Merge tag 'v3.10.102' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk.h"
18 #include "blk-cgroup.h"
19
20 /*
21 * tunables
22 */
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const int cfq_slice_sync = HZ / 10;
31 static int cfq_slice_async = HZ / 25;
32 static const int cfq_slice_async_rq = 2;
33 static int cfq_slice_idle = HZ / 125;
34 static int cfq_group_idle = HZ / 125;
35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
37
38 /*
39 * offset from end of service tree
40 */
41 #define CFQ_IDLE_DELAY (HZ / 5)
42
43 /*
44 * below this threshold, we consider thinktime immediate
45 */
46 #define CFQ_MIN_TT (2)
47
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
51
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56
57 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
60
61 static struct kmem_cache *cfq_pool;
62
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
69
70 struct cfq_ttime {
71 unsigned long last_end_request;
72
73 unsigned long ttime_total;
74 unsigned long ttime_samples;
75 unsigned long ttime_mean;
76 };
77
78 /*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84 struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
87 unsigned count;
88 u64 min_vdisktime;
89 struct cfq_ttime ttime;
90 };
91 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
92 .ttime = {.last_end_request = jiffies,},}
93
94 /*
95 * Per process-grouping structure
96 */
97 struct cfq_queue {
98 /* reference count */
99 int ref;
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
122
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
125 unsigned int allocated_slice;
126 unsigned int slice_dispatch;
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
129 unsigned long slice_end;
130 long slice_resid;
131
132 /* pending priority requests */
133 int prio_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
136
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class;
140
141 pid_t pid;
142
143 u32 seek_history;
144 sector_t last_request_pos;
145
146 struct cfq_rb_root *service_tree;
147 struct cfq_queue *new_cfqq;
148 struct cfq_group *cfqg;
149 /* Number of sectors dispatched from queue in single dispatch round */
150 unsigned long nr_sectors;
151 };
152
153 /*
154 * First index in the service_trees.
155 * IDLE is handled separately, so it has negative index
156 */
157 enum wl_class_t {
158 BE_WORKLOAD = 0,
159 RT_WORKLOAD = 1,
160 IDLE_WORKLOAD = 2,
161 CFQ_PRIO_NR,
162 };
163
164 /*
165 * Second index in the service_trees.
166 */
167 enum wl_type_t {
168 ASYNC_WORKLOAD = 0,
169 SYNC_NOIDLE_WORKLOAD = 1,
170 SYNC_WORKLOAD = 2
171 };
172
173 struct cfqg_stats {
174 #ifdef CONFIG_CFQ_GROUP_IOSCHED
175 /* total bytes transferred */
176 struct blkg_rwstat service_bytes;
177 /* total IOs serviced, post merge */
178 struct blkg_rwstat serviced;
179 /* number of ios merged */
180 struct blkg_rwstat merged;
181 /* total time spent on device in ns, may not be accurate w/ queueing */
182 struct blkg_rwstat service_time;
183 /* total time spent waiting in scheduler queue in ns */
184 struct blkg_rwstat wait_time;
185 /* number of IOs queued up */
186 struct blkg_rwstat queued;
187 /* total sectors transferred */
188 struct blkg_stat sectors;
189 /* total disk time and nr sectors dispatched by this group */
190 struct blkg_stat time;
191 #ifdef CONFIG_DEBUG_BLK_CGROUP
192 /* time not charged to this cgroup */
193 struct blkg_stat unaccounted_time;
194 /* sum of number of ios queued across all samples */
195 struct blkg_stat avg_queue_size_sum;
196 /* count of samples taken for average */
197 struct blkg_stat avg_queue_size_samples;
198 /* how many times this group has been removed from service tree */
199 struct blkg_stat dequeue;
200 /* total time spent waiting for it to be assigned a timeslice. */
201 struct blkg_stat group_wait_time;
202 /* time spent idling for this blkcg_gq */
203 struct blkg_stat idle_time;
204 /* total time with empty current active q with other requests queued */
205 struct blkg_stat empty_time;
206 /* fields after this shouldn't be cleared on stat reset */
207 uint64_t start_group_wait_time;
208 uint64_t start_idle_time;
209 uint64_t start_empty_time;
210 uint16_t flags;
211 #endif /* CONFIG_DEBUG_BLK_CGROUP */
212 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
213 };
214
215 /* This is per cgroup per device grouping structure */
216 struct cfq_group {
217 /* must be the first member */
218 struct blkg_policy_data pd;
219
220 /* group service_tree member */
221 struct rb_node rb_node;
222
223 /* group service_tree key */
224 u64 vdisktime;
225
226 /*
227 * The number of active cfqgs and sum of their weights under this
228 * cfqg. This covers this cfqg's leaf_weight and all children's
229 * weights, but does not cover weights of further descendants.
230 *
231 * If a cfqg is on the service tree, it's active. An active cfqg
232 * also activates its parent and contributes to the children_weight
233 * of the parent.
234 */
235 int nr_active;
236 unsigned int children_weight;
237
238 /*
239 * vfraction is the fraction of vdisktime that the tasks in this
240 * cfqg are entitled to. This is determined by compounding the
241 * ratios walking up from this cfqg to the root.
242 *
243 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
244 * vfractions on a service tree is approximately 1. The sum may
245 * deviate a bit due to rounding errors and fluctuations caused by
246 * cfqgs entering and leaving the service tree.
247 */
248 unsigned int vfraction;
249
250 /*
251 * There are two weights - (internal) weight is the weight of this
252 * cfqg against the sibling cfqgs. leaf_weight is the wight of
253 * this cfqg against the child cfqgs. For the root cfqg, both
254 * weights are kept in sync for backward compatibility.
255 */
256 unsigned int weight;
257 unsigned int new_weight;
258 unsigned int dev_weight;
259
260 unsigned int leaf_weight;
261 unsigned int new_leaf_weight;
262 unsigned int dev_leaf_weight;
263
264 /* number of cfqq currently on this group */
265 int nr_cfqq;
266
267 /*
268 * Per group busy queues average. Useful for workload slice calc. We
269 * create the array for each prio class but at run time it is used
270 * only for RT and BE class and slot for IDLE class remains unused.
271 * This is primarily done to avoid confusion and a gcc warning.
272 */
273 unsigned int busy_queues_avg[CFQ_PRIO_NR];
274 /*
275 * rr lists of queues with requests. We maintain service trees for
276 * RT and BE classes. These trees are subdivided in subclasses
277 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
278 * class there is no subclassification and all the cfq queues go on
279 * a single tree service_tree_idle.
280 * Counts are embedded in the cfq_rb_root
281 */
282 struct cfq_rb_root service_trees[2][3];
283 struct cfq_rb_root service_tree_idle;
284
285 unsigned long saved_wl_slice;
286 enum wl_type_t saved_wl_type;
287 enum wl_class_t saved_wl_class;
288
289 /* number of requests that are on the dispatch list or inside driver */
290 int dispatched;
291 struct cfq_ttime ttime;
292 struct cfqg_stats stats; /* stats for this cfqg */
293 struct cfqg_stats dead_stats; /* stats pushed from dead children */
294 };
295
296 struct cfq_io_cq {
297 struct io_cq icq; /* must be the first member */
298 struct cfq_queue *cfqq[2];
299 struct cfq_ttime ttime;
300 int ioprio; /* the current ioprio */
301 #ifdef CONFIG_CFQ_GROUP_IOSCHED
302 uint64_t blkcg_id; /* the current blkcg ID */
303 #endif
304 };
305
306 /*
307 * Per block device queue structure
308 */
309 struct cfq_data {
310 struct request_queue *queue;
311 /* Root service tree for cfq_groups */
312 struct cfq_rb_root grp_service_tree;
313 struct cfq_group *root_group;
314
315 /*
316 * The priority currently being served
317 */
318 enum wl_class_t serving_wl_class;
319 enum wl_type_t serving_wl_type;
320 unsigned long workload_expires;
321 struct cfq_group *serving_group;
322
323 /*
324 * Each priority tree is sorted by next_request position. These
325 * trees are used when determining if two or more queues are
326 * interleaving requests (see cfq_close_cooperator).
327 */
328 struct rb_root prio_trees[CFQ_PRIO_LISTS];
329
330 unsigned int busy_queues;
331 unsigned int busy_sync_queues;
332
333 int rq_in_driver;
334 int rq_in_flight[2];
335
336 /*
337 * queue-depth detection
338 */
339 int rq_queued;
340 int hw_tag;
341 /*
342 * hw_tag can be
343 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
344 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
345 * 0 => no NCQ
346 */
347 int hw_tag_est_depth;
348 unsigned int hw_tag_samples;
349
350 /*
351 * idle window management
352 */
353 struct timer_list idle_slice_timer;
354 struct work_struct unplug_work;
355
356 struct cfq_queue *active_queue;
357 struct cfq_io_cq *active_cic;
358
359 /*
360 * async queue for each priority case
361 */
362 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
363 struct cfq_queue *async_idle_cfqq;
364
365 sector_t last_position;
366
367 /*
368 * tunables, see top of file
369 */
370 unsigned int cfq_quantum;
371 unsigned int cfq_fifo_expire[2];
372 unsigned int cfq_back_penalty;
373 unsigned int cfq_back_max;
374 unsigned int cfq_slice[2];
375 unsigned int cfq_slice_async_rq;
376 unsigned int cfq_slice_idle;
377 unsigned int cfq_group_idle;
378 unsigned int cfq_latency;
379 unsigned int cfq_target_latency;
380
381 /*
382 * Fallback dummy cfqq for extreme OOM conditions
383 */
384 struct cfq_queue oom_cfqq;
385
386 unsigned long last_delayed_sync;
387 };
388
389 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
390
391 static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
392 enum wl_class_t class,
393 enum wl_type_t type)
394 {
395 if (!cfqg)
396 return NULL;
397
398 if (class == IDLE_WORKLOAD)
399 return &cfqg->service_tree_idle;
400
401 return &cfqg->service_trees[class][type];
402 }
403
404 enum cfqq_state_flags {
405 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
406 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
407 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
408 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
409 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
410 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
411 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
412 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
413 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
414 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
415 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
416 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
417 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
418 };
419
420 #define CFQ_CFQQ_FNS(name) \
421 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
422 { \
423 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
424 } \
425 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
426 { \
427 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
428 } \
429 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
430 { \
431 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
432 }
433
434 CFQ_CFQQ_FNS(on_rr);
435 CFQ_CFQQ_FNS(wait_request);
436 CFQ_CFQQ_FNS(must_dispatch);
437 CFQ_CFQQ_FNS(must_alloc_slice);
438 CFQ_CFQQ_FNS(fifo_expire);
439 CFQ_CFQQ_FNS(idle_window);
440 CFQ_CFQQ_FNS(prio_changed);
441 CFQ_CFQQ_FNS(slice_new);
442 CFQ_CFQQ_FNS(sync);
443 CFQ_CFQQ_FNS(coop);
444 CFQ_CFQQ_FNS(split_coop);
445 CFQ_CFQQ_FNS(deep);
446 CFQ_CFQQ_FNS(wait_busy);
447 #undef CFQ_CFQQ_FNS
448
449 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
450 {
451 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
452 }
453
454 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
455 {
456 return pd_to_blkg(&cfqg->pd);
457 }
458
459 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
460
461 /* cfqg stats flags */
462 enum cfqg_stats_flags {
463 CFQG_stats_waiting = 0,
464 CFQG_stats_idling,
465 CFQG_stats_empty,
466 };
467
468 #define CFQG_FLAG_FNS(name) \
469 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
470 { \
471 stats->flags |= (1 << CFQG_stats_##name); \
472 } \
473 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
474 { \
475 stats->flags &= ~(1 << CFQG_stats_##name); \
476 } \
477 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
478 { \
479 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
480 } \
481
482 CFQG_FLAG_FNS(waiting)
483 CFQG_FLAG_FNS(idling)
484 CFQG_FLAG_FNS(empty)
485 #undef CFQG_FLAG_FNS
486
487 /* This should be called with the queue_lock held. */
488 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
489 {
490 unsigned long long now;
491
492 if (!cfqg_stats_waiting(stats))
493 return;
494
495 now = sched_clock();
496 if (time_after64(now, stats->start_group_wait_time))
497 blkg_stat_add(&stats->group_wait_time,
498 now - stats->start_group_wait_time);
499 cfqg_stats_clear_waiting(stats);
500 }
501
502 /* This should be called with the queue_lock held. */
503 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
504 struct cfq_group *curr_cfqg)
505 {
506 struct cfqg_stats *stats = &cfqg->stats;
507
508 if (cfqg_stats_waiting(stats))
509 return;
510 if (cfqg == curr_cfqg)
511 return;
512 stats->start_group_wait_time = sched_clock();
513 cfqg_stats_mark_waiting(stats);
514 }
515
516 /* This should be called with the queue_lock held. */
517 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
518 {
519 unsigned long long now;
520
521 if (!cfqg_stats_empty(stats))
522 return;
523
524 now = sched_clock();
525 if (time_after64(now, stats->start_empty_time))
526 blkg_stat_add(&stats->empty_time,
527 now - stats->start_empty_time);
528 cfqg_stats_clear_empty(stats);
529 }
530
531 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
532 {
533 blkg_stat_add(&cfqg->stats.dequeue, 1);
534 }
535
536 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
537 {
538 struct cfqg_stats *stats = &cfqg->stats;
539
540 if (blkg_rwstat_total(&stats->queued))
541 return;
542
543 /*
544 * group is already marked empty. This can happen if cfqq got new
545 * request in parent group and moved to this group while being added
546 * to service tree. Just ignore the event and move on.
547 */
548 if (cfqg_stats_empty(stats))
549 return;
550
551 stats->start_empty_time = sched_clock();
552 cfqg_stats_mark_empty(stats);
553 }
554
555 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
556 {
557 struct cfqg_stats *stats = &cfqg->stats;
558
559 if (cfqg_stats_idling(stats)) {
560 unsigned long long now = sched_clock();
561
562 if (time_after64(now, stats->start_idle_time))
563 blkg_stat_add(&stats->idle_time,
564 now - stats->start_idle_time);
565 cfqg_stats_clear_idling(stats);
566 }
567 }
568
569 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
570 {
571 struct cfqg_stats *stats = &cfqg->stats;
572
573 BUG_ON(cfqg_stats_idling(stats));
574
575 stats->start_idle_time = sched_clock();
576 cfqg_stats_mark_idling(stats);
577 }
578
579 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
580 {
581 struct cfqg_stats *stats = &cfqg->stats;
582
583 blkg_stat_add(&stats->avg_queue_size_sum,
584 blkg_rwstat_total(&stats->queued));
585 blkg_stat_add(&stats->avg_queue_size_samples, 1);
586 cfqg_stats_update_group_wait_time(stats);
587 }
588
589 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
590
591 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
592 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
593 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
594 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
595 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
596 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
597 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
598
599 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
600
601 #ifdef CONFIG_CFQ_GROUP_IOSCHED
602
603 static struct blkcg_policy blkcg_policy_cfq;
604
605 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
606 {
607 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
608 }
609
610 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
611 {
612 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
613
614 return pblkg ? blkg_to_cfqg(pblkg) : NULL;
615 }
616
617 static inline void cfqg_get(struct cfq_group *cfqg)
618 {
619 return blkg_get(cfqg_to_blkg(cfqg));
620 }
621
622 static inline void cfqg_put(struct cfq_group *cfqg)
623 {
624 return blkg_put(cfqg_to_blkg(cfqg));
625 }
626
627 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
628 char __pbuf[128]; \
629 \
630 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
631 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
632 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
633 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
634 __pbuf, ##args); \
635 } while (0)
636
637 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
638 char __pbuf[128]; \
639 \
640 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
641 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
642 } while (0)
643
644 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
645 struct cfq_group *curr_cfqg, int rw)
646 {
647 blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
648 cfqg_stats_end_empty_time(&cfqg->stats);
649 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
650 }
651
652 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
653 unsigned long time, unsigned long unaccounted_time)
654 {
655 blkg_stat_add(&cfqg->stats.time, time);
656 #ifdef CONFIG_DEBUG_BLK_CGROUP
657 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
658 #endif
659 }
660
661 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
662 {
663 blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
664 }
665
666 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
667 {
668 blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
669 }
670
671 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
672 uint64_t bytes, int rw)
673 {
674 blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
675 blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
676 blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
677 }
678
679 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
680 uint64_t start_time, uint64_t io_start_time, int rw)
681 {
682 struct cfqg_stats *stats = &cfqg->stats;
683 unsigned long long now = sched_clock();
684
685 if (time_after64(now, io_start_time))
686 blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
687 if (time_after64(io_start_time, start_time))
688 blkg_rwstat_add(&stats->wait_time, rw,
689 io_start_time - start_time);
690 }
691
692 /* @stats = 0 */
693 static void cfqg_stats_reset(struct cfqg_stats *stats)
694 {
695 /* queued stats shouldn't be cleared */
696 blkg_rwstat_reset(&stats->service_bytes);
697 blkg_rwstat_reset(&stats->serviced);
698 blkg_rwstat_reset(&stats->merged);
699 blkg_rwstat_reset(&stats->service_time);
700 blkg_rwstat_reset(&stats->wait_time);
701 blkg_stat_reset(&stats->time);
702 #ifdef CONFIG_DEBUG_BLK_CGROUP
703 blkg_stat_reset(&stats->unaccounted_time);
704 blkg_stat_reset(&stats->avg_queue_size_sum);
705 blkg_stat_reset(&stats->avg_queue_size_samples);
706 blkg_stat_reset(&stats->dequeue);
707 blkg_stat_reset(&stats->group_wait_time);
708 blkg_stat_reset(&stats->idle_time);
709 blkg_stat_reset(&stats->empty_time);
710 #endif
711 }
712
713 /* @to += @from */
714 static void cfqg_stats_merge(struct cfqg_stats *to, struct cfqg_stats *from)
715 {
716 /* queued stats shouldn't be cleared */
717 blkg_rwstat_merge(&to->service_bytes, &from->service_bytes);
718 blkg_rwstat_merge(&to->serviced, &from->serviced);
719 blkg_rwstat_merge(&to->merged, &from->merged);
720 blkg_rwstat_merge(&to->service_time, &from->service_time);
721 blkg_rwstat_merge(&to->wait_time, &from->wait_time);
722 blkg_stat_merge(&from->time, &from->time);
723 #ifdef CONFIG_DEBUG_BLK_CGROUP
724 blkg_stat_merge(&to->unaccounted_time, &from->unaccounted_time);
725 blkg_stat_merge(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
726 blkg_stat_merge(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
727 blkg_stat_merge(&to->dequeue, &from->dequeue);
728 blkg_stat_merge(&to->group_wait_time, &from->group_wait_time);
729 blkg_stat_merge(&to->idle_time, &from->idle_time);
730 blkg_stat_merge(&to->empty_time, &from->empty_time);
731 #endif
732 }
733
734 /*
735 * Transfer @cfqg's stats to its parent's dead_stats so that the ancestors'
736 * recursive stats can still account for the amount used by this cfqg after
737 * it's gone.
738 */
739 static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
740 {
741 struct cfq_group *parent = cfqg_parent(cfqg);
742
743 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
744
745 if (unlikely(!parent))
746 return;
747
748 cfqg_stats_merge(&parent->dead_stats, &cfqg->stats);
749 cfqg_stats_merge(&parent->dead_stats, &cfqg->dead_stats);
750 cfqg_stats_reset(&cfqg->stats);
751 cfqg_stats_reset(&cfqg->dead_stats);
752 }
753
754 #else /* CONFIG_CFQ_GROUP_IOSCHED */
755
756 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
757 static inline void cfqg_get(struct cfq_group *cfqg) { }
758 static inline void cfqg_put(struct cfq_group *cfqg) { }
759
760 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
761 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
762 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
763 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
764 ##args)
765 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
766
767 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
768 struct cfq_group *curr_cfqg, int rw) { }
769 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
770 unsigned long time, unsigned long unaccounted_time) { }
771 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
772 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
773 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
774 uint64_t bytes, int rw) { }
775 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
776 uint64_t start_time, uint64_t io_start_time, int rw) { }
777
778 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
779
780 #define cfq_log(cfqd, fmt, args...) \
781 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
782
783 /* Traverses through cfq group service trees */
784 #define for_each_cfqg_st(cfqg, i, j, st) \
785 for (i = 0; i <= IDLE_WORKLOAD; i++) \
786 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
787 : &cfqg->service_tree_idle; \
788 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
789 (i == IDLE_WORKLOAD && j == 0); \
790 j++, st = i < IDLE_WORKLOAD ? \
791 &cfqg->service_trees[i][j]: NULL) \
792
793 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
794 struct cfq_ttime *ttime, bool group_idle)
795 {
796 unsigned long slice;
797 if (!sample_valid(ttime->ttime_samples))
798 return false;
799 if (group_idle)
800 slice = cfqd->cfq_group_idle;
801 else
802 slice = cfqd->cfq_slice_idle;
803 return ttime->ttime_mean > slice;
804 }
805
806 static inline bool iops_mode(struct cfq_data *cfqd)
807 {
808 /*
809 * If we are not idling on queues and it is a NCQ drive, parallel
810 * execution of requests is on and measuring time is not possible
811 * in most of the cases until and unless we drive shallower queue
812 * depths and that becomes a performance bottleneck. In such cases
813 * switch to start providing fairness in terms of number of IOs.
814 */
815 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
816 return true;
817 else
818 return false;
819 }
820
821 static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
822 {
823 if (cfq_class_idle(cfqq))
824 return IDLE_WORKLOAD;
825 if (cfq_class_rt(cfqq))
826 return RT_WORKLOAD;
827 return BE_WORKLOAD;
828 }
829
830
831 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
832 {
833 if (!cfq_cfqq_sync(cfqq))
834 return ASYNC_WORKLOAD;
835 if (!cfq_cfqq_idle_window(cfqq))
836 return SYNC_NOIDLE_WORKLOAD;
837 return SYNC_WORKLOAD;
838 }
839
840 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
841 struct cfq_data *cfqd,
842 struct cfq_group *cfqg)
843 {
844 if (wl_class == IDLE_WORKLOAD)
845 return cfqg->service_tree_idle.count;
846
847 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
848 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
849 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
850 }
851
852 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
853 struct cfq_group *cfqg)
854 {
855 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
856 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
857 }
858
859 static void cfq_dispatch_insert(struct request_queue *, struct request *);
860 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
861 struct cfq_io_cq *cic, struct bio *bio,
862 gfp_t gfp_mask);
863
864 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
865 {
866 /* cic->icq is the first member, %NULL will convert to %NULL */
867 return container_of(icq, struct cfq_io_cq, icq);
868 }
869
870 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
871 struct io_context *ioc)
872 {
873 if (ioc)
874 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
875 return NULL;
876 }
877
878 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
879 {
880 return cic->cfqq[is_sync];
881 }
882
883 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
884 bool is_sync)
885 {
886 cic->cfqq[is_sync] = cfqq;
887 }
888
889 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
890 {
891 return cic->icq.q->elevator->elevator_data;
892 }
893
894 /*
895 * We regard a request as SYNC, if it's either a read or has the SYNC bit
896 * set (in which case it could also be direct WRITE).
897 */
898 static inline bool cfq_bio_sync(struct bio *bio)
899 {
900 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
901 }
902
903 /*
904 * scheduler run of queue, if there are requests pending and no one in the
905 * driver that will restart queueing
906 */
907 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
908 {
909 if (cfqd->busy_queues) {
910 cfq_log(cfqd, "schedule dispatch");
911 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
912 }
913 }
914
915 /*
916 * Scale schedule slice based on io priority. Use the sync time slice only
917 * if a queue is marked sync and has sync io queued. A sync queue with async
918 * io only, should not get full sync slice length.
919 */
920 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
921 unsigned short prio)
922 {
923 const int base_slice = cfqd->cfq_slice[sync];
924
925 WARN_ON(prio >= IOPRIO_BE_NR);
926
927 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
928 }
929
930 static inline int
931 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
932 {
933 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
934 }
935
936 /**
937 * cfqg_scale_charge - scale disk time charge according to cfqg weight
938 * @charge: disk time being charged
939 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
940 *
941 * Scale @charge according to @vfraction, which is in range (0, 1]. The
942 * scaling is inversely proportional.
943 *
944 * scaled = charge / vfraction
945 *
946 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
947 */
948 static inline u64 cfqg_scale_charge(unsigned long charge,
949 unsigned int vfraction)
950 {
951 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
952
953 /* charge / vfraction */
954 c <<= CFQ_SERVICE_SHIFT;
955 do_div(c, vfraction);
956 return c;
957 }
958
959 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
960 {
961 s64 delta = (s64)(vdisktime - min_vdisktime);
962 if (delta > 0)
963 min_vdisktime = vdisktime;
964
965 return min_vdisktime;
966 }
967
968 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
969 {
970 s64 delta = (s64)(vdisktime - min_vdisktime);
971 if (delta < 0)
972 min_vdisktime = vdisktime;
973
974 return min_vdisktime;
975 }
976
977 static void update_min_vdisktime(struct cfq_rb_root *st)
978 {
979 struct cfq_group *cfqg;
980
981 if (st->left) {
982 cfqg = rb_entry_cfqg(st->left);
983 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
984 cfqg->vdisktime);
985 }
986 }
987
988 /*
989 * get averaged number of queues of RT/BE priority.
990 * average is updated, with a formula that gives more weight to higher numbers,
991 * to quickly follows sudden increases and decrease slowly
992 */
993
994 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
995 struct cfq_group *cfqg, bool rt)
996 {
997 unsigned min_q, max_q;
998 unsigned mult = cfq_hist_divisor - 1;
999 unsigned round = cfq_hist_divisor / 2;
1000 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1001
1002 min_q = min(cfqg->busy_queues_avg[rt], busy);
1003 max_q = max(cfqg->busy_queues_avg[rt], busy);
1004 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1005 cfq_hist_divisor;
1006 return cfqg->busy_queues_avg[rt];
1007 }
1008
1009 static inline unsigned
1010 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1011 {
1012 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1013 }
1014
1015 static inline unsigned
1016 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1017 {
1018 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
1019 if (cfqd->cfq_latency) {
1020 /*
1021 * interested queues (we consider only the ones with the same
1022 * priority class in the cfq group)
1023 */
1024 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1025 cfq_class_rt(cfqq));
1026 unsigned sync_slice = cfqd->cfq_slice[1];
1027 unsigned expect_latency = sync_slice * iq;
1028 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1029
1030 if (expect_latency > group_slice) {
1031 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
1032 /* scale low_slice according to IO priority
1033 * and sync vs async */
1034 unsigned low_slice =
1035 min(slice, base_low_slice * slice / sync_slice);
1036 /* the adapted slice value is scaled to fit all iqs
1037 * into the target latency */
1038 slice = max(slice * group_slice / expect_latency,
1039 low_slice);
1040 }
1041 }
1042 return slice;
1043 }
1044
1045 static inline void
1046 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1047 {
1048 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1049
1050 cfqq->slice_start = jiffies;
1051 cfqq->slice_end = jiffies + slice;
1052 cfqq->allocated_slice = slice;
1053 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
1054 }
1055
1056 /*
1057 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1058 * isn't valid until the first request from the dispatch is activated
1059 * and the slice time set.
1060 */
1061 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1062 {
1063 if (cfq_cfqq_slice_new(cfqq))
1064 return false;
1065 if (time_before(jiffies, cfqq->slice_end))
1066 return false;
1067
1068 return true;
1069 }
1070
1071 /*
1072 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1073 * We choose the request that is closest to the head right now. Distance
1074 * behind the head is penalized and only allowed to a certain extent.
1075 */
1076 static struct request *
1077 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1078 {
1079 sector_t s1, s2, d1 = 0, d2 = 0;
1080 unsigned long back_max;
1081 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1082 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1083 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1084
1085 if (rq1 == NULL || rq1 == rq2)
1086 return rq2;
1087 if (rq2 == NULL)
1088 return rq1;
1089
1090 if (rq_is_sync(rq1) != rq_is_sync(rq2))
1091 return rq_is_sync(rq1) ? rq1 : rq2;
1092
1093 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1094 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1095
1096 s1 = blk_rq_pos(rq1);
1097 s2 = blk_rq_pos(rq2);
1098
1099 /*
1100 * by definition, 1KiB is 2 sectors
1101 */
1102 back_max = cfqd->cfq_back_max * 2;
1103
1104 /*
1105 * Strict one way elevator _except_ in the case where we allow
1106 * short backward seeks which are biased as twice the cost of a
1107 * similar forward seek.
1108 */
1109 if (s1 >= last)
1110 d1 = s1 - last;
1111 else if (s1 + back_max >= last)
1112 d1 = (last - s1) * cfqd->cfq_back_penalty;
1113 else
1114 wrap |= CFQ_RQ1_WRAP;
1115
1116 if (s2 >= last)
1117 d2 = s2 - last;
1118 else if (s2 + back_max >= last)
1119 d2 = (last - s2) * cfqd->cfq_back_penalty;
1120 else
1121 wrap |= CFQ_RQ2_WRAP;
1122
1123 /* Found required data */
1124
1125 /*
1126 * By doing switch() on the bit mask "wrap" we avoid having to
1127 * check two variables for all permutations: --> faster!
1128 */
1129 switch (wrap) {
1130 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1131 if (d1 < d2)
1132 return rq1;
1133 else if (d2 < d1)
1134 return rq2;
1135 else {
1136 if (s1 >= s2)
1137 return rq1;
1138 else
1139 return rq2;
1140 }
1141
1142 case CFQ_RQ2_WRAP:
1143 return rq1;
1144 case CFQ_RQ1_WRAP:
1145 return rq2;
1146 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1147 default:
1148 /*
1149 * Since both rqs are wrapped,
1150 * start with the one that's further behind head
1151 * (--> only *one* back seek required),
1152 * since back seek takes more time than forward.
1153 */
1154 if (s1 <= s2)
1155 return rq1;
1156 else
1157 return rq2;
1158 }
1159 }
1160
1161 /*
1162 * The below is leftmost cache rbtree addon
1163 */
1164 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1165 {
1166 /* Service tree is empty */
1167 if (!root->count)
1168 return NULL;
1169
1170 if (!root->left)
1171 root->left = rb_first(&root->rb);
1172
1173 if (root->left)
1174 return rb_entry(root->left, struct cfq_queue, rb_node);
1175
1176 return NULL;
1177 }
1178
1179 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1180 {
1181 if (!root->left)
1182 root->left = rb_first(&root->rb);
1183
1184 if (root->left)
1185 return rb_entry_cfqg(root->left);
1186
1187 return NULL;
1188 }
1189
1190 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1191 {
1192 rb_erase(n, root);
1193 RB_CLEAR_NODE(n);
1194 }
1195
1196 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1197 {
1198 if (root->left == n)
1199 root->left = NULL;
1200 rb_erase_init(n, &root->rb);
1201 --root->count;
1202 }
1203
1204 /*
1205 * would be nice to take fifo expire time into account as well
1206 */
1207 static struct request *
1208 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1209 struct request *last)
1210 {
1211 struct rb_node *rbnext = rb_next(&last->rb_node);
1212 struct rb_node *rbprev = rb_prev(&last->rb_node);
1213 struct request *next = NULL, *prev = NULL;
1214
1215 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1216
1217 if (rbprev)
1218 prev = rb_entry_rq(rbprev);
1219
1220 if (rbnext)
1221 next = rb_entry_rq(rbnext);
1222 else {
1223 rbnext = rb_first(&cfqq->sort_list);
1224 if (rbnext && rbnext != &last->rb_node)
1225 next = rb_entry_rq(rbnext);
1226 }
1227
1228 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1229 }
1230
1231 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1232 struct cfq_queue *cfqq)
1233 {
1234 /*
1235 * just an approximation, should be ok.
1236 */
1237 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1238 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1239 }
1240
1241 static inline s64
1242 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1243 {
1244 return cfqg->vdisktime - st->min_vdisktime;
1245 }
1246
1247 static void
1248 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1249 {
1250 struct rb_node **node = &st->rb.rb_node;
1251 struct rb_node *parent = NULL;
1252 struct cfq_group *__cfqg;
1253 s64 key = cfqg_key(st, cfqg);
1254 int left = 1;
1255
1256 while (*node != NULL) {
1257 parent = *node;
1258 __cfqg = rb_entry_cfqg(parent);
1259
1260 if (key < cfqg_key(st, __cfqg))
1261 node = &parent->rb_left;
1262 else {
1263 node = &parent->rb_right;
1264 left = 0;
1265 }
1266 }
1267
1268 if (left)
1269 st->left = &cfqg->rb_node;
1270
1271 rb_link_node(&cfqg->rb_node, parent, node);
1272 rb_insert_color(&cfqg->rb_node, &st->rb);
1273 }
1274
1275 static void
1276 cfq_update_group_weight(struct cfq_group *cfqg)
1277 {
1278 if (cfqg->new_weight) {
1279 cfqg->weight = cfqg->new_weight;
1280 cfqg->new_weight = 0;
1281 }
1282 }
1283
1284 static void
1285 cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1286 {
1287 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1288
1289 if (cfqg->new_leaf_weight) {
1290 cfqg->leaf_weight = cfqg->new_leaf_weight;
1291 cfqg->new_leaf_weight = 0;
1292 }
1293 }
1294
1295 static void
1296 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1297 {
1298 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1299 struct cfq_group *pos = cfqg;
1300 struct cfq_group *parent;
1301 bool propagate;
1302
1303 /* add to the service tree */
1304 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1305
1306 cfq_update_group_leaf_weight(cfqg);
1307 __cfq_group_service_tree_add(st, cfqg);
1308
1309 /*
1310 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1311 * entitled to. vfraction is calculated by walking the tree
1312 * towards the root calculating the fraction it has at each level.
1313 * The compounded ratio is how much vfraction @cfqg owns.
1314 *
1315 * Start with the proportion tasks in this cfqg has against active
1316 * children cfqgs - its leaf_weight against children_weight.
1317 */
1318 propagate = !pos->nr_active++;
1319 pos->children_weight += pos->leaf_weight;
1320 vfr = vfr * pos->leaf_weight / pos->children_weight;
1321
1322 /*
1323 * Compound ->weight walking up the tree. Both activation and
1324 * vfraction calculation are done in the same loop. Propagation
1325 * stops once an already activated node is met. vfraction
1326 * calculation should always continue to the root.
1327 */
1328 while ((parent = cfqg_parent(pos))) {
1329 if (propagate) {
1330 cfq_update_group_weight(pos);
1331 propagate = !parent->nr_active++;
1332 parent->children_weight += pos->weight;
1333 }
1334 vfr = vfr * pos->weight / parent->children_weight;
1335 pos = parent;
1336 }
1337
1338 cfqg->vfraction = max_t(unsigned, vfr, 1);
1339 }
1340
1341 static void
1342 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1343 {
1344 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1345 struct cfq_group *__cfqg;
1346 struct rb_node *n;
1347
1348 cfqg->nr_cfqq++;
1349 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1350 return;
1351
1352 /*
1353 * Currently put the group at the end. Later implement something
1354 * so that groups get lesser vtime based on their weights, so that
1355 * if group does not loose all if it was not continuously backlogged.
1356 */
1357 n = rb_last(&st->rb);
1358 if (n) {
1359 __cfqg = rb_entry_cfqg(n);
1360 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1361 } else
1362 cfqg->vdisktime = st->min_vdisktime;
1363 cfq_group_service_tree_add(st, cfqg);
1364 }
1365
1366 static void
1367 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1368 {
1369 struct cfq_group *pos = cfqg;
1370 bool propagate;
1371
1372 /*
1373 * Undo activation from cfq_group_service_tree_add(). Deactivate
1374 * @cfqg and propagate deactivation upwards.
1375 */
1376 propagate = !--pos->nr_active;
1377 pos->children_weight -= pos->leaf_weight;
1378
1379 while (propagate) {
1380 struct cfq_group *parent = cfqg_parent(pos);
1381
1382 /* @pos has 0 nr_active at this point */
1383 WARN_ON_ONCE(pos->children_weight);
1384 pos->vfraction = 0;
1385
1386 if (!parent)
1387 break;
1388
1389 propagate = !--parent->nr_active;
1390 parent->children_weight -= pos->weight;
1391 pos = parent;
1392 }
1393
1394 /* remove from the service tree */
1395 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1396 cfq_rb_erase(&cfqg->rb_node, st);
1397 }
1398
1399 static void
1400 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1401 {
1402 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1403
1404 BUG_ON(cfqg->nr_cfqq < 1);
1405 cfqg->nr_cfqq--;
1406
1407 /* If there are other cfq queues under this group, don't delete it */
1408 if (cfqg->nr_cfqq)
1409 return;
1410
1411 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1412 cfq_group_service_tree_del(st, cfqg);
1413 cfqg->saved_wl_slice = 0;
1414 cfqg_stats_update_dequeue(cfqg);
1415 }
1416
1417 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1418 unsigned int *unaccounted_time)
1419 {
1420 unsigned int slice_used;
1421
1422 /*
1423 * Queue got expired before even a single request completed or
1424 * got expired immediately after first request completion.
1425 */
1426 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1427 /*
1428 * Also charge the seek time incurred to the group, otherwise
1429 * if there are mutiple queues in the group, each can dispatch
1430 * a single request on seeky media and cause lots of seek time
1431 * and group will never know it.
1432 */
1433 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1434 1);
1435 } else {
1436 slice_used = jiffies - cfqq->slice_start;
1437 if (slice_used > cfqq->allocated_slice) {
1438 *unaccounted_time = slice_used - cfqq->allocated_slice;
1439 slice_used = cfqq->allocated_slice;
1440 }
1441 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1442 *unaccounted_time += cfqq->slice_start -
1443 cfqq->dispatch_start;
1444 }
1445
1446 return slice_used;
1447 }
1448
1449 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1450 struct cfq_queue *cfqq)
1451 {
1452 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1453 unsigned int used_sl, charge, unaccounted_sl = 0;
1454 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1455 - cfqg->service_tree_idle.count;
1456 unsigned int vfr;
1457
1458 BUG_ON(nr_sync < 0);
1459 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1460
1461 if (iops_mode(cfqd))
1462 charge = cfqq->slice_dispatch;
1463 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1464 charge = cfqq->allocated_slice;
1465
1466 /*
1467 * Can't update vdisktime while on service tree and cfqg->vfraction
1468 * is valid only while on it. Cache vfr, leave the service tree,
1469 * update vdisktime and go back on. The re-addition to the tree
1470 * will also update the weights as necessary.
1471 */
1472 vfr = cfqg->vfraction;
1473 cfq_group_service_tree_del(st, cfqg);
1474 cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1475 cfq_group_service_tree_add(st, cfqg);
1476
1477 /* This group is being expired. Save the context */
1478 if (time_after(cfqd->workload_expires, jiffies)) {
1479 cfqg->saved_wl_slice = cfqd->workload_expires
1480 - jiffies;
1481 cfqg->saved_wl_type = cfqd->serving_wl_type;
1482 cfqg->saved_wl_class = cfqd->serving_wl_class;
1483 } else
1484 cfqg->saved_wl_slice = 0;
1485
1486 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1487 st->min_vdisktime);
1488 cfq_log_cfqq(cfqq->cfqd, cfqq,
1489 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1490 used_sl, cfqq->slice_dispatch, charge,
1491 iops_mode(cfqd), cfqq->nr_sectors);
1492 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1493 cfqg_stats_set_start_empty_time(cfqg);
1494 }
1495
1496 /**
1497 * cfq_init_cfqg_base - initialize base part of a cfq_group
1498 * @cfqg: cfq_group to initialize
1499 *
1500 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1501 * is enabled or not.
1502 */
1503 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1504 {
1505 struct cfq_rb_root *st;
1506 int i, j;
1507
1508 for_each_cfqg_st(cfqg, i, j, st)
1509 *st = CFQ_RB_ROOT;
1510 RB_CLEAR_NODE(&cfqg->rb_node);
1511
1512 cfqg->ttime.last_end_request = jiffies;
1513 }
1514
1515 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1516 static void cfq_pd_init(struct blkcg_gq *blkg)
1517 {
1518 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1519
1520 cfq_init_cfqg_base(cfqg);
1521 cfqg->weight = blkg->blkcg->cfq_weight;
1522 cfqg->leaf_weight = blkg->blkcg->cfq_leaf_weight;
1523 }
1524
1525 static void cfq_pd_offline(struct blkcg_gq *blkg)
1526 {
1527 /*
1528 * @blkg is going offline and will be ignored by
1529 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1530 * that they don't get lost. If IOs complete after this point, the
1531 * stats for them will be lost. Oh well...
1532 */
1533 cfqg_stats_xfer_dead(blkg_to_cfqg(blkg));
1534 }
1535
1536 /* offset delta from cfqg->stats to cfqg->dead_stats */
1537 static const int dead_stats_off_delta = offsetof(struct cfq_group, dead_stats) -
1538 offsetof(struct cfq_group, stats);
1539
1540 /* to be used by recursive prfill, sums live and dead stats recursively */
1541 static u64 cfqg_stat_pd_recursive_sum(struct blkg_policy_data *pd, int off)
1542 {
1543 u64 sum = 0;
1544
1545 sum += blkg_stat_recursive_sum(pd, off);
1546 sum += blkg_stat_recursive_sum(pd, off + dead_stats_off_delta);
1547 return sum;
1548 }
1549
1550 /* to be used by recursive prfill, sums live and dead rwstats recursively */
1551 static struct blkg_rwstat cfqg_rwstat_pd_recursive_sum(struct blkg_policy_data *pd,
1552 int off)
1553 {
1554 struct blkg_rwstat a, b;
1555
1556 a = blkg_rwstat_recursive_sum(pd, off);
1557 b = blkg_rwstat_recursive_sum(pd, off + dead_stats_off_delta);
1558 blkg_rwstat_merge(&a, &b);
1559 return a;
1560 }
1561
1562 static void cfq_pd_reset_stats(struct blkcg_gq *blkg)
1563 {
1564 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1565
1566 cfqg_stats_reset(&cfqg->stats);
1567 cfqg_stats_reset(&cfqg->dead_stats);
1568 }
1569
1570 /*
1571 * Search for the cfq group current task belongs to. request_queue lock must
1572 * be held.
1573 */
1574 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1575 struct blkcg *blkcg)
1576 {
1577 struct request_queue *q = cfqd->queue;
1578 struct cfq_group *cfqg = NULL;
1579
1580 /* avoid lookup for the common case where there's no blkcg */
1581 if (blkcg == &blkcg_root) {
1582 cfqg = cfqd->root_group;
1583 } else {
1584 struct blkcg_gq *blkg;
1585
1586 blkg = blkg_lookup_create(blkcg, q);
1587 if (!IS_ERR(blkg))
1588 cfqg = blkg_to_cfqg(blkg);
1589 }
1590
1591 return cfqg;
1592 }
1593
1594 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1595 {
1596 /* Currently, all async queues are mapped to root group */
1597 if (!cfq_cfqq_sync(cfqq))
1598 cfqg = cfqq->cfqd->root_group;
1599
1600 cfqq->cfqg = cfqg;
1601 /* cfqq reference on cfqg */
1602 cfqg_get(cfqg);
1603 }
1604
1605 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1606 struct blkg_policy_data *pd, int off)
1607 {
1608 struct cfq_group *cfqg = pd_to_cfqg(pd);
1609
1610 if (!cfqg->dev_weight)
1611 return 0;
1612 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1613 }
1614
1615 static int cfqg_print_weight_device(struct cgroup *cgrp, struct cftype *cft,
1616 struct seq_file *sf)
1617 {
1618 blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp),
1619 cfqg_prfill_weight_device, &blkcg_policy_cfq, 0,
1620 false);
1621 return 0;
1622 }
1623
1624 static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1625 struct blkg_policy_data *pd, int off)
1626 {
1627 struct cfq_group *cfqg = pd_to_cfqg(pd);
1628
1629 if (!cfqg->dev_leaf_weight)
1630 return 0;
1631 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1632 }
1633
1634 static int cfqg_print_leaf_weight_device(struct cgroup *cgrp,
1635 struct cftype *cft,
1636 struct seq_file *sf)
1637 {
1638 blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp),
1639 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq, 0,
1640 false);
1641 return 0;
1642 }
1643
1644 static int cfq_print_weight(struct cgroup *cgrp, struct cftype *cft,
1645 struct seq_file *sf)
1646 {
1647 seq_printf(sf, "%u\n", cgroup_to_blkcg(cgrp)->cfq_weight);
1648 return 0;
1649 }
1650
1651 static int cfq_print_leaf_weight(struct cgroup *cgrp, struct cftype *cft,
1652 struct seq_file *sf)
1653 {
1654 seq_printf(sf, "%u\n",
1655 cgroup_to_blkcg(cgrp)->cfq_leaf_weight);
1656 return 0;
1657 }
1658
1659 static int __cfqg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
1660 const char *buf, bool is_leaf_weight)
1661 {
1662 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1663 struct blkg_conf_ctx ctx;
1664 struct cfq_group *cfqg;
1665 int ret;
1666
1667 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1668 if (ret)
1669 return ret;
1670
1671 ret = -EINVAL;
1672 cfqg = blkg_to_cfqg(ctx.blkg);
1673 if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) {
1674 if (!is_leaf_weight) {
1675 cfqg->dev_weight = ctx.v;
1676 cfqg->new_weight = ctx.v ?: blkcg->cfq_weight;
1677 } else {
1678 cfqg->dev_leaf_weight = ctx.v;
1679 cfqg->new_leaf_weight = ctx.v ?: blkcg->cfq_leaf_weight;
1680 }
1681 ret = 0;
1682 }
1683
1684 blkg_conf_finish(&ctx);
1685 return ret;
1686 }
1687
1688 static int cfqg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
1689 const char *buf)
1690 {
1691 return __cfqg_set_weight_device(cgrp, cft, buf, false);
1692 }
1693
1694 static int cfqg_set_leaf_weight_device(struct cgroup *cgrp, struct cftype *cft,
1695 const char *buf)
1696 {
1697 return __cfqg_set_weight_device(cgrp, cft, buf, true);
1698 }
1699
1700 static int __cfq_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val,
1701 bool is_leaf_weight)
1702 {
1703 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1704 struct blkcg_gq *blkg;
1705
1706 if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
1707 return -EINVAL;
1708
1709 spin_lock_irq(&blkcg->lock);
1710
1711 if (!is_leaf_weight)
1712 blkcg->cfq_weight = val;
1713 else
1714 blkcg->cfq_leaf_weight = val;
1715
1716 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1717 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1718
1719 if (!cfqg)
1720 continue;
1721
1722 if (!is_leaf_weight) {
1723 if (!cfqg->dev_weight)
1724 cfqg->new_weight = blkcg->cfq_weight;
1725 } else {
1726 if (!cfqg->dev_leaf_weight)
1727 cfqg->new_leaf_weight = blkcg->cfq_leaf_weight;
1728 }
1729 }
1730
1731 spin_unlock_irq(&blkcg->lock);
1732 return 0;
1733 }
1734
1735 static int cfq_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
1736 {
1737 return __cfq_set_weight(cgrp, cft, val, false);
1738 }
1739
1740 static int cfq_set_leaf_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
1741 {
1742 return __cfq_set_weight(cgrp, cft, val, true);
1743 }
1744
1745 static int cfqg_print_stat(struct cgroup *cgrp, struct cftype *cft,
1746 struct seq_file *sf)
1747 {
1748 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1749
1750 blkcg_print_blkgs(sf, blkcg, blkg_prfill_stat, &blkcg_policy_cfq,
1751 cft->private, false);
1752 return 0;
1753 }
1754
1755 static int cfqg_print_rwstat(struct cgroup *cgrp, struct cftype *cft,
1756 struct seq_file *sf)
1757 {
1758 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1759
1760 blkcg_print_blkgs(sf, blkcg, blkg_prfill_rwstat, &blkcg_policy_cfq,
1761 cft->private, true);
1762 return 0;
1763 }
1764
1765 static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1766 struct blkg_policy_data *pd, int off)
1767 {
1768 u64 sum = cfqg_stat_pd_recursive_sum(pd, off);
1769
1770 return __blkg_prfill_u64(sf, pd, sum);
1771 }
1772
1773 static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1774 struct blkg_policy_data *pd, int off)
1775 {
1776 struct blkg_rwstat sum = cfqg_rwstat_pd_recursive_sum(pd, off);
1777
1778 return __blkg_prfill_rwstat(sf, pd, &sum);
1779 }
1780
1781 static int cfqg_print_stat_recursive(struct cgroup *cgrp, struct cftype *cft,
1782 struct seq_file *sf)
1783 {
1784 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1785
1786 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_stat_recursive,
1787 &blkcg_policy_cfq, cft->private, false);
1788 return 0;
1789 }
1790
1791 static int cfqg_print_rwstat_recursive(struct cgroup *cgrp, struct cftype *cft,
1792 struct seq_file *sf)
1793 {
1794 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1795
1796 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_rwstat_recursive,
1797 &blkcg_policy_cfq, cft->private, true);
1798 return 0;
1799 }
1800
1801 #ifdef CONFIG_DEBUG_BLK_CGROUP
1802 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1803 struct blkg_policy_data *pd, int off)
1804 {
1805 struct cfq_group *cfqg = pd_to_cfqg(pd);
1806 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1807 u64 v = 0;
1808
1809 if (samples) {
1810 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1811 v = div64_u64(v, samples);
1812 }
1813 __blkg_prfill_u64(sf, pd, v);
1814 return 0;
1815 }
1816
1817 /* print avg_queue_size */
1818 static int cfqg_print_avg_queue_size(struct cgroup *cgrp, struct cftype *cft,
1819 struct seq_file *sf)
1820 {
1821 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1822
1823 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_avg_queue_size,
1824 &blkcg_policy_cfq, 0, false);
1825 return 0;
1826 }
1827 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1828
1829 static struct cftype cfq_blkcg_files[] = {
1830 /* on root, weight is mapped to leaf_weight */
1831 {
1832 .name = "weight_device",
1833 .flags = CFTYPE_ONLY_ON_ROOT,
1834 .read_seq_string = cfqg_print_leaf_weight_device,
1835 .write_string = cfqg_set_leaf_weight_device,
1836 .max_write_len = 256,
1837 },
1838 {
1839 .name = "weight",
1840 .flags = CFTYPE_ONLY_ON_ROOT,
1841 .read_seq_string = cfq_print_leaf_weight,
1842 .write_u64 = cfq_set_leaf_weight,
1843 },
1844
1845 /* no such mapping necessary for !roots */
1846 {
1847 .name = "weight_device",
1848 .flags = CFTYPE_NOT_ON_ROOT,
1849 .read_seq_string = cfqg_print_weight_device,
1850 .write_string = cfqg_set_weight_device,
1851 .max_write_len = 256,
1852 },
1853 {
1854 .name = "weight",
1855 .flags = CFTYPE_NOT_ON_ROOT,
1856 .read_seq_string = cfq_print_weight,
1857 .write_u64 = cfq_set_weight,
1858 },
1859
1860 {
1861 .name = "leaf_weight_device",
1862 .read_seq_string = cfqg_print_leaf_weight_device,
1863 .write_string = cfqg_set_leaf_weight_device,
1864 .max_write_len = 256,
1865 },
1866 {
1867 .name = "leaf_weight",
1868 .read_seq_string = cfq_print_leaf_weight,
1869 .write_u64 = cfq_set_leaf_weight,
1870 },
1871
1872 /* statistics, covers only the tasks in the cfqg */
1873 {
1874 .name = "time",
1875 .private = offsetof(struct cfq_group, stats.time),
1876 .read_seq_string = cfqg_print_stat,
1877 },
1878 {
1879 .name = "sectors",
1880 .private = offsetof(struct cfq_group, stats.sectors),
1881 .read_seq_string = cfqg_print_stat,
1882 },
1883 {
1884 .name = "io_service_bytes",
1885 .private = offsetof(struct cfq_group, stats.service_bytes),
1886 .read_seq_string = cfqg_print_rwstat,
1887 },
1888 {
1889 .name = "io_serviced",
1890 .private = offsetof(struct cfq_group, stats.serviced),
1891 .read_seq_string = cfqg_print_rwstat,
1892 },
1893 {
1894 .name = "io_service_time",
1895 .private = offsetof(struct cfq_group, stats.service_time),
1896 .read_seq_string = cfqg_print_rwstat,
1897 },
1898 {
1899 .name = "io_wait_time",
1900 .private = offsetof(struct cfq_group, stats.wait_time),
1901 .read_seq_string = cfqg_print_rwstat,
1902 },
1903 {
1904 .name = "io_merged",
1905 .private = offsetof(struct cfq_group, stats.merged),
1906 .read_seq_string = cfqg_print_rwstat,
1907 },
1908 {
1909 .name = "io_queued",
1910 .private = offsetof(struct cfq_group, stats.queued),
1911 .read_seq_string = cfqg_print_rwstat,
1912 },
1913
1914 /* the same statictics which cover the cfqg and its descendants */
1915 {
1916 .name = "time_recursive",
1917 .private = offsetof(struct cfq_group, stats.time),
1918 .read_seq_string = cfqg_print_stat_recursive,
1919 },
1920 {
1921 .name = "sectors_recursive",
1922 .private = offsetof(struct cfq_group, stats.sectors),
1923 .read_seq_string = cfqg_print_stat_recursive,
1924 },
1925 {
1926 .name = "io_service_bytes_recursive",
1927 .private = offsetof(struct cfq_group, stats.service_bytes),
1928 .read_seq_string = cfqg_print_rwstat_recursive,
1929 },
1930 {
1931 .name = "io_serviced_recursive",
1932 .private = offsetof(struct cfq_group, stats.serviced),
1933 .read_seq_string = cfqg_print_rwstat_recursive,
1934 },
1935 {
1936 .name = "io_service_time_recursive",
1937 .private = offsetof(struct cfq_group, stats.service_time),
1938 .read_seq_string = cfqg_print_rwstat_recursive,
1939 },
1940 {
1941 .name = "io_wait_time_recursive",
1942 .private = offsetof(struct cfq_group, stats.wait_time),
1943 .read_seq_string = cfqg_print_rwstat_recursive,
1944 },
1945 {
1946 .name = "io_merged_recursive",
1947 .private = offsetof(struct cfq_group, stats.merged),
1948 .read_seq_string = cfqg_print_rwstat_recursive,
1949 },
1950 {
1951 .name = "io_queued_recursive",
1952 .private = offsetof(struct cfq_group, stats.queued),
1953 .read_seq_string = cfqg_print_rwstat_recursive,
1954 },
1955 #ifdef CONFIG_DEBUG_BLK_CGROUP
1956 {
1957 .name = "avg_queue_size",
1958 .read_seq_string = cfqg_print_avg_queue_size,
1959 },
1960 {
1961 .name = "group_wait_time",
1962 .private = offsetof(struct cfq_group, stats.group_wait_time),
1963 .read_seq_string = cfqg_print_stat,
1964 },
1965 {
1966 .name = "idle_time",
1967 .private = offsetof(struct cfq_group, stats.idle_time),
1968 .read_seq_string = cfqg_print_stat,
1969 },
1970 {
1971 .name = "empty_time",
1972 .private = offsetof(struct cfq_group, stats.empty_time),
1973 .read_seq_string = cfqg_print_stat,
1974 },
1975 {
1976 .name = "dequeue",
1977 .private = offsetof(struct cfq_group, stats.dequeue),
1978 .read_seq_string = cfqg_print_stat,
1979 },
1980 {
1981 .name = "unaccounted_time",
1982 .private = offsetof(struct cfq_group, stats.unaccounted_time),
1983 .read_seq_string = cfqg_print_stat,
1984 },
1985 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1986 { } /* terminate */
1987 };
1988 #else /* GROUP_IOSCHED */
1989 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1990 struct blkcg *blkcg)
1991 {
1992 return cfqd->root_group;
1993 }
1994
1995 static inline void
1996 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1997 cfqq->cfqg = cfqg;
1998 }
1999
2000 #endif /* GROUP_IOSCHED */
2001
2002 /*
2003 * The cfqd->service_trees holds all pending cfq_queue's that have
2004 * requests waiting to be processed. It is sorted in the order that
2005 * we will service the queues.
2006 */
2007 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2008 bool add_front)
2009 {
2010 struct rb_node **p, *parent;
2011 struct cfq_queue *__cfqq;
2012 unsigned long rb_key;
2013 struct cfq_rb_root *st;
2014 int left;
2015 int new_cfqq = 1;
2016
2017 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2018 if (cfq_class_idle(cfqq)) {
2019 rb_key = CFQ_IDLE_DELAY;
2020 parent = rb_last(&st->rb);
2021 if (parent && parent != &cfqq->rb_node) {
2022 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2023 rb_key += __cfqq->rb_key;
2024 } else
2025 rb_key += jiffies;
2026 } else if (!add_front) {
2027 /*
2028 * Get our rb key offset. Subtract any residual slice
2029 * value carried from last service. A negative resid
2030 * count indicates slice overrun, and this should position
2031 * the next service time further away in the tree.
2032 */
2033 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
2034 rb_key -= cfqq->slice_resid;
2035 cfqq->slice_resid = 0;
2036 } else {
2037 rb_key = -HZ;
2038 __cfqq = cfq_rb_first(st);
2039 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
2040 }
2041
2042 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2043 new_cfqq = 0;
2044 /*
2045 * same position, nothing more to do
2046 */
2047 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2048 return;
2049
2050 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2051 cfqq->service_tree = NULL;
2052 }
2053
2054 left = 1;
2055 parent = NULL;
2056 cfqq->service_tree = st;
2057 p = &st->rb.rb_node;
2058 while (*p) {
2059 parent = *p;
2060 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2061
2062 /*
2063 * sort by key, that represents service time.
2064 */
2065 if (time_before(rb_key, __cfqq->rb_key))
2066 p = &parent->rb_left;
2067 else {
2068 p = &parent->rb_right;
2069 left = 0;
2070 }
2071 }
2072
2073 if (left)
2074 st->left = &cfqq->rb_node;
2075
2076 cfqq->rb_key = rb_key;
2077 rb_link_node(&cfqq->rb_node, parent, p);
2078 rb_insert_color(&cfqq->rb_node, &st->rb);
2079 st->count++;
2080 if (add_front || !new_cfqq)
2081 return;
2082 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2083 }
2084
2085 static struct cfq_queue *
2086 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2087 sector_t sector, struct rb_node **ret_parent,
2088 struct rb_node ***rb_link)
2089 {
2090 struct rb_node **p, *parent;
2091 struct cfq_queue *cfqq = NULL;
2092
2093 parent = NULL;
2094 p = &root->rb_node;
2095 while (*p) {
2096 struct rb_node **n;
2097
2098 parent = *p;
2099 cfqq = rb_entry(parent, struct cfq_queue, p_node);
2100
2101 /*
2102 * Sort strictly based on sector. Smallest to the left,
2103 * largest to the right.
2104 */
2105 if (sector > blk_rq_pos(cfqq->next_rq))
2106 n = &(*p)->rb_right;
2107 else if (sector < blk_rq_pos(cfqq->next_rq))
2108 n = &(*p)->rb_left;
2109 else
2110 break;
2111 p = n;
2112 cfqq = NULL;
2113 }
2114
2115 *ret_parent = parent;
2116 if (rb_link)
2117 *rb_link = p;
2118 return cfqq;
2119 }
2120
2121 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2122 {
2123 struct rb_node **p, *parent;
2124 struct cfq_queue *__cfqq;
2125
2126 if (cfqq->p_root) {
2127 rb_erase(&cfqq->p_node, cfqq->p_root);
2128 cfqq->p_root = NULL;
2129 }
2130
2131 if (cfq_class_idle(cfqq))
2132 return;
2133 if (!cfqq->next_rq)
2134 return;
2135
2136 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2137 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2138 blk_rq_pos(cfqq->next_rq), &parent, &p);
2139 if (!__cfqq) {
2140 rb_link_node(&cfqq->p_node, parent, p);
2141 rb_insert_color(&cfqq->p_node, cfqq->p_root);
2142 } else
2143 cfqq->p_root = NULL;
2144 }
2145
2146 /*
2147 * Update cfqq's position in the service tree.
2148 */
2149 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2150 {
2151 /*
2152 * Resorting requires the cfqq to be on the RR list already.
2153 */
2154 if (cfq_cfqq_on_rr(cfqq)) {
2155 cfq_service_tree_add(cfqd, cfqq, 0);
2156 cfq_prio_tree_add(cfqd, cfqq);
2157 }
2158 }
2159
2160 /*
2161 * add to busy list of queues for service, trying to be fair in ordering
2162 * the pending list according to last request service
2163 */
2164 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2165 {
2166 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2167 BUG_ON(cfq_cfqq_on_rr(cfqq));
2168 cfq_mark_cfqq_on_rr(cfqq);
2169 cfqd->busy_queues++;
2170 if (cfq_cfqq_sync(cfqq))
2171 cfqd->busy_sync_queues++;
2172
2173 cfq_resort_rr_list(cfqd, cfqq);
2174 }
2175
2176 /*
2177 * Called when the cfqq no longer has requests pending, remove it from
2178 * the service tree.
2179 */
2180 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2181 {
2182 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2183 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2184 cfq_clear_cfqq_on_rr(cfqq);
2185
2186 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2187 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2188 cfqq->service_tree = NULL;
2189 }
2190 if (cfqq->p_root) {
2191 rb_erase(&cfqq->p_node, cfqq->p_root);
2192 cfqq->p_root = NULL;
2193 }
2194
2195 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2196 BUG_ON(!cfqd->busy_queues);
2197 cfqd->busy_queues--;
2198 if (cfq_cfqq_sync(cfqq))
2199 cfqd->busy_sync_queues--;
2200 }
2201
2202 /*
2203 * rb tree support functions
2204 */
2205 static void cfq_del_rq_rb(struct request *rq)
2206 {
2207 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2208 const int sync = rq_is_sync(rq);
2209
2210 BUG_ON(!cfqq->queued[sync]);
2211 cfqq->queued[sync]--;
2212
2213 elv_rb_del(&cfqq->sort_list, rq);
2214
2215 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2216 /*
2217 * Queue will be deleted from service tree when we actually
2218 * expire it later. Right now just remove it from prio tree
2219 * as it is empty.
2220 */
2221 if (cfqq->p_root) {
2222 rb_erase(&cfqq->p_node, cfqq->p_root);
2223 cfqq->p_root = NULL;
2224 }
2225 }
2226 }
2227
2228 static void cfq_add_rq_rb(struct request *rq)
2229 {
2230 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2231 struct cfq_data *cfqd = cfqq->cfqd;
2232 struct request *prev;
2233
2234 cfqq->queued[rq_is_sync(rq)]++;
2235
2236 elv_rb_add(&cfqq->sort_list, rq);
2237
2238 if (!cfq_cfqq_on_rr(cfqq))
2239 cfq_add_cfqq_rr(cfqd, cfqq);
2240
2241 /*
2242 * check if this request is a better next-serve candidate
2243 */
2244 prev = cfqq->next_rq;
2245 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2246
2247 /*
2248 * adjust priority tree position, if ->next_rq changes
2249 */
2250 if (prev != cfqq->next_rq)
2251 cfq_prio_tree_add(cfqd, cfqq);
2252
2253 BUG_ON(!cfqq->next_rq);
2254 }
2255
2256 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2257 {
2258 elv_rb_del(&cfqq->sort_list, rq);
2259 cfqq->queued[rq_is_sync(rq)]--;
2260 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2261 cfq_add_rq_rb(rq);
2262 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2263 rq->cmd_flags);
2264 }
2265
2266 static struct request *
2267 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2268 {
2269 struct task_struct *tsk = current;
2270 struct cfq_io_cq *cic;
2271 struct cfq_queue *cfqq;
2272
2273 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2274 if (!cic)
2275 return NULL;
2276
2277 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2278 if (cfqq)
2279 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2280
2281 return NULL;
2282 }
2283
2284 static void cfq_activate_request(struct request_queue *q, struct request *rq)
2285 {
2286 struct cfq_data *cfqd = q->elevator->elevator_data;
2287
2288 cfqd->rq_in_driver++;
2289 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2290 cfqd->rq_in_driver);
2291
2292 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2293 }
2294
2295 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2296 {
2297 struct cfq_data *cfqd = q->elevator->elevator_data;
2298
2299 WARN_ON(!cfqd->rq_in_driver);
2300 cfqd->rq_in_driver--;
2301 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2302 cfqd->rq_in_driver);
2303 }
2304
2305 static void cfq_remove_request(struct request *rq)
2306 {
2307 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2308
2309 if (cfqq->next_rq == rq)
2310 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2311
2312 list_del_init(&rq->queuelist);
2313 cfq_del_rq_rb(rq);
2314
2315 cfqq->cfqd->rq_queued--;
2316 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2317 if (rq->cmd_flags & REQ_PRIO) {
2318 WARN_ON(!cfqq->prio_pending);
2319 cfqq->prio_pending--;
2320 }
2321 }
2322
2323 static int cfq_merge(struct request_queue *q, struct request **req,
2324 struct bio *bio)
2325 {
2326 struct cfq_data *cfqd = q->elevator->elevator_data;
2327 struct request *__rq;
2328
2329 __rq = cfq_find_rq_fmerge(cfqd, bio);
2330 if (__rq && elv_rq_merge_ok(__rq, bio)) {
2331 *req = __rq;
2332 return ELEVATOR_FRONT_MERGE;
2333 }
2334
2335 return ELEVATOR_NO_MERGE;
2336 }
2337
2338 static void cfq_merged_request(struct request_queue *q, struct request *req,
2339 int type)
2340 {
2341 if (type == ELEVATOR_FRONT_MERGE) {
2342 struct cfq_queue *cfqq = RQ_CFQQ(req);
2343
2344 cfq_reposition_rq_rb(cfqq, req);
2345 }
2346 }
2347
2348 static void cfq_bio_merged(struct request_queue *q, struct request *req,
2349 struct bio *bio)
2350 {
2351 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
2352 }
2353
2354 static void
2355 cfq_merged_requests(struct request_queue *q, struct request *rq,
2356 struct request *next)
2357 {
2358 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2359 struct cfq_data *cfqd = q->elevator->elevator_data;
2360
2361 /*
2362 * reposition in fifo if next is older than rq
2363 */
2364 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2365 time_before(rq_fifo_time(next), rq_fifo_time(rq)) &&
2366 cfqq == RQ_CFQQ(next)) {
2367 list_move(&rq->queuelist, &next->queuelist);
2368 rq_set_fifo_time(rq, rq_fifo_time(next));
2369 }
2370
2371 if (cfqq->next_rq == next)
2372 cfqq->next_rq = rq;
2373 cfq_remove_request(next);
2374 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2375
2376 cfqq = RQ_CFQQ(next);
2377 /*
2378 * all requests of this queue are merged to other queues, delete it
2379 * from the service tree. If it's the active_queue,
2380 * cfq_dispatch_requests() will choose to expire it or do idle
2381 */
2382 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2383 cfqq != cfqd->active_queue)
2384 cfq_del_cfqq_rr(cfqd, cfqq);
2385 }
2386
2387 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
2388 struct bio *bio)
2389 {
2390 struct cfq_data *cfqd = q->elevator->elevator_data;
2391 struct cfq_io_cq *cic;
2392 struct cfq_queue *cfqq;
2393
2394 /*
2395 * Disallow merge of a sync bio into an async request.
2396 */
2397 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2398 return false;
2399
2400 /*
2401 * Lookup the cfqq that this bio will be queued with and allow
2402 * merge only if rq is queued there.
2403 */
2404 cic = cfq_cic_lookup(cfqd, current->io_context);
2405 if (!cic)
2406 return false;
2407
2408 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2409 return cfqq == RQ_CFQQ(rq);
2410 }
2411
2412 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2413 {
2414 del_timer(&cfqd->idle_slice_timer);
2415 cfqg_stats_update_idle_time(cfqq->cfqg);
2416 }
2417
2418 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2419 struct cfq_queue *cfqq)
2420 {
2421 if (cfqq) {
2422 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2423 cfqd->serving_wl_class, cfqd->serving_wl_type);
2424 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2425 cfqq->slice_start = 0;
2426 cfqq->dispatch_start = jiffies;
2427 cfqq->allocated_slice = 0;
2428 cfqq->slice_end = 0;
2429 cfqq->slice_dispatch = 0;
2430 cfqq->nr_sectors = 0;
2431
2432 cfq_clear_cfqq_wait_request(cfqq);
2433 cfq_clear_cfqq_must_dispatch(cfqq);
2434 cfq_clear_cfqq_must_alloc_slice(cfqq);
2435 cfq_clear_cfqq_fifo_expire(cfqq);
2436 cfq_mark_cfqq_slice_new(cfqq);
2437
2438 cfq_del_timer(cfqd, cfqq);
2439 }
2440
2441 cfqd->active_queue = cfqq;
2442 }
2443
2444 /*
2445 * current cfqq expired its slice (or was too idle), select new one
2446 */
2447 static void
2448 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2449 bool timed_out)
2450 {
2451 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2452
2453 if (cfq_cfqq_wait_request(cfqq))
2454 cfq_del_timer(cfqd, cfqq);
2455
2456 cfq_clear_cfqq_wait_request(cfqq);
2457 cfq_clear_cfqq_wait_busy(cfqq);
2458
2459 /*
2460 * If this cfqq is shared between multiple processes, check to
2461 * make sure that those processes are still issuing I/Os within
2462 * the mean seek distance. If not, it may be time to break the
2463 * queues apart again.
2464 */
2465 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2466 cfq_mark_cfqq_split_coop(cfqq);
2467
2468 /*
2469 * store what was left of this slice, if the queue idled/timed out
2470 */
2471 if (timed_out) {
2472 if (cfq_cfqq_slice_new(cfqq))
2473 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2474 else
2475 cfqq->slice_resid = cfqq->slice_end - jiffies;
2476 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2477 }
2478
2479 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2480
2481 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2482 cfq_del_cfqq_rr(cfqd, cfqq);
2483
2484 cfq_resort_rr_list(cfqd, cfqq);
2485
2486 if (cfqq == cfqd->active_queue)
2487 cfqd->active_queue = NULL;
2488
2489 if (cfqd->active_cic) {
2490 put_io_context(cfqd->active_cic->icq.ioc);
2491 cfqd->active_cic = NULL;
2492 }
2493 }
2494
2495 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2496 {
2497 struct cfq_queue *cfqq = cfqd->active_queue;
2498
2499 if (cfqq)
2500 __cfq_slice_expired(cfqd, cfqq, timed_out);
2501 }
2502
2503 /*
2504 * Get next queue for service. Unless we have a queue preemption,
2505 * we'll simply select the first cfqq in the service tree.
2506 */
2507 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2508 {
2509 struct cfq_rb_root *st = st_for(cfqd->serving_group,
2510 cfqd->serving_wl_class, cfqd->serving_wl_type);
2511
2512 if (!cfqd->rq_queued)
2513 return NULL;
2514
2515 /* There is nothing to dispatch */
2516 if (!st)
2517 return NULL;
2518 if (RB_EMPTY_ROOT(&st->rb))
2519 return NULL;
2520 return cfq_rb_first(st);
2521 }
2522
2523 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2524 {
2525 struct cfq_group *cfqg;
2526 struct cfq_queue *cfqq;
2527 int i, j;
2528 struct cfq_rb_root *st;
2529
2530 if (!cfqd->rq_queued)
2531 return NULL;
2532
2533 cfqg = cfq_get_next_cfqg(cfqd);
2534 if (!cfqg)
2535 return NULL;
2536
2537 for_each_cfqg_st(cfqg, i, j, st)
2538 if ((cfqq = cfq_rb_first(st)) != NULL)
2539 return cfqq;
2540 return NULL;
2541 }
2542
2543 /*
2544 * Get and set a new active queue for service.
2545 */
2546 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2547 struct cfq_queue *cfqq)
2548 {
2549 if (!cfqq)
2550 cfqq = cfq_get_next_queue(cfqd);
2551
2552 __cfq_set_active_queue(cfqd, cfqq);
2553 return cfqq;
2554 }
2555
2556 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2557 struct request *rq)
2558 {
2559 if (blk_rq_pos(rq) >= cfqd->last_position)
2560 return blk_rq_pos(rq) - cfqd->last_position;
2561 else
2562 return cfqd->last_position - blk_rq_pos(rq);
2563 }
2564
2565 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2566 struct request *rq)
2567 {
2568 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2569 }
2570
2571 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2572 struct cfq_queue *cur_cfqq)
2573 {
2574 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2575 struct rb_node *parent, *node;
2576 struct cfq_queue *__cfqq;
2577 sector_t sector = cfqd->last_position;
2578
2579 if (RB_EMPTY_ROOT(root))
2580 return NULL;
2581
2582 /*
2583 * First, if we find a request starting at the end of the last
2584 * request, choose it.
2585 */
2586 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2587 if (__cfqq)
2588 return __cfqq;
2589
2590 /*
2591 * If the exact sector wasn't found, the parent of the NULL leaf
2592 * will contain the closest sector.
2593 */
2594 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2595 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2596 return __cfqq;
2597
2598 if (blk_rq_pos(__cfqq->next_rq) < sector)
2599 node = rb_next(&__cfqq->p_node);
2600 else
2601 node = rb_prev(&__cfqq->p_node);
2602 if (!node)
2603 return NULL;
2604
2605 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2606 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2607 return __cfqq;
2608
2609 return NULL;
2610 }
2611
2612 /*
2613 * cfqd - obvious
2614 * cur_cfqq - passed in so that we don't decide that the current queue is
2615 * closely cooperating with itself.
2616 *
2617 * So, basically we're assuming that that cur_cfqq has dispatched at least
2618 * one request, and that cfqd->last_position reflects a position on the disk
2619 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2620 * assumption.
2621 */
2622 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2623 struct cfq_queue *cur_cfqq)
2624 {
2625 struct cfq_queue *cfqq;
2626
2627 if (cfq_class_idle(cur_cfqq))
2628 return NULL;
2629 if (!cfq_cfqq_sync(cur_cfqq))
2630 return NULL;
2631 if (CFQQ_SEEKY(cur_cfqq))
2632 return NULL;
2633
2634 /*
2635 * Don't search priority tree if it's the only queue in the group.
2636 */
2637 if (cur_cfqq->cfqg->nr_cfqq == 1)
2638 return NULL;
2639
2640 /*
2641 * We should notice if some of the queues are cooperating, eg
2642 * working closely on the same area of the disk. In that case,
2643 * we can group them together and don't waste time idling.
2644 */
2645 cfqq = cfqq_close(cfqd, cur_cfqq);
2646 if (!cfqq)
2647 return NULL;
2648
2649 /* If new queue belongs to different cfq_group, don't choose it */
2650 if (cur_cfqq->cfqg != cfqq->cfqg)
2651 return NULL;
2652
2653 /*
2654 * It only makes sense to merge sync queues.
2655 */
2656 if (!cfq_cfqq_sync(cfqq))
2657 return NULL;
2658 if (CFQQ_SEEKY(cfqq))
2659 return NULL;
2660
2661 /*
2662 * Do not merge queues of different priority classes
2663 */
2664 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2665 return NULL;
2666
2667 return cfqq;
2668 }
2669
2670 /*
2671 * Determine whether we should enforce idle window for this queue.
2672 */
2673
2674 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2675 {
2676 enum wl_class_t wl_class = cfqq_class(cfqq);
2677 struct cfq_rb_root *st = cfqq->service_tree;
2678
2679 BUG_ON(!st);
2680 BUG_ON(!st->count);
2681
2682 if (!cfqd->cfq_slice_idle)
2683 return false;
2684
2685 /* We never do for idle class queues. */
2686 if (wl_class == IDLE_WORKLOAD)
2687 return false;
2688
2689 /* We do for queues that were marked with idle window flag. */
2690 if (cfq_cfqq_idle_window(cfqq) &&
2691 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2692 return true;
2693
2694 /*
2695 * Otherwise, we do only if they are the last ones
2696 * in their service tree.
2697 */
2698 if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2699 !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2700 return true;
2701 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2702 return false;
2703 }
2704
2705 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2706 {
2707 struct cfq_queue *cfqq = cfqd->active_queue;
2708 struct cfq_io_cq *cic;
2709 unsigned long sl, group_idle = 0;
2710
2711 /*
2712 * SSD device without seek penalty, disable idling. But only do so
2713 * for devices that support queuing, otherwise we still have a problem
2714 * with sync vs async workloads.
2715 */
2716 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2717 return;
2718
2719 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2720 WARN_ON(cfq_cfqq_slice_new(cfqq));
2721
2722 /*
2723 * idle is disabled, either manually or by past process history
2724 */
2725 if (!cfq_should_idle(cfqd, cfqq)) {
2726 /* no queue idling. Check for group idling */
2727 if (cfqd->cfq_group_idle)
2728 group_idle = cfqd->cfq_group_idle;
2729 else
2730 return;
2731 }
2732
2733 /*
2734 * still active requests from this queue, don't idle
2735 */
2736 if (cfqq->dispatched)
2737 return;
2738
2739 /*
2740 * task has exited, don't wait
2741 */
2742 cic = cfqd->active_cic;
2743 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2744 return;
2745
2746 /*
2747 * If our average think time is larger than the remaining time
2748 * slice, then don't idle. This avoids overrunning the allotted
2749 * time slice.
2750 */
2751 if (sample_valid(cic->ttime.ttime_samples) &&
2752 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2753 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2754 cic->ttime.ttime_mean);
2755 return;
2756 }
2757
2758 /* There are other queues in the group, don't do group idle */
2759 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2760 return;
2761
2762 cfq_mark_cfqq_wait_request(cfqq);
2763
2764 if (group_idle)
2765 sl = cfqd->cfq_group_idle;
2766 else
2767 sl = cfqd->cfq_slice_idle;
2768
2769 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2770 cfqg_stats_set_start_idle_time(cfqq->cfqg);
2771 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2772 group_idle ? 1 : 0);
2773 }
2774
2775 /*
2776 * Move request from internal lists to the request queue dispatch list.
2777 */
2778 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2779 {
2780 struct cfq_data *cfqd = q->elevator->elevator_data;
2781 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2782
2783 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2784
2785 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2786 cfq_remove_request(rq);
2787 cfqq->dispatched++;
2788 (RQ_CFQG(rq))->dispatched++;
2789 elv_dispatch_sort(q, rq);
2790
2791 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2792 cfqq->nr_sectors += blk_rq_sectors(rq);
2793 cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
2794 }
2795
2796 /*
2797 * return expired entry, or NULL to just start from scratch in rbtree
2798 */
2799 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2800 {
2801 struct request *rq = NULL;
2802
2803 if (cfq_cfqq_fifo_expire(cfqq))
2804 return NULL;
2805
2806 cfq_mark_cfqq_fifo_expire(cfqq);
2807
2808 if (list_empty(&cfqq->fifo))
2809 return NULL;
2810
2811 rq = rq_entry_fifo(cfqq->fifo.next);
2812 if (time_before(jiffies, rq_fifo_time(rq)))
2813 rq = NULL;
2814
2815 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2816 return rq;
2817 }
2818
2819 static inline int
2820 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2821 {
2822 const int base_rq = cfqd->cfq_slice_async_rq;
2823
2824 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2825
2826 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2827 }
2828
2829 /*
2830 * Must be called with the queue_lock held.
2831 */
2832 static int cfqq_process_refs(struct cfq_queue *cfqq)
2833 {
2834 int process_refs, io_refs;
2835
2836 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2837 process_refs = cfqq->ref - io_refs;
2838 BUG_ON(process_refs < 0);
2839 return process_refs;
2840 }
2841
2842 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2843 {
2844 int process_refs, new_process_refs;
2845 struct cfq_queue *__cfqq;
2846
2847 /*
2848 * If there are no process references on the new_cfqq, then it is
2849 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2850 * chain may have dropped their last reference (not just their
2851 * last process reference).
2852 */
2853 if (!cfqq_process_refs(new_cfqq))
2854 return;
2855
2856 /* Avoid a circular list and skip interim queue merges */
2857 while ((__cfqq = new_cfqq->new_cfqq)) {
2858 if (__cfqq == cfqq)
2859 return;
2860 new_cfqq = __cfqq;
2861 }
2862
2863 process_refs = cfqq_process_refs(cfqq);
2864 new_process_refs = cfqq_process_refs(new_cfqq);
2865 /*
2866 * If the process for the cfqq has gone away, there is no
2867 * sense in merging the queues.
2868 */
2869 if (process_refs == 0 || new_process_refs == 0)
2870 return;
2871
2872 /*
2873 * Merge in the direction of the lesser amount of work.
2874 */
2875 if (new_process_refs >= process_refs) {
2876 cfqq->new_cfqq = new_cfqq;
2877 new_cfqq->ref += process_refs;
2878 } else {
2879 new_cfqq->new_cfqq = cfqq;
2880 cfqq->ref += new_process_refs;
2881 }
2882 }
2883
2884 static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
2885 struct cfq_group *cfqg, enum wl_class_t wl_class)
2886 {
2887 struct cfq_queue *queue;
2888 int i;
2889 bool key_valid = false;
2890 unsigned long lowest_key = 0;
2891 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2892
2893 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2894 /* select the one with lowest rb_key */
2895 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
2896 if (queue &&
2897 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2898 lowest_key = queue->rb_key;
2899 cur_best = i;
2900 key_valid = true;
2901 }
2902 }
2903
2904 return cur_best;
2905 }
2906
2907 static void
2908 choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
2909 {
2910 unsigned slice;
2911 unsigned count;
2912 struct cfq_rb_root *st;
2913 unsigned group_slice;
2914 enum wl_class_t original_class = cfqd->serving_wl_class;
2915
2916 /* Choose next priority. RT > BE > IDLE */
2917 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2918 cfqd->serving_wl_class = RT_WORKLOAD;
2919 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2920 cfqd->serving_wl_class = BE_WORKLOAD;
2921 else {
2922 cfqd->serving_wl_class = IDLE_WORKLOAD;
2923 cfqd->workload_expires = jiffies + 1;
2924 return;
2925 }
2926
2927 if (original_class != cfqd->serving_wl_class)
2928 goto new_workload;
2929
2930 /*
2931 * For RT and BE, we have to choose also the type
2932 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2933 * expiration time
2934 */
2935 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2936 count = st->count;
2937
2938 /*
2939 * check workload expiration, and that we still have other queues ready
2940 */
2941 if (count && !time_after(jiffies, cfqd->workload_expires))
2942 return;
2943
2944 new_workload:
2945 /* otherwise select new workload type */
2946 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
2947 cfqd->serving_wl_class);
2948 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2949 count = st->count;
2950
2951 /*
2952 * the workload slice is computed as a fraction of target latency
2953 * proportional to the number of queues in that workload, over
2954 * all the queues in the same priority class
2955 */
2956 group_slice = cfq_group_slice(cfqd, cfqg);
2957
2958 slice = group_slice * count /
2959 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
2960 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
2961 cfqg));
2962
2963 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
2964 unsigned int tmp;
2965
2966 /*
2967 * Async queues are currently system wide. Just taking
2968 * proportion of queues with-in same group will lead to higher
2969 * async ratio system wide as generally root group is going
2970 * to have higher weight. A more accurate thing would be to
2971 * calculate system wide asnc/sync ratio.
2972 */
2973 tmp = cfqd->cfq_target_latency *
2974 cfqg_busy_async_queues(cfqd, cfqg);
2975 tmp = tmp/cfqd->busy_queues;
2976 slice = min_t(unsigned, slice, tmp);
2977
2978 /* async workload slice is scaled down according to
2979 * the sync/async slice ratio. */
2980 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2981 } else
2982 /* sync workload slice is at least 2 * cfq_slice_idle */
2983 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2984
2985 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2986 cfq_log(cfqd, "workload slice:%d", slice);
2987 cfqd->workload_expires = jiffies + slice;
2988 }
2989
2990 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2991 {
2992 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2993 struct cfq_group *cfqg;
2994
2995 if (RB_EMPTY_ROOT(&st->rb))
2996 return NULL;
2997 cfqg = cfq_rb_first_group(st);
2998 update_min_vdisktime(st);
2999 return cfqg;
3000 }
3001
3002 static void cfq_choose_cfqg(struct cfq_data *cfqd)
3003 {
3004 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3005
3006 cfqd->serving_group = cfqg;
3007
3008 /* Restore the workload type data */
3009 if (cfqg->saved_wl_slice) {
3010 cfqd->workload_expires = jiffies + cfqg->saved_wl_slice;
3011 cfqd->serving_wl_type = cfqg->saved_wl_type;
3012 cfqd->serving_wl_class = cfqg->saved_wl_class;
3013 } else
3014 cfqd->workload_expires = jiffies - 1;
3015
3016 choose_wl_class_and_type(cfqd, cfqg);
3017 }
3018
3019 /*
3020 * Select a queue for service. If we have a current active queue,
3021 * check whether to continue servicing it, or retrieve and set a new one.
3022 */
3023 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3024 {
3025 struct cfq_queue *cfqq, *new_cfqq = NULL;
3026
3027 cfqq = cfqd->active_queue;
3028 if (!cfqq)
3029 goto new_queue;
3030
3031 if (!cfqd->rq_queued)
3032 return NULL;
3033
3034 /*
3035 * We were waiting for group to get backlogged. Expire the queue
3036 */
3037 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3038 goto expire;
3039
3040 /*
3041 * The active queue has run out of time, expire it and select new.
3042 */
3043 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3044 /*
3045 * If slice had not expired at the completion of last request
3046 * we might not have turned on wait_busy flag. Don't expire
3047 * the queue yet. Allow the group to get backlogged.
3048 *
3049 * The very fact that we have used the slice, that means we
3050 * have been idling all along on this queue and it should be
3051 * ok to wait for this request to complete.
3052 */
3053 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3054 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3055 cfqq = NULL;
3056 goto keep_queue;
3057 } else
3058 goto check_group_idle;
3059 }
3060
3061 /*
3062 * The active queue has requests and isn't expired, allow it to
3063 * dispatch.
3064 */
3065 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3066 goto keep_queue;
3067
3068 /*
3069 * If another queue has a request waiting within our mean seek
3070 * distance, let it run. The expire code will check for close
3071 * cooperators and put the close queue at the front of the service
3072 * tree. If possible, merge the expiring queue with the new cfqq.
3073 */
3074 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3075 if (new_cfqq) {
3076 if (!cfqq->new_cfqq)
3077 cfq_setup_merge(cfqq, new_cfqq);
3078 goto expire;
3079 }
3080
3081 /*
3082 * No requests pending. If the active queue still has requests in
3083 * flight or is idling for a new request, allow either of these
3084 * conditions to happen (or time out) before selecting a new queue.
3085 */
3086 if (timer_pending(&cfqd->idle_slice_timer)) {
3087 cfqq = NULL;
3088 goto keep_queue;
3089 }
3090
3091 /*
3092 * This is a deep seek queue, but the device is much faster than
3093 * the queue can deliver, don't idle
3094 **/
3095 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3096 (cfq_cfqq_slice_new(cfqq) ||
3097 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
3098 cfq_clear_cfqq_deep(cfqq);
3099 cfq_clear_cfqq_idle_window(cfqq);
3100 }
3101
3102 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3103 cfqq = NULL;
3104 goto keep_queue;
3105 }
3106
3107 /*
3108 * If group idle is enabled and there are requests dispatched from
3109 * this group, wait for requests to complete.
3110 */
3111 check_group_idle:
3112 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3113 cfqq->cfqg->dispatched &&
3114 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3115 cfqq = NULL;
3116 goto keep_queue;
3117 }
3118
3119 expire:
3120 cfq_slice_expired(cfqd, 0);
3121 new_queue:
3122 /*
3123 * Current queue expired. Check if we have to switch to a new
3124 * service tree
3125 */
3126 if (!new_cfqq)
3127 cfq_choose_cfqg(cfqd);
3128
3129 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3130 keep_queue:
3131 return cfqq;
3132 }
3133
3134 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3135 {
3136 int dispatched = 0;
3137
3138 while (cfqq->next_rq) {
3139 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3140 dispatched++;
3141 }
3142
3143 BUG_ON(!list_empty(&cfqq->fifo));
3144
3145 /* By default cfqq is not expired if it is empty. Do it explicitly */
3146 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3147 return dispatched;
3148 }
3149
3150 /*
3151 * Drain our current requests. Used for barriers and when switching
3152 * io schedulers on-the-fly.
3153 */
3154 static int cfq_forced_dispatch(struct cfq_data *cfqd)
3155 {
3156 struct cfq_queue *cfqq;
3157 int dispatched = 0;
3158
3159 /* Expire the timeslice of the current active queue first */
3160 cfq_slice_expired(cfqd, 0);
3161 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3162 __cfq_set_active_queue(cfqd, cfqq);
3163 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3164 }
3165
3166 BUG_ON(cfqd->busy_queues);
3167
3168 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3169 return dispatched;
3170 }
3171
3172 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3173 struct cfq_queue *cfqq)
3174 {
3175 /* the queue hasn't finished any request, can't estimate */
3176 if (cfq_cfqq_slice_new(cfqq))
3177 return true;
3178 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
3179 cfqq->slice_end))
3180 return true;
3181
3182 return false;
3183 }
3184
3185 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3186 {
3187 unsigned int max_dispatch;
3188
3189 /*
3190 * Drain async requests before we start sync IO
3191 */
3192 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3193 return false;
3194
3195 /*
3196 * If this is an async queue and we have sync IO in flight, let it wait
3197 */
3198 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3199 return false;
3200
3201 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3202 if (cfq_class_idle(cfqq))
3203 max_dispatch = 1;
3204
3205 /*
3206 * Does this cfqq already have too much IO in flight?
3207 */
3208 if (cfqq->dispatched >= max_dispatch) {
3209 bool promote_sync = false;
3210 /*
3211 * idle queue must always only have a single IO in flight
3212 */
3213 if (cfq_class_idle(cfqq))
3214 return false;
3215
3216 /*
3217 * If there is only one sync queue
3218 * we can ignore async queue here and give the sync
3219 * queue no dispatch limit. The reason is a sync queue can
3220 * preempt async queue, limiting the sync queue doesn't make
3221 * sense. This is useful for aiostress test.
3222 */
3223 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3224 promote_sync = true;
3225
3226 /*
3227 * We have other queues, don't allow more IO from this one
3228 */
3229 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3230 !promote_sync)
3231 return false;
3232
3233 /*
3234 * Sole queue user, no limit
3235 */
3236 if (cfqd->busy_queues == 1 || promote_sync)
3237 max_dispatch = -1;
3238 else
3239 /*
3240 * Normally we start throttling cfqq when cfq_quantum/2
3241 * requests have been dispatched. But we can drive
3242 * deeper queue depths at the beginning of slice
3243 * subjected to upper limit of cfq_quantum.
3244 * */
3245 max_dispatch = cfqd->cfq_quantum;
3246 }
3247
3248 /*
3249 * Async queues must wait a bit before being allowed dispatch.
3250 * We also ramp up the dispatch depth gradually for async IO,
3251 * based on the last sync IO we serviced
3252 */
3253 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3254 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
3255 unsigned int depth;
3256
3257 depth = last_sync / cfqd->cfq_slice[1];
3258 if (!depth && !cfqq->dispatched)
3259 depth = 1;
3260 if (depth < max_dispatch)
3261 max_dispatch = depth;
3262 }
3263
3264 /*
3265 * If we're below the current max, allow a dispatch
3266 */
3267 return cfqq->dispatched < max_dispatch;
3268 }
3269
3270 /*
3271 * Dispatch a request from cfqq, moving them to the request queue
3272 * dispatch list.
3273 */
3274 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3275 {
3276 struct request *rq;
3277
3278 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3279
3280 if (!cfq_may_dispatch(cfqd, cfqq))
3281 return false;
3282
3283 /*
3284 * follow expired path, else get first next available
3285 */
3286 rq = cfq_check_fifo(cfqq);
3287 if (!rq)
3288 rq = cfqq->next_rq;
3289
3290 /*
3291 * insert request into driver dispatch list
3292 */
3293 cfq_dispatch_insert(cfqd->queue, rq);
3294
3295 if (!cfqd->active_cic) {
3296 struct cfq_io_cq *cic = RQ_CIC(rq);
3297
3298 atomic_long_inc(&cic->icq.ioc->refcount);
3299 cfqd->active_cic = cic;
3300 }
3301
3302 return true;
3303 }
3304
3305 /*
3306 * Find the cfqq that we need to service and move a request from that to the
3307 * dispatch list
3308 */
3309 static int cfq_dispatch_requests(struct request_queue *q, int force)
3310 {
3311 struct cfq_data *cfqd = q->elevator->elevator_data;
3312 struct cfq_queue *cfqq;
3313
3314 if (!cfqd->busy_queues)
3315 return 0;
3316
3317 if (unlikely(force))
3318 return cfq_forced_dispatch(cfqd);
3319
3320 cfqq = cfq_select_queue(cfqd);
3321 if (!cfqq)
3322 return 0;
3323
3324 /*
3325 * Dispatch a request from this cfqq, if it is allowed
3326 */
3327 if (!cfq_dispatch_request(cfqd, cfqq))
3328 return 0;
3329
3330 cfqq->slice_dispatch++;
3331 cfq_clear_cfqq_must_dispatch(cfqq);
3332
3333 /*
3334 * expire an async queue immediately if it has used up its slice. idle
3335 * queue always expire after 1 dispatch round.
3336 */
3337 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3338 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3339 cfq_class_idle(cfqq))) {
3340 cfqq->slice_end = jiffies + 1;
3341 cfq_slice_expired(cfqd, 0);
3342 }
3343
3344 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3345 return 1;
3346 }
3347
3348 /*
3349 * task holds one reference to the queue, dropped when task exits. each rq
3350 * in-flight on this queue also holds a reference, dropped when rq is freed.
3351 *
3352 * Each cfq queue took a reference on the parent group. Drop it now.
3353 * queue lock must be held here.
3354 */
3355 static void cfq_put_queue(struct cfq_queue *cfqq)
3356 {
3357 struct cfq_data *cfqd = cfqq->cfqd;
3358 struct cfq_group *cfqg;
3359
3360 BUG_ON(cfqq->ref <= 0);
3361
3362 cfqq->ref--;
3363 if (cfqq->ref)
3364 return;
3365
3366 cfq_log_cfqq(cfqd, cfqq, "put_queue");
3367 BUG_ON(rb_first(&cfqq->sort_list));
3368 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3369 cfqg = cfqq->cfqg;
3370
3371 if (unlikely(cfqd->active_queue == cfqq)) {
3372 __cfq_slice_expired(cfqd, cfqq, 0);
3373 cfq_schedule_dispatch(cfqd);
3374 }
3375
3376 BUG_ON(cfq_cfqq_on_rr(cfqq));
3377 kmem_cache_free(cfq_pool, cfqq);
3378 cfqg_put(cfqg);
3379 }
3380
3381 static void cfq_put_cooperator(struct cfq_queue *cfqq)
3382 {
3383 struct cfq_queue *__cfqq, *next;
3384
3385 /*
3386 * If this queue was scheduled to merge with another queue, be
3387 * sure to drop the reference taken on that queue (and others in
3388 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3389 */
3390 __cfqq = cfqq->new_cfqq;
3391 while (__cfqq) {
3392 if (__cfqq == cfqq) {
3393 WARN(1, "cfqq->new_cfqq loop detected\n");
3394 break;
3395 }
3396 next = __cfqq->new_cfqq;
3397 cfq_put_queue(__cfqq);
3398 __cfqq = next;
3399 }
3400 }
3401
3402 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3403 {
3404 if (unlikely(cfqq == cfqd->active_queue)) {
3405 __cfq_slice_expired(cfqd, cfqq, 0);
3406 cfq_schedule_dispatch(cfqd);
3407 }
3408
3409 cfq_put_cooperator(cfqq);
3410
3411 cfq_put_queue(cfqq);
3412 }
3413
3414 static void cfq_init_icq(struct io_cq *icq)
3415 {
3416 struct cfq_io_cq *cic = icq_to_cic(icq);
3417
3418 cic->ttime.last_end_request = jiffies;
3419 }
3420
3421 static void cfq_exit_icq(struct io_cq *icq)
3422 {
3423 struct cfq_io_cq *cic = icq_to_cic(icq);
3424 struct cfq_data *cfqd = cic_to_cfqd(cic);
3425
3426 if (cic->cfqq[BLK_RW_ASYNC]) {
3427 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
3428 cic->cfqq[BLK_RW_ASYNC] = NULL;
3429 }
3430
3431 if (cic->cfqq[BLK_RW_SYNC]) {
3432 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
3433 cic->cfqq[BLK_RW_SYNC] = NULL;
3434 }
3435 }
3436
3437 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3438 {
3439 struct task_struct *tsk = current;
3440 int ioprio_class;
3441
3442 if (!cfq_cfqq_prio_changed(cfqq))
3443 return;
3444
3445 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3446 switch (ioprio_class) {
3447 default:
3448 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3449 case IOPRIO_CLASS_NONE:
3450 /*
3451 * no prio set, inherit CPU scheduling settings
3452 */
3453 cfqq->ioprio = task_nice_ioprio(tsk);
3454 cfqq->ioprio_class = task_nice_ioclass(tsk);
3455 break;
3456 case IOPRIO_CLASS_RT:
3457 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3458 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3459 break;
3460 case IOPRIO_CLASS_BE:
3461 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3462 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3463 break;
3464 case IOPRIO_CLASS_IDLE:
3465 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3466 cfqq->ioprio = 7;
3467 cfq_clear_cfqq_idle_window(cfqq);
3468 break;
3469 }
3470
3471 /*
3472 * keep track of original prio settings in case we have to temporarily
3473 * elevate the priority of this queue
3474 */
3475 cfqq->org_ioprio = cfqq->ioprio;
3476 cfq_clear_cfqq_prio_changed(cfqq);
3477 }
3478
3479 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3480 {
3481 int ioprio = cic->icq.ioc->ioprio;
3482 struct cfq_data *cfqd = cic_to_cfqd(cic);
3483 struct cfq_queue *cfqq;
3484
3485 /*
3486 * Check whether ioprio has changed. The condition may trigger
3487 * spuriously on a newly created cic but there's no harm.
3488 */
3489 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3490 return;
3491
3492 cfqq = cic->cfqq[BLK_RW_ASYNC];
3493 if (cfqq) {
3494 struct cfq_queue *new_cfqq;
3495 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
3496 GFP_ATOMIC);
3497 if (new_cfqq) {
3498 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
3499 cfq_put_queue(cfqq);
3500 }
3501 }
3502
3503 cfqq = cic->cfqq[BLK_RW_SYNC];
3504 if (cfqq)
3505 cfq_mark_cfqq_prio_changed(cfqq);
3506
3507 cic->ioprio = ioprio;
3508 }
3509
3510 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3511 pid_t pid, bool is_sync)
3512 {
3513 RB_CLEAR_NODE(&cfqq->rb_node);
3514 RB_CLEAR_NODE(&cfqq->p_node);
3515 INIT_LIST_HEAD(&cfqq->fifo);
3516
3517 cfqq->ref = 0;
3518 cfqq->cfqd = cfqd;
3519
3520 cfq_mark_cfqq_prio_changed(cfqq);
3521
3522 if (is_sync) {
3523 if (!cfq_class_idle(cfqq))
3524 cfq_mark_cfqq_idle_window(cfqq);
3525 cfq_mark_cfqq_sync(cfqq);
3526 }
3527 cfqq->pid = pid;
3528 }
3529
3530 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3531 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3532 {
3533 struct cfq_data *cfqd = cic_to_cfqd(cic);
3534 struct cfq_queue *sync_cfqq;
3535 uint64_t id;
3536
3537 rcu_read_lock();
3538 id = bio_blkcg(bio)->id;
3539 rcu_read_unlock();
3540
3541 /*
3542 * Check whether blkcg has changed. The condition may trigger
3543 * spuriously on a newly created cic but there's no harm.
3544 */
3545 if (unlikely(!cfqd) || likely(cic->blkcg_id == id))
3546 return;
3547
3548 sync_cfqq = cic_to_cfqq(cic, 1);
3549 if (sync_cfqq) {
3550 /*
3551 * Drop reference to sync queue. A new sync queue will be
3552 * assigned in new group upon arrival of a fresh request.
3553 */
3554 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
3555 cic_set_cfqq(cic, NULL, 1);
3556 cfq_put_queue(sync_cfqq);
3557 }
3558
3559 cic->blkcg_id = id;
3560 }
3561 #else
3562 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3563 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3564
3565 static struct cfq_queue *
3566 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3567 struct bio *bio, gfp_t gfp_mask)
3568 {
3569 struct blkcg *blkcg;
3570 struct cfq_queue *cfqq, *new_cfqq = NULL;
3571 struct cfq_group *cfqg;
3572
3573 retry:
3574 rcu_read_lock();
3575
3576 blkcg = bio_blkcg(bio);
3577 cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
3578 if (!cfqg) {
3579 cfqq = &cfqd->oom_cfqq;
3580 goto out;
3581 }
3582
3583 cfqq = cic_to_cfqq(cic, is_sync);
3584
3585 /*
3586 * Always try a new alloc if we fell back to the OOM cfqq
3587 * originally, since it should just be a temporary situation.
3588 */
3589 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3590 cfqq = NULL;
3591 if (new_cfqq) {
3592 cfqq = new_cfqq;
3593 new_cfqq = NULL;
3594 } else if (gfp_mask & __GFP_WAIT) {
3595 rcu_read_unlock();
3596 spin_unlock_irq(cfqd->queue->queue_lock);
3597 new_cfqq = kmem_cache_alloc_node(cfq_pool,
3598 gfp_mask | __GFP_ZERO,
3599 cfqd->queue->node);
3600 spin_lock_irq(cfqd->queue->queue_lock);
3601 if (new_cfqq)
3602 goto retry;
3603 else
3604 return &cfqd->oom_cfqq;
3605 } else {
3606 cfqq = kmem_cache_alloc_node(cfq_pool,
3607 gfp_mask | __GFP_ZERO,
3608 cfqd->queue->node);
3609 }
3610
3611 if (cfqq) {
3612 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3613 cfq_init_prio_data(cfqq, cic);
3614 cfq_link_cfqq_cfqg(cfqq, cfqg);
3615 cfq_log_cfqq(cfqd, cfqq, "alloced");
3616 } else
3617 cfqq = &cfqd->oom_cfqq;
3618 }
3619 out:
3620 if (new_cfqq)
3621 kmem_cache_free(cfq_pool, new_cfqq);
3622
3623 rcu_read_unlock();
3624 return cfqq;
3625 }
3626
3627 static struct cfq_queue **
3628 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3629 {
3630 switch (ioprio_class) {
3631 case IOPRIO_CLASS_RT:
3632 return &cfqd->async_cfqq[0][ioprio];
3633 case IOPRIO_CLASS_NONE:
3634 ioprio = IOPRIO_NORM;
3635 /* fall through */
3636 case IOPRIO_CLASS_BE:
3637 return &cfqd->async_cfqq[1][ioprio];
3638 case IOPRIO_CLASS_IDLE:
3639 return &cfqd->async_idle_cfqq;
3640 default:
3641 BUG();
3642 }
3643 }
3644
3645 static struct cfq_queue *
3646 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3647 struct bio *bio, gfp_t gfp_mask)
3648 {
3649 int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3650 int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3651 struct cfq_queue **async_cfqq = NULL;
3652 struct cfq_queue *cfqq = NULL;
3653
3654 if (!is_sync) {
3655 if (!ioprio_valid(cic->ioprio)) {
3656 struct task_struct *tsk = current;
3657 ioprio = task_nice_ioprio(tsk);
3658 ioprio_class = task_nice_ioclass(tsk);
3659 }
3660 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3661 cfqq = *async_cfqq;
3662 }
3663
3664 if (!cfqq)
3665 cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
3666
3667 /*
3668 * pin the queue now that it's allocated, scheduler exit will prune it
3669 */
3670 if (!is_sync && !(*async_cfqq)) {
3671 cfqq->ref++;
3672 *async_cfqq = cfqq;
3673 }
3674
3675 cfqq->ref++;
3676 return cfqq;
3677 }
3678
3679 static void
3680 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3681 {
3682 unsigned long elapsed = jiffies - ttime->last_end_request;
3683 elapsed = min(elapsed, 2UL * slice_idle);
3684
3685 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3686 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3687 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3688 }
3689
3690 static void
3691 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3692 struct cfq_io_cq *cic)
3693 {
3694 if (cfq_cfqq_sync(cfqq)) {
3695 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3696 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3697 cfqd->cfq_slice_idle);
3698 }
3699 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3700 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3701 #endif
3702 }
3703
3704 static void
3705 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3706 struct request *rq)
3707 {
3708 sector_t sdist = 0;
3709 sector_t n_sec = blk_rq_sectors(rq);
3710 if (cfqq->last_request_pos) {
3711 if (cfqq->last_request_pos < blk_rq_pos(rq))
3712 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3713 else
3714 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3715 }
3716
3717 cfqq->seek_history <<= 1;
3718 if (blk_queue_nonrot(cfqd->queue))
3719 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3720 else
3721 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3722 }
3723
3724 /*
3725 * Disable idle window if the process thinks too long or seeks so much that
3726 * it doesn't matter
3727 */
3728 static void
3729 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3730 struct cfq_io_cq *cic)
3731 {
3732 int old_idle, enable_idle;
3733
3734 /*
3735 * Don't idle for async or idle io prio class
3736 */
3737 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3738 return;
3739
3740 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3741
3742 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3743 cfq_mark_cfqq_deep(cfqq);
3744
3745 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3746 enable_idle = 0;
3747 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3748 !cfqd->cfq_slice_idle ||
3749 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3750 enable_idle = 0;
3751 else if (sample_valid(cic->ttime.ttime_samples)) {
3752 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3753 enable_idle = 0;
3754 else
3755 enable_idle = 1;
3756 }
3757
3758 if (old_idle != enable_idle) {
3759 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3760 if (enable_idle)
3761 cfq_mark_cfqq_idle_window(cfqq);
3762 else
3763 cfq_clear_cfqq_idle_window(cfqq);
3764 }
3765 }
3766
3767 /*
3768 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3769 * no or if we aren't sure, a 1 will cause a preempt.
3770 */
3771 static bool
3772 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3773 struct request *rq)
3774 {
3775 struct cfq_queue *cfqq;
3776
3777 cfqq = cfqd->active_queue;
3778 if (!cfqq)
3779 return false;
3780
3781 if (cfq_class_idle(new_cfqq))
3782 return false;
3783
3784 if (cfq_class_idle(cfqq))
3785 return true;
3786
3787 /*
3788 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3789 */
3790 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3791 return false;
3792
3793 /*
3794 * if the new request is sync, but the currently running queue is
3795 * not, let the sync request have priority.
3796 */
3797 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3798 return true;
3799
3800 if (new_cfqq->cfqg != cfqq->cfqg)
3801 return false;
3802
3803 if (cfq_slice_used(cfqq))
3804 return true;
3805
3806 /* Allow preemption only if we are idling on sync-noidle tree */
3807 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
3808 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3809 new_cfqq->service_tree->count == 2 &&
3810 RB_EMPTY_ROOT(&cfqq->sort_list))
3811 return true;
3812
3813 /*
3814 * So both queues are sync. Let the new request get disk time if
3815 * it's a metadata request and the current queue is doing regular IO.
3816 */
3817 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3818 return true;
3819
3820 /*
3821 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3822 */
3823 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3824 return true;
3825
3826 /* An idle queue should not be idle now for some reason */
3827 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3828 return true;
3829
3830 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3831 return false;
3832
3833 /*
3834 * if this request is as-good as one we would expect from the
3835 * current cfqq, let it preempt
3836 */
3837 if (cfq_rq_close(cfqd, cfqq, rq))
3838 return true;
3839
3840 return false;
3841 }
3842
3843 /*
3844 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3845 * let it have half of its nominal slice.
3846 */
3847 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3848 {
3849 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3850
3851 cfq_log_cfqq(cfqd, cfqq, "preempt");
3852 cfq_slice_expired(cfqd, 1);
3853
3854 /*
3855 * workload type is changed, don't save slice, otherwise preempt
3856 * doesn't happen
3857 */
3858 if (old_type != cfqq_type(cfqq))
3859 cfqq->cfqg->saved_wl_slice = 0;
3860
3861 /*
3862 * Put the new queue at the front of the of the current list,
3863 * so we know that it will be selected next.
3864 */
3865 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3866
3867 cfq_service_tree_add(cfqd, cfqq, 1);
3868
3869 cfqq->slice_end = 0;
3870 cfq_mark_cfqq_slice_new(cfqq);
3871 }
3872
3873 /*
3874 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3875 * something we should do about it
3876 */
3877 static void
3878 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3879 struct request *rq)
3880 {
3881 struct cfq_io_cq *cic = RQ_CIC(rq);
3882
3883 cfqd->rq_queued++;
3884 if (rq->cmd_flags & REQ_PRIO)
3885 cfqq->prio_pending++;
3886
3887 cfq_update_io_thinktime(cfqd, cfqq, cic);
3888 cfq_update_io_seektime(cfqd, cfqq, rq);
3889 cfq_update_idle_window(cfqd, cfqq, cic);
3890
3891 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3892
3893 if (cfqq == cfqd->active_queue) {
3894 /*
3895 * Remember that we saw a request from this process, but
3896 * don't start queuing just yet. Otherwise we risk seeing lots
3897 * of tiny requests, because we disrupt the normal plugging
3898 * and merging. If the request is already larger than a single
3899 * page, let it rip immediately. For that case we assume that
3900 * merging is already done. Ditto for a busy system that
3901 * has other work pending, don't risk delaying until the
3902 * idle timer unplug to continue working.
3903 */
3904 if (cfq_cfqq_wait_request(cfqq)) {
3905 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3906 cfqd->busy_queues > 1) {
3907 cfq_del_timer(cfqd, cfqq);
3908 cfq_clear_cfqq_wait_request(cfqq);
3909 __blk_run_queue(cfqd->queue);
3910 } else {
3911 cfqg_stats_update_idle_time(cfqq->cfqg);
3912 cfq_mark_cfqq_must_dispatch(cfqq);
3913 }
3914 }
3915 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3916 /*
3917 * not the active queue - expire current slice if it is
3918 * idle and has expired it's mean thinktime or this new queue
3919 * has some old slice time left and is of higher priority or
3920 * this new queue is RT and the current one is BE
3921 */
3922 cfq_preempt_queue(cfqd, cfqq);
3923 __blk_run_queue(cfqd->queue);
3924 }
3925 }
3926
3927 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3928 {
3929 struct cfq_data *cfqd = q->elevator->elevator_data;
3930 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3931
3932 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3933 cfq_init_prio_data(cfqq, RQ_CIC(rq));
3934
3935 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3936 list_add_tail(&rq->queuelist, &cfqq->fifo);
3937 cfq_add_rq_rb(rq);
3938 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
3939 rq->cmd_flags);
3940 cfq_rq_enqueued(cfqd, cfqq, rq);
3941 }
3942
3943 /*
3944 * Update hw_tag based on peak queue depth over 50 samples under
3945 * sufficient load.
3946 */
3947 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3948 {
3949 struct cfq_queue *cfqq = cfqd->active_queue;
3950
3951 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3952 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3953
3954 if (cfqd->hw_tag == 1)
3955 return;
3956
3957 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3958 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3959 return;
3960
3961 /*
3962 * If active queue hasn't enough requests and can idle, cfq might not
3963 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3964 * case
3965 */
3966 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3967 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3968 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3969 return;
3970
3971 if (cfqd->hw_tag_samples++ < 50)
3972 return;
3973
3974 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3975 cfqd->hw_tag = 1;
3976 else
3977 cfqd->hw_tag = 0;
3978 }
3979
3980 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3981 {
3982 struct cfq_io_cq *cic = cfqd->active_cic;
3983
3984 /* If the queue already has requests, don't wait */
3985 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3986 return false;
3987
3988 /* If there are other queues in the group, don't wait */
3989 if (cfqq->cfqg->nr_cfqq > 1)
3990 return false;
3991
3992 /* the only queue in the group, but think time is big */
3993 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3994 return false;
3995
3996 if (cfq_slice_used(cfqq))
3997 return true;
3998
3999 /* if slice left is less than think time, wait busy */
4000 if (cic && sample_valid(cic->ttime.ttime_samples)
4001 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
4002 return true;
4003
4004 /*
4005 * If think times is less than a jiffy than ttime_mean=0 and above
4006 * will not be true. It might happen that slice has not expired yet
4007 * but will expire soon (4-5 ns) during select_queue(). To cover the
4008 * case where think time is less than a jiffy, mark the queue wait
4009 * busy if only 1 jiffy is left in the slice.
4010 */
4011 if (cfqq->slice_end - jiffies == 1)
4012 return true;
4013
4014 return false;
4015 }
4016
4017 static void cfq_completed_request(struct request_queue *q, struct request *rq)
4018 {
4019 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4020 struct cfq_data *cfqd = cfqq->cfqd;
4021 const int sync = rq_is_sync(rq);
4022 unsigned long now;
4023
4024 now = jiffies;
4025 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
4026 !!(rq->cmd_flags & REQ_NOIDLE));
4027
4028 cfq_update_hw_tag(cfqd);
4029
4030 WARN_ON(!cfqd->rq_in_driver);
4031 WARN_ON(!cfqq->dispatched);
4032 cfqd->rq_in_driver--;
4033 cfqq->dispatched--;
4034 (RQ_CFQG(rq))->dispatched--;
4035 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4036 rq_io_start_time_ns(rq), rq->cmd_flags);
4037
4038 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4039
4040 if (sync) {
4041 struct cfq_rb_root *st;
4042
4043 RQ_CIC(rq)->ttime.last_end_request = now;
4044
4045 if (cfq_cfqq_on_rr(cfqq))
4046 st = cfqq->service_tree;
4047 else
4048 st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4049 cfqq_type(cfqq));
4050
4051 st->ttime.last_end_request = now;
4052 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
4053 cfqd->last_delayed_sync = now;
4054 }
4055
4056 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4057 cfqq->cfqg->ttime.last_end_request = now;
4058 #endif
4059
4060 /*
4061 * If this is the active queue, check if it needs to be expired,
4062 * or if we want to idle in case it has no pending requests.
4063 */
4064 if (cfqd->active_queue == cfqq) {
4065 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4066
4067 if (cfq_cfqq_slice_new(cfqq)) {
4068 cfq_set_prio_slice(cfqd, cfqq);
4069 cfq_clear_cfqq_slice_new(cfqq);
4070 }
4071
4072 /*
4073 * Should we wait for next request to come in before we expire
4074 * the queue.
4075 */
4076 if (cfq_should_wait_busy(cfqd, cfqq)) {
4077 unsigned long extend_sl = cfqd->cfq_slice_idle;
4078 if (!cfqd->cfq_slice_idle)
4079 extend_sl = cfqd->cfq_group_idle;
4080 cfqq->slice_end = jiffies + extend_sl;
4081 cfq_mark_cfqq_wait_busy(cfqq);
4082 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4083 }
4084
4085 /*
4086 * Idling is not enabled on:
4087 * - expired queues
4088 * - idle-priority queues
4089 * - async queues
4090 * - queues with still some requests queued
4091 * - when there is a close cooperator
4092 */
4093 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4094 cfq_slice_expired(cfqd, 1);
4095 else if (sync && cfqq_empty &&
4096 !cfq_close_cooperator(cfqd, cfqq)) {
4097 cfq_arm_slice_timer(cfqd);
4098 }
4099 }
4100
4101 if (!cfqd->rq_in_driver)
4102 cfq_schedule_dispatch(cfqd);
4103 }
4104
4105 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4106 {
4107 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4108 cfq_mark_cfqq_must_alloc_slice(cfqq);
4109 return ELV_MQUEUE_MUST;
4110 }
4111
4112 return ELV_MQUEUE_MAY;
4113 }
4114
4115 static int cfq_may_queue(struct request_queue *q, int rw)
4116 {
4117 struct cfq_data *cfqd = q->elevator->elevator_data;
4118 struct task_struct *tsk = current;
4119 struct cfq_io_cq *cic;
4120 struct cfq_queue *cfqq;
4121
4122 /*
4123 * don't force setup of a queue from here, as a call to may_queue
4124 * does not necessarily imply that a request actually will be queued.
4125 * so just lookup a possibly existing queue, or return 'may queue'
4126 * if that fails
4127 */
4128 cic = cfq_cic_lookup(cfqd, tsk->io_context);
4129 if (!cic)
4130 return ELV_MQUEUE_MAY;
4131
4132 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
4133 if (cfqq) {
4134 cfq_init_prio_data(cfqq, cic);
4135
4136 return __cfq_may_queue(cfqq);
4137 }
4138
4139 return ELV_MQUEUE_MAY;
4140 }
4141
4142 /*
4143 * queue lock held here
4144 */
4145 static void cfq_put_request(struct request *rq)
4146 {
4147 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4148
4149 if (cfqq) {
4150 const int rw = rq_data_dir(rq);
4151
4152 BUG_ON(!cfqq->allocated[rw]);
4153 cfqq->allocated[rw]--;
4154
4155 /* Put down rq reference on cfqg */
4156 cfqg_put(RQ_CFQG(rq));
4157 rq->elv.priv[0] = NULL;
4158 rq->elv.priv[1] = NULL;
4159
4160 cfq_put_queue(cfqq);
4161 }
4162 }
4163
4164 static struct cfq_queue *
4165 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4166 struct cfq_queue *cfqq)
4167 {
4168 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4169 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4170 cfq_mark_cfqq_coop(cfqq->new_cfqq);
4171 cfq_put_queue(cfqq);
4172 return cic_to_cfqq(cic, 1);
4173 }
4174
4175 /*
4176 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4177 * was the last process referring to said cfqq.
4178 */
4179 static struct cfq_queue *
4180 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4181 {
4182 if (cfqq_process_refs(cfqq) == 1) {
4183 cfqq->pid = current->pid;
4184 cfq_clear_cfqq_coop(cfqq);
4185 cfq_clear_cfqq_split_coop(cfqq);
4186 return cfqq;
4187 }
4188
4189 cic_set_cfqq(cic, NULL, 1);
4190
4191 cfq_put_cooperator(cfqq);
4192
4193 cfq_put_queue(cfqq);
4194 return NULL;
4195 }
4196 /*
4197 * Allocate cfq data structures associated with this request.
4198 */
4199 static int
4200 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4201 gfp_t gfp_mask)
4202 {
4203 struct cfq_data *cfqd = q->elevator->elevator_data;
4204 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4205 const int rw = rq_data_dir(rq);
4206 const bool is_sync = rq_is_sync(rq);
4207 struct cfq_queue *cfqq;
4208
4209 might_sleep_if(gfp_mask & __GFP_WAIT);
4210
4211 spin_lock_irq(q->queue_lock);
4212
4213 check_ioprio_changed(cic, bio);
4214 check_blkcg_changed(cic, bio);
4215 new_queue:
4216 cfqq = cic_to_cfqq(cic, is_sync);
4217 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4218 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
4219 cic_set_cfqq(cic, cfqq, is_sync);
4220 } else {
4221 /*
4222 * If the queue was seeky for too long, break it apart.
4223 */
4224 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4225 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4226 cfqq = split_cfqq(cic, cfqq);
4227 if (!cfqq)
4228 goto new_queue;
4229 }
4230
4231 /*
4232 * Check to see if this queue is scheduled to merge with
4233 * another, closely cooperating queue. The merging of
4234 * queues happens here as it must be done in process context.
4235 * The reference on new_cfqq was taken in merge_cfqqs.
4236 */
4237 if (cfqq->new_cfqq)
4238 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4239 }
4240
4241 cfqq->allocated[rw]++;
4242
4243 cfqq->ref++;
4244 cfqg_get(cfqq->cfqg);
4245 rq->elv.priv[0] = cfqq;
4246 rq->elv.priv[1] = cfqq->cfqg;
4247 spin_unlock_irq(q->queue_lock);
4248 return 0;
4249 }
4250
4251 static void cfq_kick_queue(struct work_struct *work)
4252 {
4253 struct cfq_data *cfqd =
4254 container_of(work, struct cfq_data, unplug_work);
4255 struct request_queue *q = cfqd->queue;
4256
4257 spin_lock_irq(q->queue_lock);
4258 __blk_run_queue(cfqd->queue);
4259 spin_unlock_irq(q->queue_lock);
4260 }
4261
4262 /*
4263 * Timer running if the active_queue is currently idling inside its time slice
4264 */
4265 static void cfq_idle_slice_timer(unsigned long data)
4266 {
4267 struct cfq_data *cfqd = (struct cfq_data *) data;
4268 struct cfq_queue *cfqq;
4269 unsigned long flags;
4270 int timed_out = 1;
4271
4272 cfq_log(cfqd, "idle timer fired");
4273
4274 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4275
4276 cfqq = cfqd->active_queue;
4277 if (cfqq) {
4278 timed_out = 0;
4279
4280 /*
4281 * We saw a request before the queue expired, let it through
4282 */
4283 if (cfq_cfqq_must_dispatch(cfqq))
4284 goto out_kick;
4285
4286 /*
4287 * expired
4288 */
4289 if (cfq_slice_used(cfqq))
4290 goto expire;
4291
4292 /*
4293 * only expire and reinvoke request handler, if there are
4294 * other queues with pending requests
4295 */
4296 if (!cfqd->busy_queues)
4297 goto out_cont;
4298
4299 /*
4300 * not expired and it has a request pending, let it dispatch
4301 */
4302 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4303 goto out_kick;
4304
4305 /*
4306 * Queue depth flag is reset only when the idle didn't succeed
4307 */
4308 cfq_clear_cfqq_deep(cfqq);
4309 }
4310 expire:
4311 cfq_slice_expired(cfqd, timed_out);
4312 out_kick:
4313 cfq_schedule_dispatch(cfqd);
4314 out_cont:
4315 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4316 }
4317
4318 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4319 {
4320 del_timer_sync(&cfqd->idle_slice_timer);
4321 cancel_work_sync(&cfqd->unplug_work);
4322 }
4323
4324 static void cfq_put_async_queues(struct cfq_data *cfqd)
4325 {
4326 int i;
4327
4328 for (i = 0; i < IOPRIO_BE_NR; i++) {
4329 if (cfqd->async_cfqq[0][i])
4330 cfq_put_queue(cfqd->async_cfqq[0][i]);
4331 if (cfqd->async_cfqq[1][i])
4332 cfq_put_queue(cfqd->async_cfqq[1][i]);
4333 }
4334
4335 if (cfqd->async_idle_cfqq)
4336 cfq_put_queue(cfqd->async_idle_cfqq);
4337 }
4338
4339 static void cfq_exit_queue(struct elevator_queue *e)
4340 {
4341 struct cfq_data *cfqd = e->elevator_data;
4342 struct request_queue *q = cfqd->queue;
4343
4344 cfq_shutdown_timer_wq(cfqd);
4345
4346 spin_lock_irq(q->queue_lock);
4347
4348 if (cfqd->active_queue)
4349 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4350
4351 cfq_put_async_queues(cfqd);
4352
4353 spin_unlock_irq(q->queue_lock);
4354
4355 cfq_shutdown_timer_wq(cfqd);
4356
4357 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4358 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4359 #else
4360 kfree(cfqd->root_group);
4361 #endif
4362 kfree(cfqd);
4363 }
4364
4365 static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4366 {
4367 struct cfq_data *cfqd;
4368 struct blkcg_gq *blkg __maybe_unused;
4369 int i, ret;
4370 struct elevator_queue *eq;
4371
4372 eq = elevator_alloc(q, e);
4373 if (!eq)
4374 return -ENOMEM;
4375
4376 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
4377 if (!cfqd) {
4378 kobject_put(&eq->kobj);
4379 return -ENOMEM;
4380 }
4381 eq->elevator_data = cfqd;
4382
4383 cfqd->queue = q;
4384 spin_lock_irq(q->queue_lock);
4385 q->elevator = eq;
4386 spin_unlock_irq(q->queue_lock);
4387
4388 /* Init root service tree */
4389 cfqd->grp_service_tree = CFQ_RB_ROOT;
4390
4391 /* Init root group and prefer root group over other groups by default */
4392 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4393 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4394 if (ret)
4395 goto out_free;
4396
4397 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4398 #else
4399 ret = -ENOMEM;
4400 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4401 GFP_KERNEL, cfqd->queue->node);
4402 if (!cfqd->root_group)
4403 goto out_free;
4404
4405 cfq_init_cfqg_base(cfqd->root_group);
4406 #endif
4407 cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
4408 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
4409
4410 /*
4411 * Not strictly needed (since RB_ROOT just clears the node and we
4412 * zeroed cfqd on alloc), but better be safe in case someone decides
4413 * to add magic to the rb code
4414 */
4415 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4416 cfqd->prio_trees[i] = RB_ROOT;
4417
4418 /*
4419 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4420 * Grab a permanent reference to it, so that the normal code flow
4421 * will not attempt to free it. oom_cfqq is linked to root_group
4422 * but shouldn't hold a reference as it'll never be unlinked. Lose
4423 * the reference from linking right away.
4424 */
4425 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4426 cfqd->oom_cfqq.ref++;
4427
4428 spin_lock_irq(q->queue_lock);
4429 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4430 cfqg_put(cfqd->root_group);
4431 spin_unlock_irq(q->queue_lock);
4432
4433 init_timer(&cfqd->idle_slice_timer);
4434 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4435 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4436
4437 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4438
4439 cfqd->cfq_quantum = cfq_quantum;
4440 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4441 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4442 cfqd->cfq_back_max = cfq_back_max;
4443 cfqd->cfq_back_penalty = cfq_back_penalty;
4444 cfqd->cfq_slice[0] = cfq_slice_async;
4445 cfqd->cfq_slice[1] = cfq_slice_sync;
4446 cfqd->cfq_target_latency = cfq_target_latency;
4447 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4448 cfqd->cfq_slice_idle = cfq_slice_idle;
4449 cfqd->cfq_group_idle = cfq_group_idle;
4450 cfqd->cfq_latency = 1;
4451 cfqd->hw_tag = -1;
4452 /*
4453 * we optimistically start assuming sync ops weren't delayed in last
4454 * second, in order to have larger depth for async operations.
4455 */
4456 cfqd->last_delayed_sync = jiffies - HZ;
4457 return 0;
4458
4459 out_free:
4460 kfree(cfqd);
4461 kobject_put(&eq->kobj);
4462 return ret;
4463 }
4464
4465 /*
4466 * sysfs parts below -->
4467 */
4468 static ssize_t
4469 cfq_var_show(unsigned int var, char *page)
4470 {
4471 return sprintf(page, "%d\n", var);
4472 }
4473
4474 static ssize_t
4475 cfq_var_store(unsigned int *var, const char *page, size_t count)
4476 {
4477 char *p = (char *) page;
4478
4479 *var = simple_strtoul(p, &p, 10);
4480 return count;
4481 }
4482
4483 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4484 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4485 { \
4486 struct cfq_data *cfqd = e->elevator_data; \
4487 unsigned int __data = __VAR; \
4488 if (__CONV) \
4489 __data = jiffies_to_msecs(__data); \
4490 return cfq_var_show(__data, (page)); \
4491 }
4492 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4493 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4494 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4495 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4496 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4497 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4498 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4499 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4500 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4501 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4502 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4503 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4504 #undef SHOW_FUNCTION
4505
4506 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4507 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4508 { \
4509 struct cfq_data *cfqd = e->elevator_data; \
4510 unsigned int __data; \
4511 int ret = cfq_var_store(&__data, (page), count); \
4512 if (__data < (MIN)) \
4513 __data = (MIN); \
4514 else if (__data > (MAX)) \
4515 __data = (MAX); \
4516 if (__CONV) \
4517 *(__PTR) = msecs_to_jiffies(__data); \
4518 else \
4519 *(__PTR) = __data; \
4520 return ret; \
4521 }
4522 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4523 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4524 UINT_MAX, 1);
4525 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4526 UINT_MAX, 1);
4527 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4528 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4529 UINT_MAX, 0);
4530 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4531 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4532 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4533 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4534 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4535 UINT_MAX, 0);
4536 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4537 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4538 #undef STORE_FUNCTION
4539
4540 #define CFQ_ATTR(name) \
4541 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4542
4543 static struct elv_fs_entry cfq_attrs[] = {
4544 CFQ_ATTR(quantum),
4545 CFQ_ATTR(fifo_expire_sync),
4546 CFQ_ATTR(fifo_expire_async),
4547 CFQ_ATTR(back_seek_max),
4548 CFQ_ATTR(back_seek_penalty),
4549 CFQ_ATTR(slice_sync),
4550 CFQ_ATTR(slice_async),
4551 CFQ_ATTR(slice_async_rq),
4552 CFQ_ATTR(slice_idle),
4553 CFQ_ATTR(group_idle),
4554 CFQ_ATTR(low_latency),
4555 CFQ_ATTR(target_latency),
4556 __ATTR_NULL
4557 };
4558
4559 static struct elevator_type iosched_cfq = {
4560 .ops = {
4561 .elevator_merge_fn = cfq_merge,
4562 .elevator_merged_fn = cfq_merged_request,
4563 .elevator_merge_req_fn = cfq_merged_requests,
4564 .elevator_allow_merge_fn = cfq_allow_merge,
4565 .elevator_bio_merged_fn = cfq_bio_merged,
4566 .elevator_dispatch_fn = cfq_dispatch_requests,
4567 .elevator_add_req_fn = cfq_insert_request,
4568 .elevator_activate_req_fn = cfq_activate_request,
4569 .elevator_deactivate_req_fn = cfq_deactivate_request,
4570 .elevator_completed_req_fn = cfq_completed_request,
4571 .elevator_former_req_fn = elv_rb_former_request,
4572 .elevator_latter_req_fn = elv_rb_latter_request,
4573 .elevator_init_icq_fn = cfq_init_icq,
4574 .elevator_exit_icq_fn = cfq_exit_icq,
4575 .elevator_set_req_fn = cfq_set_request,
4576 .elevator_put_req_fn = cfq_put_request,
4577 .elevator_may_queue_fn = cfq_may_queue,
4578 .elevator_init_fn = cfq_init_queue,
4579 .elevator_exit_fn = cfq_exit_queue,
4580 },
4581 .icq_size = sizeof(struct cfq_io_cq),
4582 .icq_align = __alignof__(struct cfq_io_cq),
4583 .elevator_attrs = cfq_attrs,
4584 .elevator_name = "cfq",
4585 .elevator_owner = THIS_MODULE,
4586 };
4587
4588 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4589 static struct blkcg_policy blkcg_policy_cfq = {
4590 .pd_size = sizeof(struct cfq_group),
4591 .cftypes = cfq_blkcg_files,
4592
4593 .pd_init_fn = cfq_pd_init,
4594 .pd_offline_fn = cfq_pd_offline,
4595 .pd_reset_stats_fn = cfq_pd_reset_stats,
4596 };
4597 #endif
4598
4599 static int __init cfq_init(void)
4600 {
4601 int ret;
4602
4603 /*
4604 * could be 0 on HZ < 1000 setups
4605 */
4606 if (!cfq_slice_async)
4607 cfq_slice_async = 1;
4608 if (!cfq_slice_idle)
4609 cfq_slice_idle = 1;
4610
4611 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4612 if (!cfq_group_idle)
4613 cfq_group_idle = 1;
4614
4615 ret = blkcg_policy_register(&blkcg_policy_cfq);
4616 if (ret)
4617 return ret;
4618 #else
4619 cfq_group_idle = 0;
4620 #endif
4621
4622 ret = -ENOMEM;
4623 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4624 if (!cfq_pool)
4625 goto err_pol_unreg;
4626
4627 ret = elv_register(&iosched_cfq);
4628 if (ret)
4629 goto err_free_pool;
4630
4631 return 0;
4632
4633 err_free_pool:
4634 kmem_cache_destroy(cfq_pool);
4635 err_pol_unreg:
4636 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4637 blkcg_policy_unregister(&blkcg_policy_cfq);
4638 #endif
4639 return ret;
4640 }
4641
4642 static void __exit cfq_exit(void)
4643 {
4644 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4645 blkcg_policy_unregister(&blkcg_policy_cfq);
4646 #endif
4647 elv_unregister(&iosched_cfq);
4648 kmem_cache_destroy(cfq_pool);
4649 }
4650
4651 module_init(cfq_init);
4652 module_exit(cfq_exit);
4653
4654 MODULE_AUTHOR("Jens Axboe");
4655 MODULE_LICENSE("GPL");
4656 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");