFH based C-state */
275 acpi_processor_ffh_cstate_enter(cstate);
276 } else {
277 int unused;
278 /* IO port based C-state */
279 inb(cstate->address);
280 /* Dummy wait op - must do something useless after P_LVL2 read
281 because chipsets cannot guarantee that STPCLK# signal
282 gets asserted in time to freeze execution properly. */
283 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
284 }
285 }
286 #endif /* !CONFIG_CPU_IDLE */
287
288 #ifdef ARCH_APICTIMER_STOPS_ON_C3
289
290 /*
291 * Some BIOS implementations switch to C3 in the published C2 state.
292 * This seems to be a common problem on AMD boxen, but other vendors
293 * are affected too. We pick the most conservative approach: we assume
294 * that the local APIC stops in both C2 and C3.
295 */
296 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
297 struct acpi_processor_cx *cx)
298 {
299 struct acpi_processor_power *pwr = &pr->power;
300 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
301
302 /*
303 * Check, if one of the previous states already marked the lapic
304 * unstable
305 */
306 if (pwr->timer_broadcast_on_state < state)
307 return;
308
309 if (cx->type >= type)
310 pr->power.timer_broadcast_on_state = state;
311 }
312
313 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
314 {
315 unsigned long reason;
316
317 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
318 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
319
320 clockevents_notify(reason, &pr->id);
321 }
322
323 /* Power(C) State timer broadcast control */
324 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
325 struct acpi_processor_cx *cx,
326 int broadcast)
327 {
328 int state = cx - pr->power.states;
329
330 if (state >= pr->power.timer_broadcast_on_state) {
331 unsigned long reason;
332
333 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
334 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
335 clockevents_notify(reason, &pr->id);
336 }
337 }
338
339 #else
340
341 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
342 struct acpi_processor_cx *cstate) { }
343 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
344 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
345 struct acpi_processor_cx *cx,
346 int broadcast)
347 {
348 }
349
350 #endif
351
352 /*
353 * Suspend / resume control
354 */
355 static int acpi_idle_suspend;
356
357 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
358 {
359 acpi_idle_suspend = 1;
360 return 0;
361 }
362
363 int acpi_processor_resume(struct acpi_device * device)
364 {
365 acpi_idle_suspend = 0;
366 return 0;
367 }
368
369 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
370 static int tsc_halts_in_c(int state)
371 {
372 switch (boot_cpu_data.x86_vendor) {
373 case X86_VENDOR_AMD:
374 /*
375 * AMD Fam10h TSC will tick in all
376 * C/P/S0/S1 states when this bit is set.
377 */
378 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
379 return 0;
380 /*FALL THROUGH*/
381 case X86_VENDOR_INTEL:
382 /* Several cases known where TSC halts in C2 too */
383 default:
384 return state > ACPI_STATE_C1;
385 }
386 }
387 #endif
388
389 #ifndef CONFIG_CPU_IDLE
390 static void acpi_processor_idle(void)
391 {
392 struct acpi_processor *pr = NULL;
393 struct acpi_processor_cx *cx = NULL;
394 struct acpi_processor_cx *next_state = NULL;
395 int sleep_ticks = 0;
396 u32 t1, t2 = 0;
397
398 /*
399 * Interrupts must be disabled during bus mastering calculations and
400 * for C2/C3 transitions.
401 */
402 local_irq_disable();
403
404 pr = processors[smp_processor_id()];
405 if (!pr) {
406 local_irq_enable();
407 return;
408 }
409
410 /*
411 * Check whether we truly need to go idle, or should
412 * reschedule:
413 */
414 if (unlikely(need_resched())) {
415 local_irq_enable();
416 return;
417 }
418
419 cx = pr->power.state;
420 if (!cx || acpi_idle_suspend) {
421 if (pm_idle_save) {
422 pm_idle_save(); /* enables IRQs */
423 } else {
424 acpi_safe_halt();
425 local_irq_enable();
426 }
427
428 return;
429 }
430
431 /*
432 * Check BM Activity
433 * -----------------
434 * Check for bus mastering activity (if required), record, and check
435 * for demotion.
436 */
437 if (pr->flags.bm_check) {
438 u32 bm_status = 0;
439 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
440
441 if (diff > 31)
442 diff = 31;
443
444 pr->power.bm_activity <<= diff;
445
446 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
447 if (bm_status) {
448 pr->power.bm_activity |= 0x1;
449 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
450 }
451 /*
452 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
453 * the true state of bus mastering activity; forcing us to
454 * manually check the BMIDEA bit of each IDE channel.
455 */
456 else if (errata.piix4.bmisx) {
457 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
458 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
459 pr->power.bm_activity |= 0x1;
460 }
461
462 pr->power.bm_check_timestamp = jiffies;
463
464 /*
465 * If bus mastering is or was active this jiffy, demote
466 * to avoid a faulty transition. Note that the processor
467 * won't enter a low-power state during this call (to this
468 * function) but should upon the next.
469 *
470 * TBD: A better policy might be to fallback to the demotion
471 * state (use it for this quantum only) istead of
472 * demoting -- and rely on duration as our sole demotion
473 * qualification. This may, however, introduce DMA
474 * issues (e.g. floppy DMA transfer overrun/underrun).
475 */
476 if ((pr->power.bm_activity & 0x1) &&
477 cx->demotion.threshold.bm) {
478 local_irq_enable();
479 next_state = cx->demotion.state;
480 goto end;
481 }
482 }
483
484 #ifdef CONFIG_HOTPLUG_CPU
485 /*
486 * Check for P_LVL2_UP flag before entering C2 and above on
487 * an SMP system. We do it here instead of doing it at _CST/P_LVL
488 * detection phase, to work cleanly with logical CPU hotplug.
489 */
490 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
491 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
492 cx = &pr->power.states[ACPI_STATE_C1];
493 #endif
494
495 /*
496 * Sleep:
497 * ------
498 * Invoke the current Cx state to put the processor to sleep.
499 */
500 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
501 current_thread_info()->status &= ~TS_POLLING;
502 /*
503 * TS_POLLING-cleared state must be visible before we
504 * test NEED_RESCHED:
505 */
506 smp_mb();
507 if (need_resched()) {
508 current_thread_info()->status |= TS_POLLING;
509 local_irq_enable();
510 return;
511 }
512 }
513
514 switch (cx->type) {
515
516 case ACPI_STATE_C1:
517 /*
518 * Invoke C1.
519 * Use the appropriate idle routine, the one that would
520 * be used without acpi C-states.
521 */
522 if (pm_idle_save) {
523 pm_idle_save(); /* enables IRQs */
524 } else {
525 acpi_safe_halt();
526 local_irq_enable();
527 }
528
529 /*
530 * TBD: Can't get time duration while in C1, as resumes
531 * go to an ISR rather than here. Need to instrument
532 * base interrupt handler.
533 *
534 * Note: the TSC better not stop in C1, sched_clock() will
535 * skew otherwise.
536 */
537 sleep_ticks = 0xFFFFFFFF;
538
539 break;
540
541 case ACPI_STATE_C2:
542 /* Get start time (ticks) */
543 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
544 /* Tell the scheduler that we are going deep-idle: */
545 sched_clock_idle_sleep_event();
546 /* Invoke C2 */
547 acpi_state_timer_broadcast(pr, cx, 1);
548 acpi_cstate_enter(cx);
549 /* Get end time (ticks) */
550 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
551
552 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
553 /* TSC halts in C2, so notify users */
554 if (tsc_halts_in_c(ACPI_STATE_C2))
555 mark_tsc_unstable("possible TSC halt in C2");
556 #endif
557 /* Compute time (ticks) that we were actually asleep */
558 sleep_ticks = ticks_elapsed(t1, t2);
559
560 /* Tell the scheduler how much we idled: */
561 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
562
563 /* Re-enable interrupts */
564 local_irq_enable();
565 /* Do not account our idle-switching overhead: */
566 sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
567
568 current_thread_info()->status |= TS_POLLING;
569 acpi_state_timer_broadcast(pr, cx, 0);
570 break;
571
572 case ACPI_STATE_C3:
573 acpi_unlazy_tlb(smp_processor_id());
574 /*
575 * Must be done before busmaster disable as we might
576 * need to access HPET !
577 */
578 acpi_state_timer_broadcast(pr, cx, 1);
579 /*
580 * disable bus master
581 * bm_check implies we need ARB_DIS
582 * !bm_check implies we need cache flush
583 * bm_control implies whether we can do ARB_DIS
584 *
585 * That leaves a case where bm_check is set and bm_control is
586 * not set. In that case we cannot do much, we enter C3
587 * without doing anything.
588 */
589 if (pr->flags.bm_check && pr->flags.bm_control) {
590 if (atomic_inc_return(&c3_cpu_count) ==
591 num_online_cpus()) {
592 /*
593 * All CPUs are trying to go to C3
594 * Disable bus master arbitration
595 */
596 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
597 }
598 } else if (!pr->flags.bm_check) {
599 /* SMP with no shared cache... Invalidate cache */
600 ACPI_FLUSH_CPU_CACHE();
601 }
602
603 /* Get start time (ticks) */
604 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
605 /* Invoke C3 */
606 /* Tell the scheduler that we are going deep-idle: */
607 sched_clock_idle_sleep_event();
608 acpi_cstate_enter(cx);
609 /* Get end time (ticks) */
610 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
611 if (pr->flags.bm_check && pr->flags.bm_control) {
612 /* Enable bus master arbitration */
613 atomic_dec(&c3_cpu_count);
614 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
615 }
616
617 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
618 /* TSC halts in C3, so notify users */
619 if (tsc_halts_in_c(ACPI_STATE_C3))
620 mark_tsc_unstable("TSC halts in C3");
621 #endif
622 /* Compute time (ticks) that we were actually asleep */
623 sleep_ticks = ticks_elapsed(t1, t2);
624 /* Tell the scheduler how much we idled: */
625 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
626
627 /* Re-enable interrupts */
628 local_irq_enable();
629 /* Do not account our idle-switching overhead: */
630 sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
631
632 current_thread_info()->status |= TS_POLLING;
633 acpi_state_timer_broadcast(pr, cx, 0);
634 break;
635
636 default:
637 local_irq_enable();
638 return;
639 }
640 cx->usage++;
641 if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
642 cx->time += sleep_ticks;
643
644 next_state = pr->power.state;
645
646 #ifdef CONFIG_HOTPLUG_CPU
647 /* Don't do promotion/demotion */
648 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
649 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
650 next_state = cx;
651 goto end;
652 }
653 #endif
654
655 /*
656 * Promotion?
657 * ----------
658 * Track the number of longs (time asleep is greater than threshold)
659 * and promote when the count threshold is reached. Note that bus
660 * mastering activity may prevent promotions.
661 * Do not promote above max_cstate.
662 */
663 if (cx->promotion.state &&
664 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
665 if (sleep_ticks > cx->promotion.threshold.ticks &&
666 cx->promotion.state->latency <=
667 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
668 cx->promotion.count++;
669 cx->demotion.count = 0;
670 if (cx->promotion.count >=
671 cx->promotion.threshold.count) {
672 if (pr->flags.bm_check) {
673 if (!
674 (pr->power.bm_activity & cx->
675 promotion.threshold.bm)) {
676 next_state =
677 cx->promotion.state;
678 goto end;
679 }
680 } else {
681 next_state = cx->promotion.state;
682 goto end;
683 }
684 }
685 }
686 }
687
688 /*
689 * Demotion?
690 * ---------
691 * Track the number of shorts (time asleep is less than time threshold)
692 * and demote when the usage threshold is reached.
693 */
694 if (cx->demotion.state) {
695 if (sleep_ticks < cx->demotion.threshold.ticks) {
696 cx->demotion.count++;
697 cx->promotion.count = 0;
698 if (cx->demotion.count >= cx->demotion.threshold.count) {
699 next_state = cx->demotion.state;
700 goto end;
701 }
702 }
703 }
704
705 end:
706 /*
707 * Demote if current state exceeds max_cstate
708 * or if the latency of the current state is unacceptable
709 */
710 if ((pr->power.state - pr->power.states) > max_cstate ||
711 pr->power.state->latency >
712 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
713 if (cx->demotion.state)
714 next_state = cx->demotion.state;
715 }
716
717 /*
718 * New Cx State?
719 * -------------
720 * If we're going to start using a new Cx state we must clean up
721 * from the previous and prepare to use the new.
722 */
723 if (next_state != pr->power.state)
724 acpi_processor_power_activate(pr, next_state);
725 }
726
727 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
728 {
729 unsigned int i;
730 unsigned int state_is_set = 0;
731 struct acpi_processor_cx *lower = NULL;
732 struct acpi_processor_cx *higher = NULL;
733 struct acpi_processor_cx *cx;
734
735
736 if (!pr)
737 return -EINVAL;
738
739 /*
740 * This function sets the default Cx state policy (OS idle handler).
741 * Our scheme is to promote quickly to C2 but more conservatively
742 * to C3. We're favoring C2 for its characteristics of low latency
743 * (quick response), good power savings, and ability to allow bus
744 * mastering activity. Note that the Cx state policy is completely
745 * customizable and can be altered dynamically.
746 */
747
748 /* startup state */
749 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
750 cx = &pr->power.states[i];
751 if (!cx->valid)
752 continue;
753
754 if (!state_is_set)
755 pr->power.state = cx;
756 state_is_set++;
757 break;
758 }
759
760 if (!state_is_set)
761 return -ENODEV;
762
763 /* demotion */
764 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
765 cx = &pr->power.states[i];
766 if (!cx->valid)
767 continue;
768
769 if (lower) {
770 cx->demotion.state = lower;
771 cx->demotion.threshold.ticks = cx->latency_ticks;
772 cx->demotion.threshold.count = 1;
773 if (cx->type == ACPI_STATE_C3)
774 cx->demotion.threshold.bm = bm_history;
775 }
776
777 lower = cx;
778 }
779
780 /* promotion */
781 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
782 cx = &pr->power.states[i];
783 if (!cx->valid)
784 continue;
785
786 if (higher) {
787 cx->promotion.state = higher;
788 cx->promotion.threshold.ticks = cx->latency_ticks;
789 if (cx->type >= ACPI_STATE_C2)
790 cx->promotion.threshold.count = 4;
791 else
792 cx->promotion.threshold.count = 10;
793 if (higher->type == ACPI_STATE_C3)
794 cx->promotion.threshold.bm = bm_history;
795 }
796
797 higher = cx;
798 }
799
800 return 0;
801 }
802 #endif /* !CONFIG_CPU_IDLE */
803
804 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
805 {
806
807 if (!pr)
808 return -EINVAL;
809
810 if (!pr->pblk)
811 return -ENODEV;
812
813 /* if info is obtained from pblk/fadt, type equals state */
814 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
815 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
816
817 #ifndef CONFIG_HOTPLUG_CPU
818 /*
819 * Check for P_LVL2_UP flag before entering C2 and above on
820 * an SMP system.
821 */
822 if ((num_online_cpus() > 1) &&
823 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
824 return -ENODEV;
825 #endif
826
827 /* determine C2 and C3 address from pblk */
828 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
829 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
830
831 /* determine latencies from FADT */
832 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
833 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
834
835 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
836 "lvl2[0x%08x] lvl3[0x%08x]\n",
837 pr->power.states[ACPI_STATE_C2].address,
838 pr->power.states[ACPI_STATE_C3].address));
839
840 return 0;
841 }
842
843 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
844 {
845 if (!pr->power.states[ACPI_STATE_C1].valid) {
846 /* set the first C-State to C1 */
847 /* all processors need to support C1 */
848 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
849 pr->power.states[ACPI_STATE_C1].valid = 1;
850 }
851 /* the C0 state only exists as a filler in our array */
852 pr->power.states[ACPI_STATE_C0].valid = 1;
853 return 0;
854 }
855
856 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
857 {
858 acpi_status status = 0;
859 acpi_integer count;
860 int current_count;
861 int i;
862 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
863 union acpi_object *cst;
864
865
866 if (nocst)
867 return -ENODEV;
868
869 current_count = 0;
870
871 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
872 if (ACPI_FAILURE(status)) {
873 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
874 return -ENODEV;
875 }
876
877 cst = buffer.pointer;
878
879 /* There must be at least 2 elements */
880 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
881 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
882 status = -EFAULT;
883 goto end;
884 }
885
886 count = cst->package.elements[0].integer.value;
887
888 /* Validate number of power states. */
889 if (count < 1 || count != cst->package.count - 1) {
890 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
891 status = -EFAULT;
892 goto end;
893 }
894
895 /* Tell driver that at least _CST is supported. */
896 pr->flags.has_cst = 1;
897
898 for (i = 1; i <= count; i++) {
899 union acpi_object *element;
900 union acpi_object *obj;
901 struct acpi_power_register *reg;
902 struct acpi_processor_cx cx;
903
904 memset(&cx, 0, sizeof(cx));
905
906 element = &(cst->package.elements[i]);
907 if (element->type != ACPI_TYPE_PACKAGE)
908 continue;
909
910 if (element->package.count != 4)
911 continue;
912
913 obj = &(element->package.elements[0]);
914
915 if (obj->type != ACPI_TYPE_BUFFER)
916 continue;
917
918 reg = (struct acpi_power_register *)obj->buffer.pointer;
919
920 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
921 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
922 continue;
923
924 /* There should be an easy way to extract an integer... */
925 obj = &(element->package.elements[1]);
926 if (obj->type != ACPI_TYPE_INTEGER)
927 continue;
928
929 cx.type = obj->integer.value;
930 /*
931 * Some buggy BIOSes won't list C1 in _CST -
932 * Let acpi_processor_get_power_info_default() handle them later
933 */
934 if (i == 1 && cx.type != ACPI_STATE_C1)
935 current_count++;
936
937 cx.address = reg->address;
938 cx.index = current_count + 1;
939
940 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
941 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
942 if (acpi_processor_ffh_cstate_probe
943 (pr->id, &cx, reg) == 0) {
944 cx.entry_method = ACPI_CSTATE_FFH;
945 } else if (cx.type == ACPI_STATE_C1) {
946 /*
947 * C1 is a special case where FIXED_HARDWARE
948 * can be handled in non-MWAIT way as well.
949 * In that case, save this _CST entry info.
950 * Otherwise, ignore this info and continue.
951 */
952 cx.entry_method = ACPI_CSTATE_HALT;
953 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
954 } else {
955 continue;
956 }
957 } else {
958 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
959 cx.address);
960 }
961
962
963 obj = &(element->package.elements[2]);
964 if (obj->type != ACPI_TYPE_INTEGER)
965 continue;
966
967 cx.latency = obj->integer.value;
968
969 obj = &(element->package.elements[3]);
970 if (obj->type != ACPI_TYPE_INTEGER)
971 continue;
972
973 cx.power = obj->integer.value;
974
975 current_count++;
976 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
977
978 /*
979 * We support total ACPI_PROCESSOR_MAX_POWER - 1
980 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
981 */
982 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
983 printk(KERN_WARNING
984 "Limiting number of power states to max (%d)\n",
985 ACPI_PROCESSOR_MAX_POWER);
986 printk(KERN_WARNING
987 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
988 break;
989 }
990 }
991
992 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
993 current_count));
994
995 /* Validate number of power states discovered */
996 if (current_count < 2)
997 status = -EFAULT;
998
999 end:
1000 kfree(buffer.pointer);
1001
1002 return status;
1003 }
1004
1005 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
1006 {
1007
1008 if (!cx->address)
1009 return;
1010
1011 /*
1012 * C2 latency must be less than or equal to 100
1013 * microseconds.
1014 */
1015 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
1016 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1017 "latency too large [%d]\n", cx->latency));
1018 return;
1019 }
1020
1021 /*
1022 * Otherwise we've met all of our C2 requirements.
1023 * Normalize the C2 latency to expidite policy
1024 */
1025 cx->valid = 1;
1026
1027 #ifndef CONFIG_CPU_IDLE
1028 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1029 #else
1030 cx->latency_ticks = cx->latency;
1031 #endif
1032
1033 return;
1034 }
1035
1036 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
1037 struct acpi_processor_cx *cx)
1038 {
1039 static int bm_check_flag;
1040
1041
1042 if (!cx->address)
1043 return;
1044
1045 /*
1046 * C3 latency must be less than or equal to 1000
1047 * microseconds.
1048 */
1049 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
1050 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1051 "latency too large [%d]\n", cx->latency));
1052 return;
1053 }
1054
1055 /*
1056 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1057 * DMA transfers are used by any ISA device to avoid livelock.
1058 * Note that we could disable Type-F DMA (as recommended by
1059 * the erratum), but this is known to disrupt certain ISA
1060 * devices thus we take the conservative approach.
1061 */
1062 else if (errata.piix4.fdma) {
1063 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1064 "C3 not supported on PIIX4 with Type-F DMA\n"));
1065 return;
1066 }
1067
1068 /* All the logic here assumes flags.bm_check is same across all CPUs */
1069 if (!bm_check_flag) {
1070 /* Determine whether bm_check is needed based on CPU */
1071 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
1072 bm_check_flag = pr->flags.bm_check;
1073 } else {
1074 pr->flags.bm_check = bm_check_flag;
1075 }
1076
1077 if (pr->flags.bm_check) {
1078 if (!pr->flags.bm_control) {
1079 if (pr->flags.has_cst != 1) {
1080 /* bus mastering control is necessary */
1081 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1082 "C3 support requires BM control\n"));
1083 return;
1084 } else {
1085 /* Here we enter C3 without bus mastering */
1086 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1087 "C3 support without BM control\n"));
1088 }
1089 }
1090 } else {
1091 /*
1092 * WBINVD should be set in fadt, for C3 state to be
1093 * supported on when bm_check is not required.
1094 */
1095 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1096 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1097 "Cache invalidation should work properly"
1098 " for C3 to be enabled on SMP systems\n"));
1099 return;
1100 }
1101 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1102 }
1103
1104 /*
1105 * Otherwise we've met all of our C3 requirements.
1106 * Normalize the C3 latency to expidite policy. Enable
1107 * checking of bus mastering status (bm_check) so we can
1108 * use this in our C3 policy
1109 */
1110 cx->valid = 1;
1111
1112 #ifndef CONFIG_CPU_IDLE
1113 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1114 #else
1115 cx->latency_ticks = cx->latency;
1116 #endif
1117
1118 return;
1119 }
1120
1121 static int acpi_processor_power_verify(struct acpi_processor *pr)
1122 {
1123 unsigned int i;
1124 unsigned int working = 0;
1125
1126 pr->power.timer_broadcast_on_state = INT_MAX;
1127
1128 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1129 struct acpi_processor_cx *cx = &pr->power.states[i];
1130
1131 switch (cx->type) {
1132 case ACPI_STATE_C1:
1133 cx->valid = 1;
1134 break;
1135
1136 case ACPI_STATE_C2:
1137 acpi_processor_power_verify_c2(cx);
1138 if (cx->valid)
1139 acpi_timer_check_state(i, pr, cx);
1140 break;
1141
1142 case ACPI_STATE_C3:
1143 acpi_processor_power_verify_c3(pr, cx);
1144 if (cx->valid)
1145 acpi_timer_check_state(i, pr, cx);
1146 break;
1147 }
1148
1149 if (cx->valid)
1150 working++;
1151 }
1152
1153 acpi_propagate_timer_broadcast(pr);
1154
1155 return (working);
1156 }
1157
1158 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1159 {
1160 unsigned int i;
1161 int result;
1162
1163
1164 /* NOTE: the idle thread may not be running while calling
1165 * this function */
1166
1167 /* Zero initialize all the C-states info. */
1168 memset(pr->power.states, 0, sizeof(pr->power.states));
1169
1170 result = acpi_processor_get_power_info_cst(pr);
1171 if (result == -ENODEV)
1172 result = acpi_processor_get_power_info_fadt(pr);
1173
1174 if (result)
1175 return result;
1176
1177 acpi_processor_get_power_info_default(pr);
1178
1179 pr->power.count = acpi_processor_power_verify(pr);
1180
1181 #ifndef CONFIG_CPU_IDLE
1182 /*
1183 * Set Default Policy
1184 * ------------------
1185 * Now that we know which states are supported, set the default
1186 * policy. Note that this policy can be changed dynamically
1187 * (e.g. encourage deeper sleeps to conserve battery life when
1188 * not on AC).
1189 */
1190 result = acpi_processor_set_power_policy(pr);
1191 if (result)
1192 return result;
1193 #endif
1194
1195 /*
1196 * if one state of type C2 or C3 is available, mark this
1197 * CPU as being "idle manageable"
1198 */
1199 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1200 if (pr->power.states[i].valid) {
1201 pr->power.count = i;
1202 if (pr->power.states[i].type >= ACPI_STATE_C2)
1203 pr->flags.power = 1;
1204 }
1205 }
1206
1207 return 0;
1208 }
1209
1210 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1211 {
1212 struct acpi_processor *pr = seq->private;
1213 unsigned int i;
1214
1215
1216 if (!pr)
1217 goto end;
1218
1219 seq_printf(seq, "active state: C%zd\n"
1220 "max_cstate: C%d\n"
1221 "bus master activity: %08x\n"
1222 "maximum allowed latency: %d usec\n",
1223 pr->power.state ? pr->power.state - pr->power.states : 0,
1224 max_cstate, (unsigned)pr->power.bm_activity,
1225 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
1226
1227 seq_puts(seq, "states:\n");
1228
1229 for (i = 1; i <= pr->power.count; i++) {
1230 seq_printf(seq, " %cC%d: ",
1231 (&pr->power.states[i] ==
1232 pr->power.state ? '*' : ' '), i);
1233
1234 if (!pr->power.states[i].valid) {
1235 seq_puts(seq, "<not supported>\n");
1236 continue;
1237 }
1238
1239 switch (pr->power.states[i].type) {
1240 case ACPI_STATE_C1:
1241 seq_printf(seq, "type[C1] ");
1242 break;
1243 case ACPI_STATE_C2:
1244 seq_printf(seq, "type[C2] ");
1245 break;
1246 case ACPI_STATE_C3:
1247 seq_printf(seq, "type[C3] ");
1248 break;
1249 default:
1250 seq_printf(seq, "type[--] ");
1251 break;
1252 }
1253
1254 if (pr->power.states[i].promotion.state)
1255 seq_printf(seq, "promotion[C%zd] ",
1256 (pr->power.states[i].promotion.state -
1257 pr->power.states));
1258 else
1259 seq_puts(seq, "promotion[--] ");
1260
1261 if (pr->power.states[i].demotion.state)
1262 seq_printf(seq, "demotion[C%zd] ",
1263 (pr->power.states[i].demotion.state -
1264 pr->power.states));
1265 else
1266 seq_puts(seq, "demotion[--] ");
1267
1268 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1269 pr->power.states[i].latency,
1270 pr->power.states[i].usage,
1271 (unsigned long long)pr->power.states[i].time);
1272 }
1273
1274 end:
1275 return 0;
1276 }
1277
1278 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1279 {
1280 return single_open(file, acpi_processor_power_seq_show,
1281 PDE(inode)->data);
1282 }
1283
1284 static const struct file_operations acpi_processor_power_fops = {
1285 .open = acpi_processor_power_open_fs,
1286 .read = seq_read,
1287 .llseek = seq_lseek,
1288 .release = single_release,
1289 };
1290
1291 #ifndef CONFIG_CPU_IDLE
1292
1293 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1294 {
1295 int result = 0;
1296
1297
1298 if (!pr)
1299 return -EINVAL;
1300
1301 if (nocst) {
1302 return -ENODEV;
1303 }
1304
1305 if (!pr->flags.power_setup_done)
1306 return -ENODEV;
1307
1308 /* Fall back to the default idle loop */
1309 pm_idle = pm_idle_save;
1310 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
1311
1312 pr->flags.power = 0;
1313 result = acpi_processor_get_power_info(pr);
1314 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1315 pm_idle = acpi_processor_idle;
1316
1317 return result;
1318 }
1319
1320 #ifdef CONFIG_SMP
1321 static void smp_callback(void *v)
1322 {
1323 /* we already woke the CPU up, nothing more to do */
1324 }
1325
1326 /*
1327 * This function gets called when a part of the kernel has a new latency
1328 * requirement. This means we need to get all processors out of their C-state,
1329 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1330 * wakes them all right up.
1331 */
1332 static int acpi_processor_latency_notify(struct notifier_block *b,
1333 unsigned long l, void *v)
1334 {
1335 smp_call_function(smp_callback, NULL, 0, 1);
1336 return NOTIFY_OK;
1337 }
1338
1339 static struct notifier_block acpi_processor_latency_notifier = {
1340 .notifier_call = acpi_processor_latency_notify,
1341 };
1342
1343 #endif
1344
1345 #else /* CONFIG_CPU_IDLE */
1346
1347 /**
1348 * acpi_idle_bm_check - checks if bus master activity was detected
1349 */
1350 static int acpi_idle_bm_check(void)
1351 {
1352 u32 bm_status = 0;
1353
1354 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
1355 if (bm_status)
1356 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1357 /*
1358 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1359 * the true state of bus mastering activity; forcing us to
1360 * manually check the BMIDEA bit of each IDE channel.
1361 */
1362 else if (errata.piix4.bmisx) {
1363 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
1364 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
1365 bm_status = 1;
1366 }
1367 return bm_status;
1368 }
1369
1370 /**
1371 * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1372 * @pr: the processor
1373 * @target: the new target state
1374 */
1375 static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
1376 struct acpi_processor_cx *target)
1377 {
1378 if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
1379 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1380 pr->flags.bm_rld_set = 0;
1381 }
1382
1383 if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
1384 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
1385 pr->flags.bm_rld_set = 1;
1386 }
1387 }
1388
1389 /**
1390 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1391 * @cx: cstate data
1392 *
1393 * Caller disables interrupt before call and enables interrupt after return.
1394 */
1395 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
1396 {
1397 if (cx->entry_method == ACPI_CSTATE_FFH) {
1398 /* Call into architectural FFH based C-state */
1399 acpi_processor_ffh_cstate_enter(cx);
1400 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
1401 acpi_safe_halt();
1402 } else {
1403 int unused;
1404 /* IO port based C-state */
1405 inb(cx->address);
1406 /* Dummy wait op - must do something useless after P_LVL2 read
1407 because chipsets cannot guarantee that STPCLK# signal
1408 gets asserted in time to freeze execution properly. */
1409 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
1410 }
1411 }
1412
1413 /**
1414 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1415 * @dev: the target CPU
1416 * @state: the state data
1417 *
1418 * This is equivalent to the HALT instruction.
1419 */
1420 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
1421 struct cpuidle_state *state)
1422 {
1423 u32 t1, t2;
1424 struct acpi_processor *pr;
1425 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1426
1427 pr = processors[smp_processor_id()];
1428
1429 if (unlikely(!pr))
1430 return 0;
1431
1432 local_irq_disable();
1433
1434 /* Do not access any ACPI IO ports in suspend path */
1435 if (acpi_idle_suspend) {
1436 acpi_safe_halt();
1437 local_irq_enable();
1438 return 0;
1439 }
1440
1441 if (pr->flags.bm_check)
1442 acpi_idle_update_bm_rld(pr, cx);
1443
1444 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1445 acpi_idle_do_entry(cx);
1446 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1447
1448 local_irq_enable();
1449 cx->usage++;
1450
1451 return ticks_elapsed_in_us(t1, t2);
1452 }
1453
1454 /**
1455 * acpi_idle_enter_simple - enters an ACPI state without BM handling
1456 * @dev: the target CPU
1457 * @state: the state data
1458 */
1459 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
1460 struct cpuidle_state *state)
1461 {
1462 struct acpi_processor *pr;
1463 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1464 u32 t1, t2;
1465 int sleep_ticks = 0;
1466
1467 pr = processors[smp_processor_id()];
1468
1469 if (unlikely(!pr))
1470 return 0;
1471
1472 if (acpi_idle_suspend)
1473 return(acpi_idle_enter_c1(dev, state));
1474
1475 local_irq_disable();
1476 current_thread_info()->status &= ~TS_POLLING;
1477 /*
1478 * TS_POLLING-cleared state must be visible before we test
1479 * NEED_RESCHED:
1480 */
1481 smp_mb();
1482
1483 if (unlikely(need_resched())) {
1484 current_thread_info()->status |= TS_POLLING;
1485 local_irq_enable();
1486 return 0;
1487 }
1488
1489 /*
1490 * Must be done before busmaster disable as we might need to
1491 * access HPET !
1492 */
1493 acpi_state_timer_broadcast(pr, cx, 1);
1494
1495 if (pr->flags.bm_check)
1496 acpi_idle_update_bm_rld(pr, cx);
1497
1498 if (cx->type == ACPI_STATE_C3)
1499 ACPI_FLUSH_CPU_CACHE();
1500
1501 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1502 /* Tell the scheduler that we are going deep-idle: */
1503 sched_clock_idle_sleep_event();
1504 acpi_idle_do_entry(cx);
1505 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1506
1507 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1508 /* TSC could halt in idle, so notify users */
1509 if (tsc_halts_in_c(cx->type))
1510 mark_tsc_unstable("TSC halts in idle");;
1511 #endif
1512 sleep_ticks = ticks_elapsed(t1, t2);
1513
1514 /* Tell the scheduler how much we idled: */
1515 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1516
1517 local_irq_enable();
1518 current_thread_info()->status |= TS_POLLING;
1519
1520 cx->usage++;
1521
1522 acpi_state_timer_broadcast(pr, cx, 0);
1523 cx->time += sleep_ticks;
1524 return ticks_elapsed_in_us(t1, t2);
1525 }
1526
1527 static int c3_cpu_count;
1528 static DEFINE_SPINLOCK(c3_lock);
1529
1530 /**
1531 * acpi_idle_enter_bm - enters C3 with proper BM handling
1532 * @dev: the target CPU
1533 * @state: the state data
1534 *
1535 * If BM is detected, the deepest non-C3 idle state is entered instead.
1536 */
1537 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
1538 struct cpuidle_state *state)
1539 {
1540 struct acpi_processor *pr;
1541 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1542 u32 t1, t2;
1543 int sleep_ticks = 0;
1544
1545 pr = processors[smp_processor_id()];
1546
1547 if (unlikely(!pr))
1548 return 0;
1549
1550 if (acpi_idle_suspend)
1551 return(acpi_idle_enter_c1(dev, state));
1552
1553 if (acpi_idle_bm_check()) {
1554 if (dev->safe_state) {
1555 return dev->safe_state->enter(dev, dev->safe_state);
1556 } else {
1557 local_irq_disable();
1558 acpi_safe_halt();
1559 local_irq_enable();
1560 return 0;
1561 }
1562 }
1563
1564 local_irq_disable();
1565 current_thread_info()->status &= ~TS_POLLING;
1566 /*
1567 * TS_POLLING-cleared state must be visible before we test
1568 * NEED_RESCHED:
1569 */
1570 smp_mb();
1571
1572 if (unlikely(need_resched())) {
1573 current_thread_info()->status |= TS_POLLING;
1574 local_irq_enable();
1575 return 0;
1576 }
1577
1578 acpi_unlazy_tlb(smp_processor_id());
1579
1580 /* Tell the scheduler that we are going deep-idle: */
1581 sched_clock_idle_sleep_event();
1582 /*
1583 * Must be done before busmaster disable as we might need to
1584 * access HPET !
1585 */
1586 acpi_state_timer_broadcast(pr, cx, 1);
1587
1588 acpi_idle_update_bm_rld(pr, cx);
1589
1590 /*
1591 * disable bus master
1592 * bm_check implies we need ARB_DIS
1593 * !bm_check implies we need cache flush
1594 * bm_control implies whether we can do ARB_DIS
1595 *
1596 * That leaves a case where bm_check is set and bm_control is
1597 * not set. In that case we cannot do much, we enter C3
1598 * without doing anything.
1599 */
1600 if (pr->flags.bm_check && pr->flags.bm_control) {
1601 spin_lock(&c3_lock);
1602 c3_cpu_count++;
1603 /* Disable bus master arbitration when all CPUs are in C3 */
1604 if (c3_cpu_count == num_online_cpus())
1605 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
1606 spin_unlock(&c3_lock);
1607 } else if (!pr->flags.bm_check) {
1608 ACPI_FLUSH_CPU_CACHE();
1609 }
1610
1611 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1612 acpi_idle_do_entry(cx);
1613 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1614
1615 /* Re-enable bus master arbitration */
1616 if (pr->flags.bm_check && pr->flags.bm_control) {
1617 spin_lock(&c3_lock);
1618 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
1619 c3_cpu_count--;
1620 spin_unlock(&c3_lock);
1621 }
1622
1623 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1624 /* TSC could halt in idle, so notify users */
1625 if (tsc_halts_in_c(ACPI_STATE_C3))
1626 mark_tsc_unstable("TSC halts in idle");
1627 #endif
1628 sleep_ticks = ticks_elapsed(t1, t2);
1629 /* Tell the scheduler how much we idled: */
1630 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1631
1632 local_irq_enable();
1633 current_thread_info()->status |= TS_POLLING;
1634
1635 cx->usage++;
1636
1637 acpi_state_timer_broadcast(pr, cx, 0);
1638 cx->time += sleep_ticks;
1639 return ticks_elapsed_in_us(t1, t2);
1640 }
1641
1642 struct cpuidle_driver acpi_idle_driver = {
1643 .name = "acpi_idle",
1644 .owner = THIS_MODULE,
1645 };
1646
1647 /**
1648 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1649 * @pr: the ACPI processor
1650 */
1651 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1652 {
1653 int i, count = CPUIDLE_DRIVER_STATE_START;
1654 struct acpi_processor_cx *cx;
1655 struct cpuidle_state *state;
1656 struct cpuidle_device *dev = &pr->power.dev;
1657
1658 if (!pr->flags.power_setup_done)
1659 return -EINVAL;
1660
1661 if (pr->flags.power == 0) {
1662 return -EINVAL;
1663 }
1664
1665 for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1666 dev->states[i].name[0] = '\0';
1667 dev->states[i].desc[0] = '\0';
1668 }
1669
1670 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1671 cx = &pr->power.states[i];
1672 state = &dev->states[count];
1673
1674 if (!cx->valid)
1675 continue;
1676
1677 #ifdef CONFIG_HOTPLUG_CPU
1678 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1679 !pr->flags.has_cst &&
1680 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1681 continue;
1682 #endif
1683 cpuidle_set_statedata(state, cx);
1684
1685 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1686 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1687 state->exit_latency = cx->latency;
1688 state->target_residency = cx->latency * latency_factor;
1689 state->power_usage = cx->power;
1690
1691 state->flags = 0;
1692 switch (cx->type) {
1693 case ACPI_STATE_C1:
1694 state->flags |= CPUIDLE_FLAG_SHALLOW;
1695 if (cx->entry_method == ACPI_CSTATE_FFH)
1696 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1697
1698 state->enter = acpi_idle_enter_c1;
1699 dev->safe_state = state;
1700 break;
1701
1702 case ACPI_STATE_C2:
1703 state->flags |= CPUIDLE_FLAG_BALANCED;
1704 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1705 state->enter = acpi_idle_enter_simple;
1706 dev->safe_state = state;
1707 break;
1708
1709 case ACPI_STATE_C3:
1710 state->flags |= CPUIDLE_FLAG_DEEP;
1711 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1712 state->flags |= CPUIDLE_FLAG_CHECK_BM;
1713 state->enter = pr->flags.bm_check ?
1714 acpi_idle_enter_bm :
1715 acpi_idle_enter_simple;
1716 break;
1717 }
1718
1719 count++;
1720 if (count == CPUIDLE_STATE_MAX)
1721 break;
1722 }
1723
1724 dev->state_count = count;
1725
1726 if (!count)
1727 return -EINVAL;
1728
1729 return 0;
1730 }
1731
1732 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1733 {
1734 int ret;
1735
1736 if (!pr)
1737 return -EINVAL;
1738
1739 if (nocst) {
1740 return -ENODEV;
1741 }
1742
1743 if (!pr->flags.power_setup_done)
1744 return -ENODEV;
1745
1746 cpuidle_pause_and_lock();
1747 cpuidle_disable_device(&pr->power.dev);
1748 acpi_processor_get_power_info(pr);
1749 acpi_processor_setup_cpuidle(pr);
1750 ret = cpuidle_enable_device(&pr->power.dev);
1751 cpuidle_resume_and_unlock();
1752
1753 return ret;
1754 }
1755
1756 #endif /* CONFIG_CPU_IDLE */
1757
1758 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1759 struct acpi_device *device)
1760 {
1761 acpi_status status = 0;
1762 static int first_run;
1763 struct proc_dir_entry *entry = NULL;
1764 unsigned int i;
1765
1766
1767 if (!first_run) {
1768 dmi_check_system(processor_power_dmi_table);
1769 max_cstate = acpi_processor_cstate_check(max_cstate);
1770 if (max_cstate < ACPI_C_STATES_MAX)
1771 printk(KERN_NOTICE
1772 "ACPI: processor limited to max C-state %d\n",
1773 max_cstate);
1774 first_run++;
1775 #if !defined(CONFIG_CPU_IDLE) && defined(CONFIG_SMP)
1776 pm_qos_add_notifier(PM_QOS_CPU_DMA_LATENCY,
1777 &acpi_processor_latency_notifier);
1778 #endif
1779 }
1780
1781 if (!pr)
1782 return -EINVAL;
1783
1784 if (acpi_gbl_FADT.cst_control && !nocst) {
1785 status =
1786 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1787 if (ACPI_FAILURE(status)) {
1788 ACPI_EXCEPTION((AE_INFO, status,
1789 "Notifying BIOS of _CST ability failed"));
1790 }
1791 }
1792
1793 acpi_processor_get_power_info(pr);
1794 pr->flags.power_setup_done = 1;
1795
1796 /*
1797 * Install the idle handler if processor power management is supported.
1798 * Note that we use previously set idle handler will be used on
1799 * platforms that only support C1.
1800 */
1801 if ((pr->flags.power) && (!boot_option_idle_override)) {
1802 #ifdef CONFIG_CPU_IDLE
1803 acpi_processor_setup_cpuidle(pr);
1804 pr->power.dev.cpu = pr->id;
1805 if (cpuidle_register_device(&pr->power.dev))
1806 return -EIO;
1807 #endif
1808
1809 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1810 for (i = 1; i <= pr->power.count; i++)
1811 if (pr->power.states[i].valid)
1812 printk(" C%d[C%d]", i,
1813 pr->power.states[i].type);
1814 printk(")\n");
1815
1816 #ifndef CONFIG_CPU_IDLE
1817 if (pr->id == 0) {
1818 pm_idle_save = pm_idle;
1819 pm_idle = acpi_processor_idle;
1820 }
1821 #endif
1822 }
1823
1824 /* 'power' [R] */
1825 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1826 S_IRUGO, acpi_device_dir(device));
1827 if (!entry)
1828 return -EIO;
1829 else {
1830 entry->proc_fops = &acpi_processor_power_fops;
1831 entry->data = acpi_driver_data(device);
1832 entry->owner = THIS_MODULE;
1833 }
1834
1835 return 0;
1836 }
1837
1838 int acpi_processor_power_exit(struct acpi_processor *pr,
1839 struct acpi_device *device)
1840 {
1841 #ifdef CONFIG_CPU_IDLE
1842 if ((pr->flags.power) && (!boot_option_idle_override))
1843 cpuidle_unregister_device(&pr->power.dev);
1844 #endif
1845 pr->flags.power_setup_done = 0;
1846
1847 if (acpi_device_dir(device))
1848 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1849 acpi_device_dir(device));
1850
1851 #ifndef CONFIG_CPU_IDLE
1852
1853 /* Unregister the idle handler when processor #0 is removed. */
1854 if (pr->id == 0) {
1855 pm_idle = pm_idle_save;
1856
1857 /*
1858 * We are about to unload the current idle thread pm callback
1859 * (pm_idle), Wait for all processors to update cached/local
1860 * copies of pm_idle before proceeding.
1861 */
1862 cpu_idle_wait();
1863 #ifdef CONFIG_SMP
1864 pm_qos_remove_notifier(PM_QOS_CPU_DMA_LATENCY,
1865 &acpi_processor_latency_notifier);
1866 #endif
1867 }
1868 #endif
1869
1870 return 0;
1871 }