[BLOCK] Move all core block layer code to new block/ directory
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / block / elevator.c
1 /*
2 * linux/drivers/block/elevator.c
3 *
4 * Block device elevator/IO-scheduler.
5 *
6 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
7 *
8 * 30042000 Jens Axboe <axboe@suse.de> :
9 *
10 * Split the elevator a bit so that it is possible to choose a different
11 * one or even write a new "plug in". There are three pieces:
12 * - elevator_fn, inserts a new request in the queue list
13 * - elevator_merge_fn, decides whether a new buffer can be merged with
14 * an existing request
15 * - elevator_dequeue_fn, called when a request is taken off the active list
16 *
17 * 20082000 Dave Jones <davej@suse.de> :
18 * Removed tests for max-bomb-segments, which was breaking elvtune
19 * when run without -bN
20 *
21 * Jens:
22 * - Rework again to work with bio instead of buffer_heads
23 * - loose bi_dev comparisons, partition handling is right now
24 * - completely modularize elevator setup and teardown
25 *
26 */
27 #include <linux/kernel.h>
28 #include <linux/fs.h>
29 #include <linux/blkdev.h>
30 #include <linux/elevator.h>
31 #include <linux/bio.h>
32 #include <linux/config.h>
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/init.h>
36 #include <linux/compiler.h>
37 #include <linux/delay.h>
38
39 #include <asm/uaccess.h>
40
41 static DEFINE_SPINLOCK(elv_list_lock);
42 static LIST_HEAD(elv_list);
43
44 /*
45 * can we safely merge with this request?
46 */
47 inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
48 {
49 if (!rq_mergeable(rq))
50 return 0;
51
52 /*
53 * different data direction or already started, don't merge
54 */
55 if (bio_data_dir(bio) != rq_data_dir(rq))
56 return 0;
57
58 /*
59 * same device and no special stuff set, merge is ok
60 */
61 if (rq->rq_disk == bio->bi_bdev->bd_disk &&
62 !rq->waiting && !rq->special)
63 return 1;
64
65 return 0;
66 }
67 EXPORT_SYMBOL(elv_rq_merge_ok);
68
69 inline int elv_try_merge(struct request *__rq, struct bio *bio)
70 {
71 int ret = ELEVATOR_NO_MERGE;
72
73 /*
74 * we can merge and sequence is ok, check if it's possible
75 */
76 if (elv_rq_merge_ok(__rq, bio)) {
77 if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
78 ret = ELEVATOR_BACK_MERGE;
79 else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
80 ret = ELEVATOR_FRONT_MERGE;
81 }
82
83 return ret;
84 }
85 EXPORT_SYMBOL(elv_try_merge);
86
87 static struct elevator_type *elevator_find(const char *name)
88 {
89 struct elevator_type *e = NULL;
90 struct list_head *entry;
91
92 list_for_each(entry, &elv_list) {
93 struct elevator_type *__e;
94
95 __e = list_entry(entry, struct elevator_type, list);
96
97 if (!strcmp(__e->elevator_name, name)) {
98 e = __e;
99 break;
100 }
101 }
102
103 return e;
104 }
105
106 static void elevator_put(struct elevator_type *e)
107 {
108 module_put(e->elevator_owner);
109 }
110
111 static struct elevator_type *elevator_get(const char *name)
112 {
113 struct elevator_type *e;
114
115 spin_lock_irq(&elv_list_lock);
116
117 e = elevator_find(name);
118 if (e && !try_module_get(e->elevator_owner))
119 e = NULL;
120
121 spin_unlock_irq(&elv_list_lock);
122
123 return e;
124 }
125
126 static int elevator_attach(request_queue_t *q, struct elevator_type *e,
127 struct elevator_queue *eq)
128 {
129 int ret = 0;
130
131 memset(eq, 0, sizeof(*eq));
132 eq->ops = &e->ops;
133 eq->elevator_type = e;
134
135 q->elevator = eq;
136
137 if (eq->ops->elevator_init_fn)
138 ret = eq->ops->elevator_init_fn(q, eq);
139
140 return ret;
141 }
142
143 static char chosen_elevator[16];
144
145 static void elevator_setup_default(void)
146 {
147 struct elevator_type *e;
148
149 /*
150 * If default has not been set, use the compiled-in selection.
151 */
152 if (!chosen_elevator[0])
153 strcpy(chosen_elevator, CONFIG_DEFAULT_IOSCHED);
154
155 /*
156 * If the given scheduler is not available, fall back to no-op.
157 */
158 if (!(e = elevator_find(chosen_elevator)))
159 strcpy(chosen_elevator, "noop");
160 elevator_put(e);
161 }
162
163 static int __init elevator_setup(char *str)
164 {
165 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
166 return 0;
167 }
168
169 __setup("elevator=", elevator_setup);
170
171 int elevator_init(request_queue_t *q, char *name)
172 {
173 struct elevator_type *e = NULL;
174 struct elevator_queue *eq;
175 int ret = 0;
176
177 INIT_LIST_HEAD(&q->queue_head);
178 q->last_merge = NULL;
179 q->end_sector = 0;
180 q->boundary_rq = NULL;
181
182 elevator_setup_default();
183
184 if (!name)
185 name = chosen_elevator;
186
187 e = elevator_get(name);
188 if (!e)
189 return -EINVAL;
190
191 eq = kmalloc(sizeof(struct elevator_queue), GFP_KERNEL);
192 if (!eq) {
193 elevator_put(e->elevator_type);
194 return -ENOMEM;
195 }
196
197 ret = elevator_attach(q, e, eq);
198 if (ret) {
199 kfree(eq);
200 elevator_put(e->elevator_type);
201 }
202
203 return ret;
204 }
205
206 void elevator_exit(elevator_t *e)
207 {
208 if (e->ops->elevator_exit_fn)
209 e->ops->elevator_exit_fn(e);
210
211 elevator_put(e->elevator_type);
212 e->elevator_type = NULL;
213 kfree(e);
214 }
215
216 /*
217 * Insert rq into dispatch queue of q. Queue lock must be held on
218 * entry. If sort != 0, rq is sort-inserted; otherwise, rq will be
219 * appended to the dispatch queue. To be used by specific elevators.
220 */
221 void elv_dispatch_sort(request_queue_t *q, struct request *rq)
222 {
223 sector_t boundary;
224 struct list_head *entry;
225
226 if (q->last_merge == rq)
227 q->last_merge = NULL;
228
229 boundary = q->end_sector;
230
231 list_for_each_prev(entry, &q->queue_head) {
232 struct request *pos = list_entry_rq(entry);
233
234 if (pos->flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED))
235 break;
236 if (rq->sector >= boundary) {
237 if (pos->sector < boundary)
238 continue;
239 } else {
240 if (pos->sector >= boundary)
241 break;
242 }
243 if (rq->sector >= pos->sector)
244 break;
245 }
246
247 list_add(&rq->queuelist, entry);
248 }
249
250 int elv_merge(request_queue_t *q, struct request **req, struct bio *bio)
251 {
252 elevator_t *e = q->elevator;
253 int ret;
254
255 if (q->last_merge) {
256 ret = elv_try_merge(q->last_merge, bio);
257 if (ret != ELEVATOR_NO_MERGE) {
258 *req = q->last_merge;
259 return ret;
260 }
261 }
262
263 if (e->ops->elevator_merge_fn)
264 return e->ops->elevator_merge_fn(q, req, bio);
265
266 return ELEVATOR_NO_MERGE;
267 }
268
269 void elv_merged_request(request_queue_t *q, struct request *rq)
270 {
271 elevator_t *e = q->elevator;
272
273 if (e->ops->elevator_merged_fn)
274 e->ops->elevator_merged_fn(q, rq);
275
276 q->last_merge = rq;
277 }
278
279 void elv_merge_requests(request_queue_t *q, struct request *rq,
280 struct request *next)
281 {
282 elevator_t *e = q->elevator;
283
284 if (e->ops->elevator_merge_req_fn)
285 e->ops->elevator_merge_req_fn(q, rq, next);
286
287 q->last_merge = rq;
288 }
289
290 void elv_requeue_request(request_queue_t *q, struct request *rq)
291 {
292 elevator_t *e = q->elevator;
293
294 /*
295 * it already went through dequeue, we need to decrement the
296 * in_flight count again
297 */
298 if (blk_account_rq(rq)) {
299 q->in_flight--;
300 if (blk_sorted_rq(rq) && e->ops->elevator_deactivate_req_fn)
301 e->ops->elevator_deactivate_req_fn(q, rq);
302 }
303
304 rq->flags &= ~REQ_STARTED;
305
306 /*
307 * if this is the flush, requeue the original instead and drop the flush
308 */
309 if (rq->flags & REQ_BAR_FLUSH) {
310 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
311 rq = rq->end_io_data;
312 }
313
314 __elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
315 }
316
317 void __elv_add_request(request_queue_t *q, struct request *rq, int where,
318 int plug)
319 {
320 if (rq->flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
321 /*
322 * barriers implicitly indicate back insertion
323 */
324 if (where == ELEVATOR_INSERT_SORT)
325 where = ELEVATOR_INSERT_BACK;
326
327 /*
328 * this request is scheduling boundary, update end_sector
329 */
330 if (blk_fs_request(rq)) {
331 q->end_sector = rq_end_sector(rq);
332 q->boundary_rq = rq;
333 }
334 } else if (!(rq->flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT)
335 where = ELEVATOR_INSERT_BACK;
336
337 if (plug)
338 blk_plug_device(q);
339
340 rq->q = q;
341
342 switch (where) {
343 case ELEVATOR_INSERT_FRONT:
344 rq->flags |= REQ_SOFTBARRIER;
345
346 list_add(&rq->queuelist, &q->queue_head);
347 break;
348
349 case ELEVATOR_INSERT_BACK:
350 rq->flags |= REQ_SOFTBARRIER;
351
352 while (q->elevator->ops->elevator_dispatch_fn(q, 1))
353 ;
354 list_add_tail(&rq->queuelist, &q->queue_head);
355 /*
356 * We kick the queue here for the following reasons.
357 * - The elevator might have returned NULL previously
358 * to delay requests and returned them now. As the
359 * queue wasn't empty before this request, ll_rw_blk
360 * won't run the queue on return, resulting in hang.
361 * - Usually, back inserted requests won't be merged
362 * with anything. There's no point in delaying queue
363 * processing.
364 */
365 blk_remove_plug(q);
366 q->request_fn(q);
367 break;
368
369 case ELEVATOR_INSERT_SORT:
370 BUG_ON(!blk_fs_request(rq));
371 rq->flags |= REQ_SORTED;
372 if (q->last_merge == NULL && rq_mergeable(rq))
373 q->last_merge = rq;
374 /*
375 * Some ioscheds (cfq) run q->request_fn directly, so
376 * rq cannot be accessed after calling
377 * elevator_add_req_fn.
378 */
379 q->elevator->ops->elevator_add_req_fn(q, rq);
380 break;
381
382 default:
383 printk(KERN_ERR "%s: bad insertion point %d\n",
384 __FUNCTION__, where);
385 BUG();
386 }
387
388 if (blk_queue_plugged(q)) {
389 int nrq = q->rq.count[READ] + q->rq.count[WRITE]
390 - q->in_flight;
391
392 if (nrq >= q->unplug_thresh)
393 __generic_unplug_device(q);
394 }
395 }
396
397 void elv_add_request(request_queue_t *q, struct request *rq, int where,
398 int plug)
399 {
400 unsigned long flags;
401
402 spin_lock_irqsave(q->queue_lock, flags);
403 __elv_add_request(q, rq, where, plug);
404 spin_unlock_irqrestore(q->queue_lock, flags);
405 }
406
407 static inline struct request *__elv_next_request(request_queue_t *q)
408 {
409 struct request *rq;
410
411 if (unlikely(list_empty(&q->queue_head) &&
412 !q->elevator->ops->elevator_dispatch_fn(q, 0)))
413 return NULL;
414
415 rq = list_entry_rq(q->queue_head.next);
416
417 /*
418 * if this is a barrier write and the device has to issue a
419 * flush sequence to support it, check how far we are
420 */
421 if (blk_fs_request(rq) && blk_barrier_rq(rq)) {
422 BUG_ON(q->ordered == QUEUE_ORDERED_NONE);
423
424 if (q->ordered == QUEUE_ORDERED_FLUSH &&
425 !blk_barrier_preflush(rq))
426 rq = blk_start_pre_flush(q, rq);
427 }
428
429 return rq;
430 }
431
432 struct request *elv_next_request(request_queue_t *q)
433 {
434 struct request *rq;
435 int ret;
436
437 while ((rq = __elv_next_request(q)) != NULL) {
438 if (!(rq->flags & REQ_STARTED)) {
439 elevator_t *e = q->elevator;
440
441 /*
442 * This is the first time the device driver
443 * sees this request (possibly after
444 * requeueing). Notify IO scheduler.
445 */
446 if (blk_sorted_rq(rq) &&
447 e->ops->elevator_activate_req_fn)
448 e->ops->elevator_activate_req_fn(q, rq);
449
450 /*
451 * just mark as started even if we don't start
452 * it, a request that has been delayed should
453 * not be passed by new incoming requests
454 */
455 rq->flags |= REQ_STARTED;
456 }
457
458 if (!q->boundary_rq || q->boundary_rq == rq) {
459 q->end_sector = rq_end_sector(rq);
460 q->boundary_rq = NULL;
461 }
462
463 if ((rq->flags & REQ_DONTPREP) || !q->prep_rq_fn)
464 break;
465
466 ret = q->prep_rq_fn(q, rq);
467 if (ret == BLKPREP_OK) {
468 break;
469 } else if (ret == BLKPREP_DEFER) {
470 /*
471 * the request may have been (partially) prepped.
472 * we need to keep this request in the front to
473 * avoid resource deadlock. REQ_STARTED will
474 * prevent other fs requests from passing this one.
475 */
476 rq = NULL;
477 break;
478 } else if (ret == BLKPREP_KILL) {
479 int nr_bytes = rq->hard_nr_sectors << 9;
480
481 if (!nr_bytes)
482 nr_bytes = rq->data_len;
483
484 blkdev_dequeue_request(rq);
485 rq->flags |= REQ_QUIET;
486 end_that_request_chunk(rq, 0, nr_bytes);
487 end_that_request_last(rq);
488 } else {
489 printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
490 ret);
491 break;
492 }
493 }
494
495 return rq;
496 }
497
498 void elv_dequeue_request(request_queue_t *q, struct request *rq)
499 {
500 BUG_ON(list_empty(&rq->queuelist));
501
502 list_del_init(&rq->queuelist);
503
504 /*
505 * the time frame between a request being removed from the lists
506 * and to it is freed is accounted as io that is in progress at
507 * the driver side.
508 */
509 if (blk_account_rq(rq))
510 q->in_flight++;
511 }
512
513 int elv_queue_empty(request_queue_t *q)
514 {
515 elevator_t *e = q->elevator;
516
517 if (!list_empty(&q->queue_head))
518 return 0;
519
520 if (e->ops->elevator_queue_empty_fn)
521 return e->ops->elevator_queue_empty_fn(q);
522
523 return 1;
524 }
525
526 struct request *elv_latter_request(request_queue_t *q, struct request *rq)
527 {
528 struct list_head *next;
529
530 elevator_t *e = q->elevator;
531
532 if (e->ops->elevator_latter_req_fn)
533 return e->ops->elevator_latter_req_fn(q, rq);
534
535 next = rq->queuelist.next;
536 if (next != &q->queue_head && next != &rq->queuelist)
537 return list_entry_rq(next);
538
539 return NULL;
540 }
541
542 struct request *elv_former_request(request_queue_t *q, struct request *rq)
543 {
544 struct list_head *prev;
545
546 elevator_t *e = q->elevator;
547
548 if (e->ops->elevator_former_req_fn)
549 return e->ops->elevator_former_req_fn(q, rq);
550
551 prev = rq->queuelist.prev;
552 if (prev != &q->queue_head && prev != &rq->queuelist)
553 return list_entry_rq(prev);
554
555 return NULL;
556 }
557
558 int elv_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
559 gfp_t gfp_mask)
560 {
561 elevator_t *e = q->elevator;
562
563 if (e->ops->elevator_set_req_fn)
564 return e->ops->elevator_set_req_fn(q, rq, bio, gfp_mask);
565
566 rq->elevator_private = NULL;
567 return 0;
568 }
569
570 void elv_put_request(request_queue_t *q, struct request *rq)
571 {
572 elevator_t *e = q->elevator;
573
574 if (e->ops->elevator_put_req_fn)
575 e->ops->elevator_put_req_fn(q, rq);
576 }
577
578 int elv_may_queue(request_queue_t *q, int rw, struct bio *bio)
579 {
580 elevator_t *e = q->elevator;
581
582 if (e->ops->elevator_may_queue_fn)
583 return e->ops->elevator_may_queue_fn(q, rw, bio);
584
585 return ELV_MQUEUE_MAY;
586 }
587
588 void elv_completed_request(request_queue_t *q, struct request *rq)
589 {
590 elevator_t *e = q->elevator;
591
592 /*
593 * request is released from the driver, io must be done
594 */
595 if (blk_account_rq(rq)) {
596 q->in_flight--;
597 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
598 e->ops->elevator_completed_req_fn(q, rq);
599 }
600 }
601
602 int elv_register_queue(struct request_queue *q)
603 {
604 elevator_t *e = q->elevator;
605
606 e->kobj.parent = kobject_get(&q->kobj);
607 if (!e->kobj.parent)
608 return -EBUSY;
609
610 snprintf(e->kobj.name, KOBJ_NAME_LEN, "%s", "iosched");
611 e->kobj.ktype = e->elevator_type->elevator_ktype;
612
613 return kobject_register(&e->kobj);
614 }
615
616 void elv_unregister_queue(struct request_queue *q)
617 {
618 if (q) {
619 elevator_t *e = q->elevator;
620 kobject_unregister(&e->kobj);
621 kobject_put(&q->kobj);
622 }
623 }
624
625 int elv_register(struct elevator_type *e)
626 {
627 spin_lock_irq(&elv_list_lock);
628 if (elevator_find(e->elevator_name))
629 BUG();
630 list_add_tail(&e->list, &elv_list);
631 spin_unlock_irq(&elv_list_lock);
632
633 printk(KERN_INFO "io scheduler %s registered", e->elevator_name);
634 if (!strcmp(e->elevator_name, chosen_elevator))
635 printk(" (default)");
636 printk("\n");
637 return 0;
638 }
639 EXPORT_SYMBOL_GPL(elv_register);
640
641 void elv_unregister(struct elevator_type *e)
642 {
643 struct task_struct *g, *p;
644
645 /*
646 * Iterate every thread in the process to remove the io contexts.
647 */
648 read_lock(&tasklist_lock);
649 do_each_thread(g, p) {
650 struct io_context *ioc = p->io_context;
651 if (ioc && ioc->cic) {
652 ioc->cic->exit(ioc->cic);
653 ioc->cic->dtor(ioc->cic);
654 ioc->cic = NULL;
655 }
656 if (ioc && ioc->aic) {
657 ioc->aic->exit(ioc->aic);
658 ioc->aic->dtor(ioc->aic);
659 ioc->aic = NULL;
660 }
661 } while_each_thread(g, p);
662 read_unlock(&tasklist_lock);
663
664 spin_lock_irq(&elv_list_lock);
665 list_del_init(&e->list);
666 spin_unlock_irq(&elv_list_lock);
667 }
668 EXPORT_SYMBOL_GPL(elv_unregister);
669
670 /*
671 * switch to new_e io scheduler. be careful not to introduce deadlocks -
672 * we don't free the old io scheduler, before we have allocated what we
673 * need for the new one. this way we have a chance of going back to the old
674 * one, if the new one fails init for some reason.
675 */
676 static void elevator_switch(request_queue_t *q, struct elevator_type *new_e)
677 {
678 elevator_t *old_elevator, *e;
679
680 /*
681 * Allocate new elevator
682 */
683 e = kmalloc(sizeof(elevator_t), GFP_KERNEL);
684 if (!e)
685 goto error;
686
687 /*
688 * Turn on BYPASS and drain all requests w/ elevator private data
689 */
690 spin_lock_irq(q->queue_lock);
691
692 set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
693
694 while (q->elevator->ops->elevator_dispatch_fn(q, 1))
695 ;
696
697 while (q->rq.elvpriv) {
698 spin_unlock_irq(q->queue_lock);
699 msleep(10);
700 spin_lock_irq(q->queue_lock);
701 }
702
703 spin_unlock_irq(q->queue_lock);
704
705 /*
706 * unregister old elevator data
707 */
708 elv_unregister_queue(q);
709 old_elevator = q->elevator;
710
711 /*
712 * attach and start new elevator
713 */
714 if (elevator_attach(q, new_e, e))
715 goto fail;
716
717 if (elv_register_queue(q))
718 goto fail_register;
719
720 /*
721 * finally exit old elevator and turn off BYPASS.
722 */
723 elevator_exit(old_elevator);
724 clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
725 return;
726
727 fail_register:
728 /*
729 * switch failed, exit the new io scheduler and reattach the old
730 * one again (along with re-adding the sysfs dir)
731 */
732 elevator_exit(e);
733 e = NULL;
734 fail:
735 q->elevator = old_elevator;
736 elv_register_queue(q);
737 clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
738 kfree(e);
739 error:
740 elevator_put(new_e);
741 printk(KERN_ERR "elevator: switch to %s failed\n",new_e->elevator_name);
742 }
743
744 ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count)
745 {
746 char elevator_name[ELV_NAME_MAX];
747 struct elevator_type *e;
748
749 memset(elevator_name, 0, sizeof(elevator_name));
750 strncpy(elevator_name, name, sizeof(elevator_name));
751
752 if (elevator_name[strlen(elevator_name) - 1] == '\n')
753 elevator_name[strlen(elevator_name) - 1] = '\0';
754
755 e = elevator_get(elevator_name);
756 if (!e) {
757 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
758 return -EINVAL;
759 }
760
761 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
762 elevator_put(e);
763 return count;
764 }
765
766 elevator_switch(q, e);
767 return count;
768 }
769
770 ssize_t elv_iosched_show(request_queue_t *q, char *name)
771 {
772 elevator_t *e = q->elevator;
773 struct elevator_type *elv = e->elevator_type;
774 struct list_head *entry;
775 int len = 0;
776
777 spin_lock_irq(q->queue_lock);
778 list_for_each(entry, &elv_list) {
779 struct elevator_type *__e;
780
781 __e = list_entry(entry, struct elevator_type, list);
782 if (!strcmp(elv->elevator_name, __e->elevator_name))
783 len += sprintf(name+len, "[%s] ", elv->elevator_name);
784 else
785 len += sprintf(name+len, "%s ", __e->elevator_name);
786 }
787 spin_unlock_irq(q->queue_lock);
788
789 len += sprintf(len+name, "\n");
790 return len;
791 }
792
793 EXPORT_SYMBOL(elv_dispatch_sort);
794 EXPORT_SYMBOL(elv_add_request);
795 EXPORT_SYMBOL(__elv_add_request);
796 EXPORT_SYMBOL(elv_requeue_request);
797 EXPORT_SYMBOL(elv_next_request);
798 EXPORT_SYMBOL(elv_dequeue_request);
799 EXPORT_SYMBOL(elv_queue_empty);
800 EXPORT_SYMBOL(elv_completed_request);
801 EXPORT_SYMBOL(elevator_exit);
802 EXPORT_SYMBOL(elevator_init);