Merge tag '9p-3.10-bug-fix-1' of git://git.kernel.org/pub/scm/linux/kernel/git/ericvh...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / crypto / Kconfig
1 #
2 # Generic algorithms support
3 #
4 config XOR_BLOCKS
5 tristate
6
7 #
8 # async_tx api: hardware offloaded memory transfer/transform support
9 #
10 source "crypto/async_tx/Kconfig"
11
12 #
13 # Cryptographic API Configuration
14 #
15 menuconfig CRYPTO
16 tristate "Cryptographic API"
17 help
18 This option provides the core Cryptographic API.
19
20 if CRYPTO
21
22 comment "Crypto core or helper"
23
24 config CRYPTO_FIPS
25 bool "FIPS 200 compliance"
26 depends on CRYPTO_ANSI_CPRNG && !CRYPTO_MANAGER_DISABLE_TESTS
27 help
28 This options enables the fips boot option which is
29 required if you want to system to operate in a FIPS 200
30 certification. You should say no unless you know what
31 this is.
32
33 config CRYPTO_ALGAPI
34 tristate
35 select CRYPTO_ALGAPI2
36 help
37 This option provides the API for cryptographic algorithms.
38
39 config CRYPTO_ALGAPI2
40 tristate
41
42 config CRYPTO_AEAD
43 tristate
44 select CRYPTO_AEAD2
45 select CRYPTO_ALGAPI
46
47 config CRYPTO_AEAD2
48 tristate
49 select CRYPTO_ALGAPI2
50
51 config CRYPTO_BLKCIPHER
52 tristate
53 select CRYPTO_BLKCIPHER2
54 select CRYPTO_ALGAPI
55
56 config CRYPTO_BLKCIPHER2
57 tristate
58 select CRYPTO_ALGAPI2
59 select CRYPTO_RNG2
60 select CRYPTO_WORKQUEUE
61
62 config CRYPTO_HASH
63 tristate
64 select CRYPTO_HASH2
65 select CRYPTO_ALGAPI
66
67 config CRYPTO_HASH2
68 tristate
69 select CRYPTO_ALGAPI2
70
71 config CRYPTO_RNG
72 tristate
73 select CRYPTO_RNG2
74 select CRYPTO_ALGAPI
75
76 config CRYPTO_RNG2
77 tristate
78 select CRYPTO_ALGAPI2
79
80 config CRYPTO_PCOMP
81 tristate
82 select CRYPTO_PCOMP2
83 select CRYPTO_ALGAPI
84
85 config CRYPTO_PCOMP2
86 tristate
87 select CRYPTO_ALGAPI2
88
89 config CRYPTO_MANAGER
90 tristate "Cryptographic algorithm manager"
91 select CRYPTO_MANAGER2
92 help
93 Create default cryptographic template instantiations such as
94 cbc(aes).
95
96 config CRYPTO_MANAGER2
97 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
98 select CRYPTO_AEAD2
99 select CRYPTO_HASH2
100 select CRYPTO_BLKCIPHER2
101 select CRYPTO_PCOMP2
102
103 config CRYPTO_USER
104 tristate "Userspace cryptographic algorithm configuration"
105 depends on NET
106 select CRYPTO_MANAGER
107 help
108 Userspace configuration for cryptographic instantiations such as
109 cbc(aes).
110
111 config CRYPTO_MANAGER_DISABLE_TESTS
112 bool "Disable run-time self tests"
113 default y
114 depends on CRYPTO_MANAGER2
115 help
116 Disable run-time self tests that normally take place at
117 algorithm registration.
118
119 config CRYPTO_GF128MUL
120 tristate "GF(2^128) multiplication functions"
121 help
122 Efficient table driven implementation of multiplications in the
123 field GF(2^128). This is needed by some cypher modes. This
124 option will be selected automatically if you select such a
125 cipher mode. Only select this option by hand if you expect to load
126 an external module that requires these functions.
127
128 config CRYPTO_NULL
129 tristate "Null algorithms"
130 select CRYPTO_ALGAPI
131 select CRYPTO_BLKCIPHER
132 select CRYPTO_HASH
133 help
134 These are 'Null' algorithms, used by IPsec, which do nothing.
135
136 config CRYPTO_PCRYPT
137 tristate "Parallel crypto engine"
138 depends on SMP
139 select PADATA
140 select CRYPTO_MANAGER
141 select CRYPTO_AEAD
142 help
143 This converts an arbitrary crypto algorithm into a parallel
144 algorithm that executes in kernel threads.
145
146 config CRYPTO_WORKQUEUE
147 tristate
148
149 config CRYPTO_CRYPTD
150 tristate "Software async crypto daemon"
151 select CRYPTO_BLKCIPHER
152 select CRYPTO_HASH
153 select CRYPTO_MANAGER
154 select CRYPTO_WORKQUEUE
155 help
156 This is a generic software asynchronous crypto daemon that
157 converts an arbitrary synchronous software crypto algorithm
158 into an asynchronous algorithm that executes in a kernel thread.
159
160 config CRYPTO_AUTHENC
161 tristate "Authenc support"
162 select CRYPTO_AEAD
163 select CRYPTO_BLKCIPHER
164 select CRYPTO_MANAGER
165 select CRYPTO_HASH
166 help
167 Authenc: Combined mode wrapper for IPsec.
168 This is required for IPSec.
169
170 config CRYPTO_TEST
171 tristate "Testing module"
172 depends on m
173 select CRYPTO_MANAGER
174 help
175 Quick & dirty crypto test module.
176
177 config CRYPTO_ABLK_HELPER_X86
178 tristate
179 depends on X86
180 select CRYPTO_CRYPTD
181
182 config CRYPTO_GLUE_HELPER_X86
183 tristate
184 depends on X86
185 select CRYPTO_ALGAPI
186
187 comment "Authenticated Encryption with Associated Data"
188
189 config CRYPTO_CCM
190 tristate "CCM support"
191 select CRYPTO_CTR
192 select CRYPTO_AEAD
193 help
194 Support for Counter with CBC MAC. Required for IPsec.
195
196 config CRYPTO_GCM
197 tristate "GCM/GMAC support"
198 select CRYPTO_CTR
199 select CRYPTO_AEAD
200 select CRYPTO_GHASH
201 select CRYPTO_NULL
202 help
203 Support for Galois/Counter Mode (GCM) and Galois Message
204 Authentication Code (GMAC). Required for IPSec.
205
206 config CRYPTO_SEQIV
207 tristate "Sequence Number IV Generator"
208 select CRYPTO_AEAD
209 select CRYPTO_BLKCIPHER
210 select CRYPTO_RNG
211 help
212 This IV generator generates an IV based on a sequence number by
213 xoring it with a salt. This algorithm is mainly useful for CTR
214
215 comment "Block modes"
216
217 config CRYPTO_CBC
218 tristate "CBC support"
219 select CRYPTO_BLKCIPHER
220 select CRYPTO_MANAGER
221 help
222 CBC: Cipher Block Chaining mode
223 This block cipher algorithm is required for IPSec.
224
225 config CRYPTO_CTR
226 tristate "CTR support"
227 select CRYPTO_BLKCIPHER
228 select CRYPTO_SEQIV
229 select CRYPTO_MANAGER
230 help
231 CTR: Counter mode
232 This block cipher algorithm is required for IPSec.
233
234 config CRYPTO_CTS
235 tristate "CTS support"
236 select CRYPTO_BLKCIPHER
237 help
238 CTS: Cipher Text Stealing
239 This is the Cipher Text Stealing mode as described by
240 Section 8 of rfc2040 and referenced by rfc3962.
241 (rfc3962 includes errata information in its Appendix A)
242 This mode is required for Kerberos gss mechanism support
243 for AES encryption.
244
245 config CRYPTO_ECB
246 tristate "ECB support"
247 select CRYPTO_BLKCIPHER
248 select CRYPTO_MANAGER
249 help
250 ECB: Electronic CodeBook mode
251 This is the simplest block cipher algorithm. It simply encrypts
252 the input block by block.
253
254 config CRYPTO_LRW
255 tristate "LRW support"
256 select CRYPTO_BLKCIPHER
257 select CRYPTO_MANAGER
258 select CRYPTO_GF128MUL
259 help
260 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
261 narrow block cipher mode for dm-crypt. Use it with cipher
262 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
263 The first 128, 192 or 256 bits in the key are used for AES and the
264 rest is used to tie each cipher block to its logical position.
265
266 config CRYPTO_PCBC
267 tristate "PCBC support"
268 select CRYPTO_BLKCIPHER
269 select CRYPTO_MANAGER
270 help
271 PCBC: Propagating Cipher Block Chaining mode
272 This block cipher algorithm is required for RxRPC.
273
274 config CRYPTO_XTS
275 tristate "XTS support"
276 select CRYPTO_BLKCIPHER
277 select CRYPTO_MANAGER
278 select CRYPTO_GF128MUL
279 help
280 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
281 key size 256, 384 or 512 bits. This implementation currently
282 can't handle a sectorsize which is not a multiple of 16 bytes.
283
284 comment "Hash modes"
285
286 config CRYPTO_CMAC
287 tristate "CMAC support"
288 select CRYPTO_HASH
289 select CRYPTO_MANAGER
290 help
291 Cipher-based Message Authentication Code (CMAC) specified by
292 The National Institute of Standards and Technology (NIST).
293
294 https://tools.ietf.org/html/rfc4493
295 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
296
297 config CRYPTO_HMAC
298 tristate "HMAC support"
299 select CRYPTO_HASH
300 select CRYPTO_MANAGER
301 help
302 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
303 This is required for IPSec.
304
305 config CRYPTO_XCBC
306 tristate "XCBC support"
307 select CRYPTO_HASH
308 select CRYPTO_MANAGER
309 help
310 XCBC: Keyed-Hashing with encryption algorithm
311 http://www.ietf.org/rfc/rfc3566.txt
312 http://csrc.nist.gov/encryption/modes/proposedmodes/
313 xcbc-mac/xcbc-mac-spec.pdf
314
315 config CRYPTO_VMAC
316 tristate "VMAC support"
317 select CRYPTO_HASH
318 select CRYPTO_MANAGER
319 help
320 VMAC is a message authentication algorithm designed for
321 very high speed on 64-bit architectures.
322
323 See also:
324 <http://fastcrypto.org/vmac>
325
326 comment "Digest"
327
328 config CRYPTO_CRC32C
329 tristate "CRC32c CRC algorithm"
330 select CRYPTO_HASH
331 select CRC32
332 help
333 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
334 by iSCSI for header and data digests and by others.
335 See Castagnoli93. Module will be crc32c.
336
337 config CRYPTO_CRC32C_INTEL
338 tristate "CRC32c INTEL hardware acceleration"
339 depends on X86
340 select CRYPTO_HASH
341 help
342 In Intel processor with SSE4.2 supported, the processor will
343 support CRC32C implementation using hardware accelerated CRC32
344 instruction. This option will create 'crc32c-intel' module,
345 which will enable any routine to use the CRC32 instruction to
346 gain performance compared with software implementation.
347 Module will be crc32c-intel.
348
349 config CRYPTO_CRC32C_SPARC64
350 tristate "CRC32c CRC algorithm (SPARC64)"
351 depends on SPARC64
352 select CRYPTO_HASH
353 select CRC32
354 help
355 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
356 when available.
357
358 config CRYPTO_CRC32
359 tristate "CRC32 CRC algorithm"
360 select CRYPTO_HASH
361 select CRC32
362 help
363 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
364 Shash crypto api wrappers to crc32_le function.
365
366 config CRYPTO_CRC32_PCLMUL
367 tristate "CRC32 PCLMULQDQ hardware acceleration"
368 depends on X86
369 select CRYPTO_HASH
370 select CRC32
371 help
372 From Intel Westmere and AMD Bulldozer processor with SSE4.2
373 and PCLMULQDQ supported, the processor will support
374 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
375 instruction. This option will create 'crc32-plcmul' module,
376 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
377 and gain better performance as compared with the table implementation.
378
379 config CRYPTO_GHASH
380 tristate "GHASH digest algorithm"
381 select CRYPTO_GF128MUL
382 help
383 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
384
385 config CRYPTO_MD4
386 tristate "MD4 digest algorithm"
387 select CRYPTO_HASH
388 help
389 MD4 message digest algorithm (RFC1320).
390
391 config CRYPTO_MD5
392 tristate "MD5 digest algorithm"
393 select CRYPTO_HASH
394 help
395 MD5 message digest algorithm (RFC1321).
396
397 config CRYPTO_MD5_SPARC64
398 tristate "MD5 digest algorithm (SPARC64)"
399 depends on SPARC64
400 select CRYPTO_MD5
401 select CRYPTO_HASH
402 help
403 MD5 message digest algorithm (RFC1321) implemented
404 using sparc64 crypto instructions, when available.
405
406 config CRYPTO_MICHAEL_MIC
407 tristate "Michael MIC keyed digest algorithm"
408 select CRYPTO_HASH
409 help
410 Michael MIC is used for message integrity protection in TKIP
411 (IEEE 802.11i). This algorithm is required for TKIP, but it
412 should not be used for other purposes because of the weakness
413 of the algorithm.
414
415 config CRYPTO_RMD128
416 tristate "RIPEMD-128 digest algorithm"
417 select CRYPTO_HASH
418 help
419 RIPEMD-128 (ISO/IEC 10118-3:2004).
420
421 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
422 be used as a secure replacement for RIPEMD. For other use cases,
423 RIPEMD-160 should be used.
424
425 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
426 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
427
428 config CRYPTO_RMD160
429 tristate "RIPEMD-160 digest algorithm"
430 select CRYPTO_HASH
431 help
432 RIPEMD-160 (ISO/IEC 10118-3:2004).
433
434 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
435 to be used as a secure replacement for the 128-bit hash functions
436 MD4, MD5 and it's predecessor RIPEMD
437 (not to be confused with RIPEMD-128).
438
439 It's speed is comparable to SHA1 and there are no known attacks
440 against RIPEMD-160.
441
442 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
443 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
444
445 config CRYPTO_RMD256
446 tristate "RIPEMD-256 digest algorithm"
447 select CRYPTO_HASH
448 help
449 RIPEMD-256 is an optional extension of RIPEMD-128 with a
450 256 bit hash. It is intended for applications that require
451 longer hash-results, without needing a larger security level
452 (than RIPEMD-128).
453
454 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
455 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
456
457 config CRYPTO_RMD320
458 tristate "RIPEMD-320 digest algorithm"
459 select CRYPTO_HASH
460 help
461 RIPEMD-320 is an optional extension of RIPEMD-160 with a
462 320 bit hash. It is intended for applications that require
463 longer hash-results, without needing a larger security level
464 (than RIPEMD-160).
465
466 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
467 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
468
469 config CRYPTO_SHA1
470 tristate "SHA1 digest algorithm"
471 select CRYPTO_HASH
472 help
473 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
474
475 config CRYPTO_SHA1_SSSE3
476 tristate "SHA1 digest algorithm (SSSE3/AVX)"
477 depends on X86 && 64BIT
478 select CRYPTO_SHA1
479 select CRYPTO_HASH
480 help
481 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
482 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
483 Extensions (AVX), when available.
484
485 config CRYPTO_SHA256_SSSE3
486 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2)"
487 depends on X86 && 64BIT
488 select CRYPTO_SHA256
489 select CRYPTO_HASH
490 help
491 SHA-256 secure hash standard (DFIPS 180-2) implemented
492 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
493 Extensions version 1 (AVX1), or Advanced Vector Extensions
494 version 2 (AVX2) instructions, when available.
495
496 config CRYPTO_SHA512_SSSE3
497 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
498 depends on X86 && 64BIT
499 select CRYPTO_SHA512
500 select CRYPTO_HASH
501 help
502 SHA-512 secure hash standard (DFIPS 180-2) implemented
503 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
504 Extensions version 1 (AVX1), or Advanced Vector Extensions
505 version 2 (AVX2) instructions, when available.
506
507 config CRYPTO_SHA1_SPARC64
508 tristate "SHA1 digest algorithm (SPARC64)"
509 depends on SPARC64
510 select CRYPTO_SHA1
511 select CRYPTO_HASH
512 help
513 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
514 using sparc64 crypto instructions, when available.
515
516 config CRYPTO_SHA1_ARM
517 tristate "SHA1 digest algorithm (ARM-asm)"
518 depends on ARM
519 select CRYPTO_SHA1
520 select CRYPTO_HASH
521 help
522 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
523 using optimized ARM assembler.
524
525 config CRYPTO_SHA1_PPC
526 tristate "SHA1 digest algorithm (powerpc)"
527 depends on PPC
528 help
529 This is the powerpc hardware accelerated implementation of the
530 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
531
532 config CRYPTO_SHA256
533 tristate "SHA224 and SHA256 digest algorithm"
534 select CRYPTO_HASH
535 help
536 SHA256 secure hash standard (DFIPS 180-2).
537
538 This version of SHA implements a 256 bit hash with 128 bits of
539 security against collision attacks.
540
541 This code also includes SHA-224, a 224 bit hash with 112 bits
542 of security against collision attacks.
543
544 config CRYPTO_SHA256_SPARC64
545 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
546 depends on SPARC64
547 select CRYPTO_SHA256
548 select CRYPTO_HASH
549 help
550 SHA-256 secure hash standard (DFIPS 180-2) implemented
551 using sparc64 crypto instructions, when available.
552
553 config CRYPTO_SHA512
554 tristate "SHA384 and SHA512 digest algorithms"
555 select CRYPTO_HASH
556 help
557 SHA512 secure hash standard (DFIPS 180-2).
558
559 This version of SHA implements a 512 bit hash with 256 bits of
560 security against collision attacks.
561
562 This code also includes SHA-384, a 384 bit hash with 192 bits
563 of security against collision attacks.
564
565 config CRYPTO_SHA512_SPARC64
566 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
567 depends on SPARC64
568 select CRYPTO_SHA512
569 select CRYPTO_HASH
570 help
571 SHA-512 secure hash standard (DFIPS 180-2) implemented
572 using sparc64 crypto instructions, when available.
573
574 config CRYPTO_TGR192
575 tristate "Tiger digest algorithms"
576 select CRYPTO_HASH
577 help
578 Tiger hash algorithm 192, 160 and 128-bit hashes
579
580 Tiger is a hash function optimized for 64-bit processors while
581 still having decent performance on 32-bit processors.
582 Tiger was developed by Ross Anderson and Eli Biham.
583
584 See also:
585 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
586
587 config CRYPTO_WP512
588 tristate "Whirlpool digest algorithms"
589 select CRYPTO_HASH
590 help
591 Whirlpool hash algorithm 512, 384 and 256-bit hashes
592
593 Whirlpool-512 is part of the NESSIE cryptographic primitives.
594 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
595
596 See also:
597 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
598
599 config CRYPTO_GHASH_CLMUL_NI_INTEL
600 tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
601 depends on X86 && 64BIT
602 select CRYPTO_CRYPTD
603 help
604 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
605 The implementation is accelerated by CLMUL-NI of Intel.
606
607 comment "Ciphers"
608
609 config CRYPTO_AES
610 tristate "AES cipher algorithms"
611 select CRYPTO_ALGAPI
612 help
613 AES cipher algorithms (FIPS-197). AES uses the Rijndael
614 algorithm.
615
616 Rijndael appears to be consistently a very good performer in
617 both hardware and software across a wide range of computing
618 environments regardless of its use in feedback or non-feedback
619 modes. Its key setup time is excellent, and its key agility is
620 good. Rijndael's very low memory requirements make it very well
621 suited for restricted-space environments, in which it also
622 demonstrates excellent performance. Rijndael's operations are
623 among the easiest to defend against power and timing attacks.
624
625 The AES specifies three key sizes: 128, 192 and 256 bits
626
627 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
628
629 config CRYPTO_AES_586
630 tristate "AES cipher algorithms (i586)"
631 depends on (X86 || UML_X86) && !64BIT
632 select CRYPTO_ALGAPI
633 select CRYPTO_AES
634 help
635 AES cipher algorithms (FIPS-197). AES uses the Rijndael
636 algorithm.
637
638 Rijndael appears to be consistently a very good performer in
639 both hardware and software across a wide range of computing
640 environments regardless of its use in feedback or non-feedback
641 modes. Its key setup time is excellent, and its key agility is
642 good. Rijndael's very low memory requirements make it very well
643 suited for restricted-space environments, in which it also
644 demonstrates excellent performance. Rijndael's operations are
645 among the easiest to defend against power and timing attacks.
646
647 The AES specifies three key sizes: 128, 192 and 256 bits
648
649 See <http://csrc.nist.gov/encryption/aes/> for more information.
650
651 config CRYPTO_AES_X86_64
652 tristate "AES cipher algorithms (x86_64)"
653 depends on (X86 || UML_X86) && 64BIT
654 select CRYPTO_ALGAPI
655 select CRYPTO_AES
656 help
657 AES cipher algorithms (FIPS-197). AES uses the Rijndael
658 algorithm.
659
660 Rijndael appears to be consistently a very good performer in
661 both hardware and software across a wide range of computing
662 environments regardless of its use in feedback or non-feedback
663 modes. Its key setup time is excellent, and its key agility is
664 good. Rijndael's very low memory requirements make it very well
665 suited for restricted-space environments, in which it also
666 demonstrates excellent performance. Rijndael's operations are
667 among the easiest to defend against power and timing attacks.
668
669 The AES specifies three key sizes: 128, 192 and 256 bits
670
671 See <http://csrc.nist.gov/encryption/aes/> for more information.
672
673 config CRYPTO_AES_NI_INTEL
674 tristate "AES cipher algorithms (AES-NI)"
675 depends on X86
676 select CRYPTO_AES_X86_64 if 64BIT
677 select CRYPTO_AES_586 if !64BIT
678 select CRYPTO_CRYPTD
679 select CRYPTO_ABLK_HELPER_X86
680 select CRYPTO_ALGAPI
681 select CRYPTO_GLUE_HELPER_X86 if 64BIT
682 select CRYPTO_LRW
683 select CRYPTO_XTS
684 help
685 Use Intel AES-NI instructions for AES algorithm.
686
687 AES cipher algorithms (FIPS-197). AES uses the Rijndael
688 algorithm.
689
690 Rijndael appears to be consistently a very good performer in
691 both hardware and software across a wide range of computing
692 environments regardless of its use in feedback or non-feedback
693 modes. Its key setup time is excellent, and its key agility is
694 good. Rijndael's very low memory requirements make it very well
695 suited for restricted-space environments, in which it also
696 demonstrates excellent performance. Rijndael's operations are
697 among the easiest to defend against power and timing attacks.
698
699 The AES specifies three key sizes: 128, 192 and 256 bits
700
701 See <http://csrc.nist.gov/encryption/aes/> for more information.
702
703 In addition to AES cipher algorithm support, the acceleration
704 for some popular block cipher mode is supported too, including
705 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
706 acceleration for CTR.
707
708 config CRYPTO_AES_SPARC64
709 tristate "AES cipher algorithms (SPARC64)"
710 depends on SPARC64
711 select CRYPTO_CRYPTD
712 select CRYPTO_ALGAPI
713 help
714 Use SPARC64 crypto opcodes for AES algorithm.
715
716 AES cipher algorithms (FIPS-197). AES uses the Rijndael
717 algorithm.
718
719 Rijndael appears to be consistently a very good performer in
720 both hardware and software across a wide range of computing
721 environments regardless of its use in feedback or non-feedback
722 modes. Its key setup time is excellent, and its key agility is
723 good. Rijndael's very low memory requirements make it very well
724 suited for restricted-space environments, in which it also
725 demonstrates excellent performance. Rijndael's operations are
726 among the easiest to defend against power and timing attacks.
727
728 The AES specifies three key sizes: 128, 192 and 256 bits
729
730 See <http://csrc.nist.gov/encryption/aes/> for more information.
731
732 In addition to AES cipher algorithm support, the acceleration
733 for some popular block cipher mode is supported too, including
734 ECB and CBC.
735
736 config CRYPTO_AES_ARM
737 tristate "AES cipher algorithms (ARM-asm)"
738 depends on ARM
739 select CRYPTO_ALGAPI
740 select CRYPTO_AES
741 help
742 Use optimized AES assembler routines for ARM platforms.
743
744 AES cipher algorithms (FIPS-197). AES uses the Rijndael
745 algorithm.
746
747 Rijndael appears to be consistently a very good performer in
748 both hardware and software across a wide range of computing
749 environments regardless of its use in feedback or non-feedback
750 modes. Its key setup time is excellent, and its key agility is
751 good. Rijndael's very low memory requirements make it very well
752 suited for restricted-space environments, in which it also
753 demonstrates excellent performance. Rijndael's operations are
754 among the easiest to defend against power and timing attacks.
755
756 The AES specifies three key sizes: 128, 192 and 256 bits
757
758 See <http://csrc.nist.gov/encryption/aes/> for more information.
759
760 config CRYPTO_ANUBIS
761 tristate "Anubis cipher algorithm"
762 select CRYPTO_ALGAPI
763 help
764 Anubis cipher algorithm.
765
766 Anubis is a variable key length cipher which can use keys from
767 128 bits to 320 bits in length. It was evaluated as a entrant
768 in the NESSIE competition.
769
770 See also:
771 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
772 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
773
774 config CRYPTO_ARC4
775 tristate "ARC4 cipher algorithm"
776 select CRYPTO_BLKCIPHER
777 help
778 ARC4 cipher algorithm.
779
780 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
781 bits in length. This algorithm is required for driver-based
782 WEP, but it should not be for other purposes because of the
783 weakness of the algorithm.
784
785 config CRYPTO_BLOWFISH
786 tristate "Blowfish cipher algorithm"
787 select CRYPTO_ALGAPI
788 select CRYPTO_BLOWFISH_COMMON
789 help
790 Blowfish cipher algorithm, by Bruce Schneier.
791
792 This is a variable key length cipher which can use keys from 32
793 bits to 448 bits in length. It's fast, simple and specifically
794 designed for use on "large microprocessors".
795
796 See also:
797 <http://www.schneier.com/blowfish.html>
798
799 config CRYPTO_BLOWFISH_COMMON
800 tristate
801 help
802 Common parts of the Blowfish cipher algorithm shared by the
803 generic c and the assembler implementations.
804
805 See also:
806 <http://www.schneier.com/blowfish.html>
807
808 config CRYPTO_BLOWFISH_X86_64
809 tristate "Blowfish cipher algorithm (x86_64)"
810 depends on X86 && 64BIT
811 select CRYPTO_ALGAPI
812 select CRYPTO_BLOWFISH_COMMON
813 help
814 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
815
816 This is a variable key length cipher which can use keys from 32
817 bits to 448 bits in length. It's fast, simple and specifically
818 designed for use on "large microprocessors".
819
820 See also:
821 <http://www.schneier.com/blowfish.html>
822
823 config CRYPTO_BLOWFISH_AVX2_X86_64
824 tristate "Blowfish cipher algorithm (x86_64/AVX2)"
825 depends on X86 && 64BIT
826 depends on BROKEN
827 select CRYPTO_ALGAPI
828 select CRYPTO_CRYPTD
829 select CRYPTO_ABLK_HELPER_X86
830 select CRYPTO_BLOWFISH_COMMON
831 select CRYPTO_BLOWFISH_X86_64
832 help
833 Blowfish cipher algorithm (x86_64/AVX2), by Bruce Schneier.
834
835 This is a variable key length cipher which can use keys from 32
836 bits to 448 bits in length. It's fast, simple and specifically
837 designed for use on "large microprocessors".
838
839 See also:
840 <http://www.schneier.com/blowfish.html>
841
842 config CRYPTO_CAMELLIA
843 tristate "Camellia cipher algorithms"
844 depends on CRYPTO
845 select CRYPTO_ALGAPI
846 help
847 Camellia cipher algorithms module.
848
849 Camellia is a symmetric key block cipher developed jointly
850 at NTT and Mitsubishi Electric Corporation.
851
852 The Camellia specifies three key sizes: 128, 192 and 256 bits.
853
854 See also:
855 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
856
857 config CRYPTO_CAMELLIA_X86_64
858 tristate "Camellia cipher algorithm (x86_64)"
859 depends on X86 && 64BIT
860 depends on CRYPTO
861 select CRYPTO_ALGAPI
862 select CRYPTO_GLUE_HELPER_X86
863 select CRYPTO_LRW
864 select CRYPTO_XTS
865 help
866 Camellia cipher algorithm module (x86_64).
867
868 Camellia is a symmetric key block cipher developed jointly
869 at NTT and Mitsubishi Electric Corporation.
870
871 The Camellia specifies three key sizes: 128, 192 and 256 bits.
872
873 See also:
874 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
875
876 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
877 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
878 depends on X86 && 64BIT
879 depends on CRYPTO
880 select CRYPTO_ALGAPI
881 select CRYPTO_CRYPTD
882 select CRYPTO_ABLK_HELPER_X86
883 select CRYPTO_GLUE_HELPER_X86
884 select CRYPTO_CAMELLIA_X86_64
885 select CRYPTO_LRW
886 select CRYPTO_XTS
887 help
888 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
889
890 Camellia is a symmetric key block cipher developed jointly
891 at NTT and Mitsubishi Electric Corporation.
892
893 The Camellia specifies three key sizes: 128, 192 and 256 bits.
894
895 See also:
896 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
897
898 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
899 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
900 depends on X86 && 64BIT
901 depends on CRYPTO
902 select CRYPTO_ALGAPI
903 select CRYPTO_CRYPTD
904 select CRYPTO_ABLK_HELPER_X86
905 select CRYPTO_GLUE_HELPER_X86
906 select CRYPTO_CAMELLIA_X86_64
907 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
908 select CRYPTO_LRW
909 select CRYPTO_XTS
910 help
911 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
912
913 Camellia is a symmetric key block cipher developed jointly
914 at NTT and Mitsubishi Electric Corporation.
915
916 The Camellia specifies three key sizes: 128, 192 and 256 bits.
917
918 See also:
919 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
920
921 config CRYPTO_CAMELLIA_SPARC64
922 tristate "Camellia cipher algorithm (SPARC64)"
923 depends on SPARC64
924 depends on CRYPTO
925 select CRYPTO_ALGAPI
926 help
927 Camellia cipher algorithm module (SPARC64).
928
929 Camellia is a symmetric key block cipher developed jointly
930 at NTT and Mitsubishi Electric Corporation.
931
932 The Camellia specifies three key sizes: 128, 192 and 256 bits.
933
934 See also:
935 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
936
937 config CRYPTO_CAST_COMMON
938 tristate
939 help
940 Common parts of the CAST cipher algorithms shared by the
941 generic c and the assembler implementations.
942
943 config CRYPTO_CAST5
944 tristate "CAST5 (CAST-128) cipher algorithm"
945 select CRYPTO_ALGAPI
946 select CRYPTO_CAST_COMMON
947 help
948 The CAST5 encryption algorithm (synonymous with CAST-128) is
949 described in RFC2144.
950
951 config CRYPTO_CAST5_AVX_X86_64
952 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
953 depends on X86 && 64BIT
954 select CRYPTO_ALGAPI
955 select CRYPTO_CRYPTD
956 select CRYPTO_ABLK_HELPER_X86
957 select CRYPTO_CAST_COMMON
958 select CRYPTO_CAST5
959 help
960 The CAST5 encryption algorithm (synonymous with CAST-128) is
961 described in RFC2144.
962
963 This module provides the Cast5 cipher algorithm that processes
964 sixteen blocks parallel using the AVX instruction set.
965
966 config CRYPTO_CAST6
967 tristate "CAST6 (CAST-256) cipher algorithm"
968 select CRYPTO_ALGAPI
969 select CRYPTO_CAST_COMMON
970 help
971 The CAST6 encryption algorithm (synonymous with CAST-256) is
972 described in RFC2612.
973
974 config CRYPTO_CAST6_AVX_X86_64
975 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
976 depends on X86 && 64BIT
977 select CRYPTO_ALGAPI
978 select CRYPTO_CRYPTD
979 select CRYPTO_ABLK_HELPER_X86
980 select CRYPTO_GLUE_HELPER_X86
981 select CRYPTO_CAST_COMMON
982 select CRYPTO_CAST6
983 select CRYPTO_LRW
984 select CRYPTO_XTS
985 help
986 The CAST6 encryption algorithm (synonymous with CAST-256) is
987 described in RFC2612.
988
989 This module provides the Cast6 cipher algorithm that processes
990 eight blocks parallel using the AVX instruction set.
991
992 config CRYPTO_DES
993 tristate "DES and Triple DES EDE cipher algorithms"
994 select CRYPTO_ALGAPI
995 help
996 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
997
998 config CRYPTO_DES_SPARC64
999 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1000 depends on SPARC64
1001 select CRYPTO_ALGAPI
1002 select CRYPTO_DES
1003 help
1004 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1005 optimized using SPARC64 crypto opcodes.
1006
1007 config CRYPTO_FCRYPT
1008 tristate "FCrypt cipher algorithm"
1009 select CRYPTO_ALGAPI
1010 select CRYPTO_BLKCIPHER
1011 help
1012 FCrypt algorithm used by RxRPC.
1013
1014 config CRYPTO_KHAZAD
1015 tristate "Khazad cipher algorithm"
1016 select CRYPTO_ALGAPI
1017 help
1018 Khazad cipher algorithm.
1019
1020 Khazad was a finalist in the initial NESSIE competition. It is
1021 an algorithm optimized for 64-bit processors with good performance
1022 on 32-bit processors. Khazad uses an 128 bit key size.
1023
1024 See also:
1025 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1026
1027 config CRYPTO_SALSA20
1028 tristate "Salsa20 stream cipher algorithm"
1029 select CRYPTO_BLKCIPHER
1030 help
1031 Salsa20 stream cipher algorithm.
1032
1033 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1034 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1035
1036 The Salsa20 stream cipher algorithm is designed by Daniel J.
1037 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1038
1039 config CRYPTO_SALSA20_586
1040 tristate "Salsa20 stream cipher algorithm (i586)"
1041 depends on (X86 || UML_X86) && !64BIT
1042 select CRYPTO_BLKCIPHER
1043 help
1044 Salsa20 stream cipher algorithm.
1045
1046 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1047 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1048
1049 The Salsa20 stream cipher algorithm is designed by Daniel J.
1050 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1051
1052 config CRYPTO_SALSA20_X86_64
1053 tristate "Salsa20 stream cipher algorithm (x86_64)"
1054 depends on (X86 || UML_X86) && 64BIT
1055 select CRYPTO_BLKCIPHER
1056 help
1057 Salsa20 stream cipher algorithm.
1058
1059 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1060 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1061
1062 The Salsa20 stream cipher algorithm is designed by Daniel J.
1063 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1064
1065 config CRYPTO_SEED
1066 tristate "SEED cipher algorithm"
1067 select CRYPTO_ALGAPI
1068 help
1069 SEED cipher algorithm (RFC4269).
1070
1071 SEED is a 128-bit symmetric key block cipher that has been
1072 developed by KISA (Korea Information Security Agency) as a
1073 national standard encryption algorithm of the Republic of Korea.
1074 It is a 16 round block cipher with the key size of 128 bit.
1075
1076 See also:
1077 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1078
1079 config CRYPTO_SERPENT
1080 tristate "Serpent cipher algorithm"
1081 select CRYPTO_ALGAPI
1082 help
1083 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1084
1085 Keys are allowed to be from 0 to 256 bits in length, in steps
1086 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1087 variant of Serpent for compatibility with old kerneli.org code.
1088
1089 See also:
1090 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1091
1092 config CRYPTO_SERPENT_SSE2_X86_64
1093 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1094 depends on X86 && 64BIT
1095 select CRYPTO_ALGAPI
1096 select CRYPTO_CRYPTD
1097 select CRYPTO_ABLK_HELPER_X86
1098 select CRYPTO_GLUE_HELPER_X86
1099 select CRYPTO_SERPENT
1100 select CRYPTO_LRW
1101 select CRYPTO_XTS
1102 help
1103 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1104
1105 Keys are allowed to be from 0 to 256 bits in length, in steps
1106 of 8 bits.
1107
1108 This module provides Serpent cipher algorithm that processes eigth
1109 blocks parallel using SSE2 instruction set.
1110
1111 See also:
1112 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1113
1114 config CRYPTO_SERPENT_SSE2_586
1115 tristate "Serpent cipher algorithm (i586/SSE2)"
1116 depends on X86 && !64BIT
1117 select CRYPTO_ALGAPI
1118 select CRYPTO_CRYPTD
1119 select CRYPTO_ABLK_HELPER_X86
1120 select CRYPTO_GLUE_HELPER_X86
1121 select CRYPTO_SERPENT
1122 select CRYPTO_LRW
1123 select CRYPTO_XTS
1124 help
1125 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1126
1127 Keys are allowed to be from 0 to 256 bits in length, in steps
1128 of 8 bits.
1129
1130 This module provides Serpent cipher algorithm that processes four
1131 blocks parallel using SSE2 instruction set.
1132
1133 See also:
1134 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1135
1136 config CRYPTO_SERPENT_AVX_X86_64
1137 tristate "Serpent cipher algorithm (x86_64/AVX)"
1138 depends on X86 && 64BIT
1139 select CRYPTO_ALGAPI
1140 select CRYPTO_CRYPTD
1141 select CRYPTO_ABLK_HELPER_X86
1142 select CRYPTO_GLUE_HELPER_X86
1143 select CRYPTO_SERPENT
1144 select CRYPTO_LRW
1145 select CRYPTO_XTS
1146 help
1147 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1148
1149 Keys are allowed to be from 0 to 256 bits in length, in steps
1150 of 8 bits.
1151
1152 This module provides the Serpent cipher algorithm that processes
1153 eight blocks parallel using the AVX instruction set.
1154
1155 See also:
1156 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1157
1158 config CRYPTO_SERPENT_AVX2_X86_64
1159 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1160 depends on X86 && 64BIT
1161 select CRYPTO_ALGAPI
1162 select CRYPTO_CRYPTD
1163 select CRYPTO_ABLK_HELPER_X86
1164 select CRYPTO_GLUE_HELPER_X86
1165 select CRYPTO_SERPENT
1166 select CRYPTO_SERPENT_AVX_X86_64
1167 select CRYPTO_LRW
1168 select CRYPTO_XTS
1169 help
1170 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1171
1172 Keys are allowed to be from 0 to 256 bits in length, in steps
1173 of 8 bits.
1174
1175 This module provides Serpent cipher algorithm that processes 16
1176 blocks parallel using AVX2 instruction set.
1177
1178 See also:
1179 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1180
1181 config CRYPTO_TEA
1182 tristate "TEA, XTEA and XETA cipher algorithms"
1183 select CRYPTO_ALGAPI
1184 help
1185 TEA cipher algorithm.
1186
1187 Tiny Encryption Algorithm is a simple cipher that uses
1188 many rounds for security. It is very fast and uses
1189 little memory.
1190
1191 Xtendend Tiny Encryption Algorithm is a modification to
1192 the TEA algorithm to address a potential key weakness
1193 in the TEA algorithm.
1194
1195 Xtendend Encryption Tiny Algorithm is a mis-implementation
1196 of the XTEA algorithm for compatibility purposes.
1197
1198 config CRYPTO_TWOFISH
1199 tristate "Twofish cipher algorithm"
1200 select CRYPTO_ALGAPI
1201 select CRYPTO_TWOFISH_COMMON
1202 help
1203 Twofish cipher algorithm.
1204
1205 Twofish was submitted as an AES (Advanced Encryption Standard)
1206 candidate cipher by researchers at CounterPane Systems. It is a
1207 16 round block cipher supporting key sizes of 128, 192, and 256
1208 bits.
1209
1210 See also:
1211 <http://www.schneier.com/twofish.html>
1212
1213 config CRYPTO_TWOFISH_COMMON
1214 tristate
1215 help
1216 Common parts of the Twofish cipher algorithm shared by the
1217 generic c and the assembler implementations.
1218
1219 config CRYPTO_TWOFISH_586
1220 tristate "Twofish cipher algorithms (i586)"
1221 depends on (X86 || UML_X86) && !64BIT
1222 select CRYPTO_ALGAPI
1223 select CRYPTO_TWOFISH_COMMON
1224 help
1225 Twofish cipher algorithm.
1226
1227 Twofish was submitted as an AES (Advanced Encryption Standard)
1228 candidate cipher by researchers at CounterPane Systems. It is a
1229 16 round block cipher supporting key sizes of 128, 192, and 256
1230 bits.
1231
1232 See also:
1233 <http://www.schneier.com/twofish.html>
1234
1235 config CRYPTO_TWOFISH_X86_64
1236 tristate "Twofish cipher algorithm (x86_64)"
1237 depends on (X86 || UML_X86) && 64BIT
1238 select CRYPTO_ALGAPI
1239 select CRYPTO_TWOFISH_COMMON
1240 help
1241 Twofish cipher algorithm (x86_64).
1242
1243 Twofish was submitted as an AES (Advanced Encryption Standard)
1244 candidate cipher by researchers at CounterPane Systems. It is a
1245 16 round block cipher supporting key sizes of 128, 192, and 256
1246 bits.
1247
1248 See also:
1249 <http://www.schneier.com/twofish.html>
1250
1251 config CRYPTO_TWOFISH_X86_64_3WAY
1252 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1253 depends on X86 && 64BIT
1254 select CRYPTO_ALGAPI
1255 select CRYPTO_TWOFISH_COMMON
1256 select CRYPTO_TWOFISH_X86_64
1257 select CRYPTO_GLUE_HELPER_X86
1258 select CRYPTO_LRW
1259 select CRYPTO_XTS
1260 help
1261 Twofish cipher algorithm (x86_64, 3-way parallel).
1262
1263 Twofish was submitted as an AES (Advanced Encryption Standard)
1264 candidate cipher by researchers at CounterPane Systems. It is a
1265 16 round block cipher supporting key sizes of 128, 192, and 256
1266 bits.
1267
1268 This module provides Twofish cipher algorithm that processes three
1269 blocks parallel, utilizing resources of out-of-order CPUs better.
1270
1271 See also:
1272 <http://www.schneier.com/twofish.html>
1273
1274 config CRYPTO_TWOFISH_AVX_X86_64
1275 tristate "Twofish cipher algorithm (x86_64/AVX)"
1276 depends on X86 && 64BIT
1277 select CRYPTO_ALGAPI
1278 select CRYPTO_CRYPTD
1279 select CRYPTO_ABLK_HELPER_X86
1280 select CRYPTO_GLUE_HELPER_X86
1281 select CRYPTO_TWOFISH_COMMON
1282 select CRYPTO_TWOFISH_X86_64
1283 select CRYPTO_TWOFISH_X86_64_3WAY
1284 select CRYPTO_LRW
1285 select CRYPTO_XTS
1286 help
1287 Twofish cipher algorithm (x86_64/AVX).
1288
1289 Twofish was submitted as an AES (Advanced Encryption Standard)
1290 candidate cipher by researchers at CounterPane Systems. It is a
1291 16 round block cipher supporting key sizes of 128, 192, and 256
1292 bits.
1293
1294 This module provides the Twofish cipher algorithm that processes
1295 eight blocks parallel using the AVX Instruction Set.
1296
1297 See also:
1298 <http://www.schneier.com/twofish.html>
1299
1300 config CRYPTO_TWOFISH_AVX2_X86_64
1301 tristate "Twofish cipher algorithm (x86_64/AVX2)"
1302 depends on X86 && 64BIT
1303 depends on BROKEN
1304 select CRYPTO_ALGAPI
1305 select CRYPTO_CRYPTD
1306 select CRYPTO_ABLK_HELPER_X86
1307 select CRYPTO_GLUE_HELPER_X86
1308 select CRYPTO_TWOFISH_COMMON
1309 select CRYPTO_TWOFISH_X86_64
1310 select CRYPTO_TWOFISH_X86_64_3WAY
1311 select CRYPTO_TWOFISH_AVX_X86_64
1312 select CRYPTO_LRW
1313 select CRYPTO_XTS
1314 help
1315 Twofish cipher algorithm (x86_64/AVX2).
1316
1317 Twofish was submitted as an AES (Advanced Encryption Standard)
1318 candidate cipher by researchers at CounterPane Systems. It is a
1319 16 round block cipher supporting key sizes of 128, 192, and 256
1320 bits.
1321
1322 See also:
1323 <http://www.schneier.com/twofish.html>
1324
1325 comment "Compression"
1326
1327 config CRYPTO_DEFLATE
1328 tristate "Deflate compression algorithm"
1329 select CRYPTO_ALGAPI
1330 select ZLIB_INFLATE
1331 select ZLIB_DEFLATE
1332 help
1333 This is the Deflate algorithm (RFC1951), specified for use in
1334 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1335
1336 You will most probably want this if using IPSec.
1337
1338 config CRYPTO_ZLIB
1339 tristate "Zlib compression algorithm"
1340 select CRYPTO_PCOMP
1341 select ZLIB_INFLATE
1342 select ZLIB_DEFLATE
1343 select NLATTR
1344 help
1345 This is the zlib algorithm.
1346
1347 config CRYPTO_LZO
1348 tristate "LZO compression algorithm"
1349 select CRYPTO_ALGAPI
1350 select LZO_COMPRESS
1351 select LZO_DECOMPRESS
1352 help
1353 This is the LZO algorithm.
1354
1355 config CRYPTO_842
1356 tristate "842 compression algorithm"
1357 depends on CRYPTO_DEV_NX_COMPRESS
1358 # 842 uses lzo if the hardware becomes unavailable
1359 select LZO_COMPRESS
1360 select LZO_DECOMPRESS
1361 help
1362 This is the 842 algorithm.
1363
1364 comment "Random Number Generation"
1365
1366 config CRYPTO_ANSI_CPRNG
1367 tristate "Pseudo Random Number Generation for Cryptographic modules"
1368 default m
1369 select CRYPTO_AES
1370 select CRYPTO_RNG
1371 help
1372 This option enables the generic pseudo random number generator
1373 for cryptographic modules. Uses the Algorithm specified in
1374 ANSI X9.31 A.2.4. Note that this option must be enabled if
1375 CRYPTO_FIPS is selected
1376
1377 config CRYPTO_USER_API
1378 tristate
1379
1380 config CRYPTO_USER_API_HASH
1381 tristate "User-space interface for hash algorithms"
1382 depends on NET
1383 select CRYPTO_HASH
1384 select CRYPTO_USER_API
1385 help
1386 This option enables the user-spaces interface for hash
1387 algorithms.
1388
1389 config CRYPTO_USER_API_SKCIPHER
1390 tristate "User-space interface for symmetric key cipher algorithms"
1391 depends on NET
1392 select CRYPTO_BLKCIPHER
1393 select CRYPTO_USER_API
1394 help
1395 This option enables the user-spaces interface for symmetric
1396 key cipher algorithms.
1397
1398 source "drivers/crypto/Kconfig"
1399 source crypto/asymmetric_keys/Kconfig
1400
1401 endif # if CRYPTO