cfq: explicitly use 64bit divide operation for 64bit arguments
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / block / blk-throttle.c
1 /*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include "blk-cgroup.h"
13 #include "blk.h"
14
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum = 8;
17
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum = 32;
20
21 /* Throttling is performed over 100ms slice and after that slice is renewed */
22 static unsigned long throtl_slice = HZ/10; /* 100 ms */
23
24 static struct blkcg_policy blkcg_policy_throtl;
25
26 /* A workqueue to queue throttle related work */
27 static struct workqueue_struct *kthrotld_workqueue;
28 static void throtl_schedule_delayed_work(struct throtl_data *td,
29 unsigned long delay);
30
31 struct throtl_rb_root {
32 struct rb_root rb;
33 struct rb_node *left;
34 unsigned int count;
35 unsigned long min_disptime;
36 };
37
38 #define THROTL_RB_ROOT (struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
39 .count = 0, .min_disptime = 0}
40
41 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
42
43 /* Per-cpu group stats */
44 struct tg_stats_cpu {
45 /* total bytes transferred */
46 struct blkg_rwstat service_bytes;
47 /* total IOs serviced, post merge */
48 struct blkg_rwstat serviced;
49 };
50
51 struct throtl_grp {
52 /* must be the first member */
53 struct blkg_policy_data pd;
54
55 /* active throtl group service_tree member */
56 struct rb_node rb_node;
57
58 /*
59 * Dispatch time in jiffies. This is the estimated time when group
60 * will unthrottle and is ready to dispatch more bio. It is used as
61 * key to sort active groups in service tree.
62 */
63 unsigned long disptime;
64
65 unsigned int flags;
66
67 /* Two lists for READ and WRITE */
68 struct bio_list bio_lists[2];
69
70 /* Number of queued bios on READ and WRITE lists */
71 unsigned int nr_queued[2];
72
73 /* bytes per second rate limits */
74 uint64_t bps[2];
75
76 /* IOPS limits */
77 unsigned int iops[2];
78
79 /* Number of bytes disptached in current slice */
80 uint64_t bytes_disp[2];
81 /* Number of bio's dispatched in current slice */
82 unsigned int io_disp[2];
83
84 /* When did we start a new slice */
85 unsigned long slice_start[2];
86 unsigned long slice_end[2];
87
88 /* Some throttle limits got updated for the group */
89 int limits_changed;
90
91 /* Per cpu stats pointer */
92 struct tg_stats_cpu __percpu *stats_cpu;
93
94 /* List of tgs waiting for per cpu stats memory to be allocated */
95 struct list_head stats_alloc_node;
96 };
97
98 struct throtl_data
99 {
100 /* service tree for active throtl groups */
101 struct throtl_rb_root tg_service_tree;
102
103 struct request_queue *queue;
104
105 /* Total Number of queued bios on READ and WRITE lists */
106 unsigned int nr_queued[2];
107
108 /*
109 * number of total undestroyed groups
110 */
111 unsigned int nr_undestroyed_grps;
112
113 /* Work for dispatching throttled bios */
114 struct delayed_work throtl_work;
115
116 int limits_changed;
117 };
118
119 /* list and work item to allocate percpu group stats */
120 static DEFINE_SPINLOCK(tg_stats_alloc_lock);
121 static LIST_HEAD(tg_stats_alloc_list);
122
123 static void tg_stats_alloc_fn(struct work_struct *);
124 static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);
125
126 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
127 {
128 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
129 }
130
131 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
132 {
133 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
134 }
135
136 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
137 {
138 return pd_to_blkg(&tg->pd);
139 }
140
141 static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
142 {
143 return blkg_to_tg(td->queue->root_blkg);
144 }
145
146 enum tg_state_flags {
147 THROTL_TG_FLAG_on_rr = 0, /* on round-robin busy list */
148 };
149
150 #define THROTL_TG_FNS(name) \
151 static inline void throtl_mark_tg_##name(struct throtl_grp *tg) \
152 { \
153 (tg)->flags |= (1 << THROTL_TG_FLAG_##name); \
154 } \
155 static inline void throtl_clear_tg_##name(struct throtl_grp *tg) \
156 { \
157 (tg)->flags &= ~(1 << THROTL_TG_FLAG_##name); \
158 } \
159 static inline int throtl_tg_##name(const struct throtl_grp *tg) \
160 { \
161 return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0; \
162 }
163
164 THROTL_TG_FNS(on_rr);
165
166 #define throtl_log_tg(td, tg, fmt, args...) do { \
167 char __pbuf[128]; \
168 \
169 blkg_path(tg_to_blkg(tg), __pbuf, sizeof(__pbuf)); \
170 blk_add_trace_msg((td)->queue, "throtl %s " fmt, __pbuf, ##args); \
171 } while (0)
172
173 #define throtl_log(td, fmt, args...) \
174 blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)
175
176 static inline unsigned int total_nr_queued(struct throtl_data *td)
177 {
178 return td->nr_queued[0] + td->nr_queued[1];
179 }
180
181 /*
182 * Worker for allocating per cpu stat for tgs. This is scheduled on the
183 * system_wq once there are some groups on the alloc_list waiting for
184 * allocation.
185 */
186 static void tg_stats_alloc_fn(struct work_struct *work)
187 {
188 static struct tg_stats_cpu *stats_cpu; /* this fn is non-reentrant */
189 struct delayed_work *dwork = to_delayed_work(work);
190 bool empty = false;
191
192 alloc_stats:
193 if (!stats_cpu) {
194 stats_cpu = alloc_percpu(struct tg_stats_cpu);
195 if (!stats_cpu) {
196 /* allocation failed, try again after some time */
197 schedule_delayed_work(dwork, msecs_to_jiffies(10));
198 return;
199 }
200 }
201
202 spin_lock_irq(&tg_stats_alloc_lock);
203
204 if (!list_empty(&tg_stats_alloc_list)) {
205 struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
206 struct throtl_grp,
207 stats_alloc_node);
208 swap(tg->stats_cpu, stats_cpu);
209 list_del_init(&tg->stats_alloc_node);
210 }
211
212 empty = list_empty(&tg_stats_alloc_list);
213 spin_unlock_irq(&tg_stats_alloc_lock);
214 if (!empty)
215 goto alloc_stats;
216 }
217
218 static void throtl_pd_init(struct blkcg_gq *blkg)
219 {
220 struct throtl_grp *tg = blkg_to_tg(blkg);
221 unsigned long flags;
222
223 RB_CLEAR_NODE(&tg->rb_node);
224 bio_list_init(&tg->bio_lists[0]);
225 bio_list_init(&tg->bio_lists[1]);
226 tg->limits_changed = false;
227
228 tg->bps[READ] = -1;
229 tg->bps[WRITE] = -1;
230 tg->iops[READ] = -1;
231 tg->iops[WRITE] = -1;
232
233 /*
234 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
235 * but percpu allocator can't be called from IO path. Queue tg on
236 * tg_stats_alloc_list and allocate from work item.
237 */
238 spin_lock_irqsave(&tg_stats_alloc_lock, flags);
239 list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
240 schedule_delayed_work(&tg_stats_alloc_work, 0);
241 spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
242 }
243
244 static void throtl_pd_exit(struct blkcg_gq *blkg)
245 {
246 struct throtl_grp *tg = blkg_to_tg(blkg);
247 unsigned long flags;
248
249 spin_lock_irqsave(&tg_stats_alloc_lock, flags);
250 list_del_init(&tg->stats_alloc_node);
251 spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
252
253 free_percpu(tg->stats_cpu);
254 }
255
256 static void throtl_pd_reset_stats(struct blkcg_gq *blkg)
257 {
258 struct throtl_grp *tg = blkg_to_tg(blkg);
259 int cpu;
260
261 if (tg->stats_cpu == NULL)
262 return;
263
264 for_each_possible_cpu(cpu) {
265 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
266
267 blkg_rwstat_reset(&sc->service_bytes);
268 blkg_rwstat_reset(&sc->serviced);
269 }
270 }
271
272 static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
273 struct blkcg *blkcg)
274 {
275 /*
276 * This is the common case when there are no blkcgs. Avoid lookup
277 * in this case
278 */
279 if (blkcg == &blkcg_root)
280 return td_root_tg(td);
281
282 return blkg_to_tg(blkg_lookup(blkcg, td->queue));
283 }
284
285 static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
286 struct blkcg *blkcg)
287 {
288 struct request_queue *q = td->queue;
289 struct throtl_grp *tg = NULL;
290
291 /*
292 * This is the common case when there are no blkcgs. Avoid lookup
293 * in this case
294 */
295 if (blkcg == &blkcg_root) {
296 tg = td_root_tg(td);
297 } else {
298 struct blkcg_gq *blkg;
299
300 blkg = blkg_lookup_create(blkcg, q);
301
302 /* if %NULL and @q is alive, fall back to root_tg */
303 if (!IS_ERR(blkg))
304 tg = blkg_to_tg(blkg);
305 else if (!blk_queue_dying(q))
306 tg = td_root_tg(td);
307 }
308
309 return tg;
310 }
311
312 static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root)
313 {
314 /* Service tree is empty */
315 if (!root->count)
316 return NULL;
317
318 if (!root->left)
319 root->left = rb_first(&root->rb);
320
321 if (root->left)
322 return rb_entry_tg(root->left);
323
324 return NULL;
325 }
326
327 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
328 {
329 rb_erase(n, root);
330 RB_CLEAR_NODE(n);
331 }
332
333 static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root)
334 {
335 if (root->left == n)
336 root->left = NULL;
337 rb_erase_init(n, &root->rb);
338 --root->count;
339 }
340
341 static void update_min_dispatch_time(struct throtl_rb_root *st)
342 {
343 struct throtl_grp *tg;
344
345 tg = throtl_rb_first(st);
346 if (!tg)
347 return;
348
349 st->min_disptime = tg->disptime;
350 }
351
352 static void
353 tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg)
354 {
355 struct rb_node **node = &st->rb.rb_node;
356 struct rb_node *parent = NULL;
357 struct throtl_grp *__tg;
358 unsigned long key = tg->disptime;
359 int left = 1;
360
361 while (*node != NULL) {
362 parent = *node;
363 __tg = rb_entry_tg(parent);
364
365 if (time_before(key, __tg->disptime))
366 node = &parent->rb_left;
367 else {
368 node = &parent->rb_right;
369 left = 0;
370 }
371 }
372
373 if (left)
374 st->left = &tg->rb_node;
375
376 rb_link_node(&tg->rb_node, parent, node);
377 rb_insert_color(&tg->rb_node, &st->rb);
378 }
379
380 static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
381 {
382 struct throtl_rb_root *st = &td->tg_service_tree;
383
384 tg_service_tree_add(st, tg);
385 throtl_mark_tg_on_rr(tg);
386 st->count++;
387 }
388
389 static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
390 {
391 if (!throtl_tg_on_rr(tg))
392 __throtl_enqueue_tg(td, tg);
393 }
394
395 static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
396 {
397 throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);
398 throtl_clear_tg_on_rr(tg);
399 }
400
401 static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
402 {
403 if (throtl_tg_on_rr(tg))
404 __throtl_dequeue_tg(td, tg);
405 }
406
407 static void throtl_schedule_next_dispatch(struct throtl_data *td)
408 {
409 struct throtl_rb_root *st = &td->tg_service_tree;
410
411 /*
412 * If there are more bios pending, schedule more work.
413 */
414 if (!total_nr_queued(td))
415 return;
416
417 BUG_ON(!st->count);
418
419 update_min_dispatch_time(st);
420
421 if (time_before_eq(st->min_disptime, jiffies))
422 throtl_schedule_delayed_work(td, 0);
423 else
424 throtl_schedule_delayed_work(td, (st->min_disptime - jiffies));
425 }
426
427 static inline void
428 throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
429 {
430 tg->bytes_disp[rw] = 0;
431 tg->io_disp[rw] = 0;
432 tg->slice_start[rw] = jiffies;
433 tg->slice_end[rw] = jiffies + throtl_slice;
434 throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
435 rw == READ ? 'R' : 'W', tg->slice_start[rw],
436 tg->slice_end[rw], jiffies);
437 }
438
439 static inline void throtl_set_slice_end(struct throtl_data *td,
440 struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
441 {
442 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
443 }
444
445 static inline void throtl_extend_slice(struct throtl_data *td,
446 struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
447 {
448 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
449 throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
450 rw == READ ? 'R' : 'W', tg->slice_start[rw],
451 tg->slice_end[rw], jiffies);
452 }
453
454 /* Determine if previously allocated or extended slice is complete or not */
455 static bool
456 throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
457 {
458 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
459 return 0;
460
461 return 1;
462 }
463
464 /* Trim the used slices and adjust slice start accordingly */
465 static inline void
466 throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
467 {
468 unsigned long nr_slices, time_elapsed, io_trim;
469 u64 bytes_trim, tmp;
470
471 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
472
473 /*
474 * If bps are unlimited (-1), then time slice don't get
475 * renewed. Don't try to trim the slice if slice is used. A new
476 * slice will start when appropriate.
477 */
478 if (throtl_slice_used(td, tg, rw))
479 return;
480
481 /*
482 * A bio has been dispatched. Also adjust slice_end. It might happen
483 * that initially cgroup limit was very low resulting in high
484 * slice_end, but later limit was bumped up and bio was dispached
485 * sooner, then we need to reduce slice_end. A high bogus slice_end
486 * is bad because it does not allow new slice to start.
487 */
488
489 throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);
490
491 time_elapsed = jiffies - tg->slice_start[rw];
492
493 nr_slices = time_elapsed / throtl_slice;
494
495 if (!nr_slices)
496 return;
497 tmp = tg->bps[rw] * throtl_slice * nr_slices;
498 do_div(tmp, HZ);
499 bytes_trim = tmp;
500
501 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
502
503 if (!bytes_trim && !io_trim)
504 return;
505
506 if (tg->bytes_disp[rw] >= bytes_trim)
507 tg->bytes_disp[rw] -= bytes_trim;
508 else
509 tg->bytes_disp[rw] = 0;
510
511 if (tg->io_disp[rw] >= io_trim)
512 tg->io_disp[rw] -= io_trim;
513 else
514 tg->io_disp[rw] = 0;
515
516 tg->slice_start[rw] += nr_slices * throtl_slice;
517
518 throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
519 " start=%lu end=%lu jiffies=%lu",
520 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
521 tg->slice_start[rw], tg->slice_end[rw], jiffies);
522 }
523
524 static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
525 struct bio *bio, unsigned long *wait)
526 {
527 bool rw = bio_data_dir(bio);
528 unsigned int io_allowed;
529 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
530 u64 tmp;
531
532 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
533
534 /* Slice has just started. Consider one slice interval */
535 if (!jiffy_elapsed)
536 jiffy_elapsed_rnd = throtl_slice;
537
538 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
539
540 /*
541 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
542 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
543 * will allow dispatch after 1 second and after that slice should
544 * have been trimmed.
545 */
546
547 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
548 do_div(tmp, HZ);
549
550 if (tmp > UINT_MAX)
551 io_allowed = UINT_MAX;
552 else
553 io_allowed = tmp;
554
555 if (tg->io_disp[rw] + 1 <= io_allowed) {
556 if (wait)
557 *wait = 0;
558 return 1;
559 }
560
561 /* Calc approx time to dispatch */
562 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
563
564 if (jiffy_wait > jiffy_elapsed)
565 jiffy_wait = jiffy_wait - jiffy_elapsed;
566 else
567 jiffy_wait = 1;
568
569 if (wait)
570 *wait = jiffy_wait;
571 return 0;
572 }
573
574 static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
575 struct bio *bio, unsigned long *wait)
576 {
577 bool rw = bio_data_dir(bio);
578 u64 bytes_allowed, extra_bytes, tmp;
579 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
580
581 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
582
583 /* Slice has just started. Consider one slice interval */
584 if (!jiffy_elapsed)
585 jiffy_elapsed_rnd = throtl_slice;
586
587 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
588
589 tmp = tg->bps[rw] * jiffy_elapsed_rnd;
590 do_div(tmp, HZ);
591 bytes_allowed = tmp;
592
593 if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
594 if (wait)
595 *wait = 0;
596 return 1;
597 }
598
599 /* Calc approx time to dispatch */
600 extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
601 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
602
603 if (!jiffy_wait)
604 jiffy_wait = 1;
605
606 /*
607 * This wait time is without taking into consideration the rounding
608 * up we did. Add that time also.
609 */
610 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
611 if (wait)
612 *wait = jiffy_wait;
613 return 0;
614 }
615
616 static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
617 if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
618 return 1;
619 return 0;
620 }
621
622 /*
623 * Returns whether one can dispatch a bio or not. Also returns approx number
624 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
625 */
626 static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
627 struct bio *bio, unsigned long *wait)
628 {
629 bool rw = bio_data_dir(bio);
630 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
631
632 /*
633 * Currently whole state machine of group depends on first bio
634 * queued in the group bio list. So one should not be calling
635 * this function with a different bio if there are other bios
636 * queued.
637 */
638 BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
639
640 /* If tg->bps = -1, then BW is unlimited */
641 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
642 if (wait)
643 *wait = 0;
644 return 1;
645 }
646
647 /*
648 * If previous slice expired, start a new one otherwise renew/extend
649 * existing slice to make sure it is at least throtl_slice interval
650 * long since now.
651 */
652 if (throtl_slice_used(td, tg, rw))
653 throtl_start_new_slice(td, tg, rw);
654 else {
655 if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
656 throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
657 }
658
659 if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
660 && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
661 if (wait)
662 *wait = 0;
663 return 1;
664 }
665
666 max_wait = max(bps_wait, iops_wait);
667
668 if (wait)
669 *wait = max_wait;
670
671 if (time_before(tg->slice_end[rw], jiffies + max_wait))
672 throtl_extend_slice(td, tg, rw, jiffies + max_wait);
673
674 return 0;
675 }
676
677 static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
678 int rw)
679 {
680 struct throtl_grp *tg = blkg_to_tg(blkg);
681 struct tg_stats_cpu *stats_cpu;
682 unsigned long flags;
683
684 /* If per cpu stats are not allocated yet, don't do any accounting. */
685 if (tg->stats_cpu == NULL)
686 return;
687
688 /*
689 * Disabling interrupts to provide mutual exclusion between two
690 * writes on same cpu. It probably is not needed for 64bit. Not
691 * optimizing that case yet.
692 */
693 local_irq_save(flags);
694
695 stats_cpu = this_cpu_ptr(tg->stats_cpu);
696
697 blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
698 blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);
699
700 local_irq_restore(flags);
701 }
702
703 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
704 {
705 bool rw = bio_data_dir(bio);
706
707 /* Charge the bio to the group */
708 tg->bytes_disp[rw] += bio->bi_size;
709 tg->io_disp[rw]++;
710
711 throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size, bio->bi_rw);
712 }
713
714 static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
715 struct bio *bio)
716 {
717 bool rw = bio_data_dir(bio);
718
719 bio_list_add(&tg->bio_lists[rw], bio);
720 /* Take a bio reference on tg */
721 blkg_get(tg_to_blkg(tg));
722 tg->nr_queued[rw]++;
723 td->nr_queued[rw]++;
724 throtl_enqueue_tg(td, tg);
725 }
726
727 static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
728 {
729 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
730 struct bio *bio;
731
732 if ((bio = bio_list_peek(&tg->bio_lists[READ])))
733 tg_may_dispatch(td, tg, bio, &read_wait);
734
735 if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
736 tg_may_dispatch(td, tg, bio, &write_wait);
737
738 min_wait = min(read_wait, write_wait);
739 disptime = jiffies + min_wait;
740
741 /* Update dispatch time */
742 throtl_dequeue_tg(td, tg);
743 tg->disptime = disptime;
744 throtl_enqueue_tg(td, tg);
745 }
746
747 static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
748 bool rw, struct bio_list *bl)
749 {
750 struct bio *bio;
751
752 bio = bio_list_pop(&tg->bio_lists[rw]);
753 tg->nr_queued[rw]--;
754 /* Drop bio reference on blkg */
755 blkg_put(tg_to_blkg(tg));
756
757 BUG_ON(td->nr_queued[rw] <= 0);
758 td->nr_queued[rw]--;
759
760 throtl_charge_bio(tg, bio);
761 bio_list_add(bl, bio);
762 bio->bi_rw |= REQ_THROTTLED;
763
764 throtl_trim_slice(td, tg, rw);
765 }
766
767 static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
768 struct bio_list *bl)
769 {
770 unsigned int nr_reads = 0, nr_writes = 0;
771 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
772 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
773 struct bio *bio;
774
775 /* Try to dispatch 75% READS and 25% WRITES */
776
777 while ((bio = bio_list_peek(&tg->bio_lists[READ]))
778 && tg_may_dispatch(td, tg, bio, NULL)) {
779
780 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
781 nr_reads++;
782
783 if (nr_reads >= max_nr_reads)
784 break;
785 }
786
787 while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
788 && tg_may_dispatch(td, tg, bio, NULL)) {
789
790 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
791 nr_writes++;
792
793 if (nr_writes >= max_nr_writes)
794 break;
795 }
796
797 return nr_reads + nr_writes;
798 }
799
800 static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
801 {
802 unsigned int nr_disp = 0;
803 struct throtl_grp *tg;
804 struct throtl_rb_root *st = &td->tg_service_tree;
805
806 while (1) {
807 tg = throtl_rb_first(st);
808
809 if (!tg)
810 break;
811
812 if (time_before(jiffies, tg->disptime))
813 break;
814
815 throtl_dequeue_tg(td, tg);
816
817 nr_disp += throtl_dispatch_tg(td, tg, bl);
818
819 if (tg->nr_queued[0] || tg->nr_queued[1]) {
820 tg_update_disptime(td, tg);
821 throtl_enqueue_tg(td, tg);
822 }
823
824 if (nr_disp >= throtl_quantum)
825 break;
826 }
827
828 return nr_disp;
829 }
830
831 static void throtl_process_limit_change(struct throtl_data *td)
832 {
833 struct request_queue *q = td->queue;
834 struct blkcg_gq *blkg, *n;
835
836 if (!td->limits_changed)
837 return;
838
839 xchg(&td->limits_changed, false);
840
841 throtl_log(td, "limits changed");
842
843 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
844 struct throtl_grp *tg = blkg_to_tg(blkg);
845
846 if (!tg->limits_changed)
847 continue;
848
849 if (!xchg(&tg->limits_changed, false))
850 continue;
851
852 throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu"
853 " riops=%u wiops=%u", tg->bps[READ], tg->bps[WRITE],
854 tg->iops[READ], tg->iops[WRITE]);
855
856 /*
857 * Restart the slices for both READ and WRITES. It
858 * might happen that a group's limit are dropped
859 * suddenly and we don't want to account recently
860 * dispatched IO with new low rate
861 */
862 throtl_start_new_slice(td, tg, 0);
863 throtl_start_new_slice(td, tg, 1);
864
865 if (throtl_tg_on_rr(tg))
866 tg_update_disptime(td, tg);
867 }
868 }
869
870 /* Dispatch throttled bios. Should be called without queue lock held. */
871 static int throtl_dispatch(struct request_queue *q)
872 {
873 struct throtl_data *td = q->td;
874 unsigned int nr_disp = 0;
875 struct bio_list bio_list_on_stack;
876 struct bio *bio;
877 struct blk_plug plug;
878
879 spin_lock_irq(q->queue_lock);
880
881 throtl_process_limit_change(td);
882
883 if (!total_nr_queued(td))
884 goto out;
885
886 bio_list_init(&bio_list_on_stack);
887
888 throtl_log(td, "dispatch nr_queued=%u read=%u write=%u",
889 total_nr_queued(td), td->nr_queued[READ],
890 td->nr_queued[WRITE]);
891
892 nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);
893
894 if (nr_disp)
895 throtl_log(td, "bios disp=%u", nr_disp);
896
897 throtl_schedule_next_dispatch(td);
898 out:
899 spin_unlock_irq(q->queue_lock);
900
901 /*
902 * If we dispatched some requests, unplug the queue to make sure
903 * immediate dispatch
904 */
905 if (nr_disp) {
906 blk_start_plug(&plug);
907 while((bio = bio_list_pop(&bio_list_on_stack)))
908 generic_make_request(bio);
909 blk_finish_plug(&plug);
910 }
911 return nr_disp;
912 }
913
914 void blk_throtl_work(struct work_struct *work)
915 {
916 struct throtl_data *td = container_of(work, struct throtl_data,
917 throtl_work.work);
918 struct request_queue *q = td->queue;
919
920 throtl_dispatch(q);
921 }
922
923 /* Call with queue lock held */
924 static void
925 throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay)
926 {
927
928 struct delayed_work *dwork = &td->throtl_work;
929
930 /* schedule work if limits changed even if no bio is queued */
931 if (total_nr_queued(td) || td->limits_changed) {
932 mod_delayed_work(kthrotld_workqueue, dwork, delay);
933 throtl_log(td, "schedule work. delay=%lu jiffies=%lu",
934 delay, jiffies);
935 }
936 }
937
938 static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
939 struct blkg_policy_data *pd, int off)
940 {
941 struct throtl_grp *tg = pd_to_tg(pd);
942 struct blkg_rwstat rwstat = { }, tmp;
943 int i, cpu;
944
945 for_each_possible_cpu(cpu) {
946 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
947
948 tmp = blkg_rwstat_read((void *)sc + off);
949 for (i = 0; i < BLKG_RWSTAT_NR; i++)
950 rwstat.cnt[i] += tmp.cnt[i];
951 }
952
953 return __blkg_prfill_rwstat(sf, pd, &rwstat);
954 }
955
956 static int tg_print_cpu_rwstat(struct cgroup *cgrp, struct cftype *cft,
957 struct seq_file *sf)
958 {
959 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
960
961 blkcg_print_blkgs(sf, blkcg, tg_prfill_cpu_rwstat, &blkcg_policy_throtl,
962 cft->private, true);
963 return 0;
964 }
965
966 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
967 int off)
968 {
969 struct throtl_grp *tg = pd_to_tg(pd);
970 u64 v = *(u64 *)((void *)tg + off);
971
972 if (v == -1)
973 return 0;
974 return __blkg_prfill_u64(sf, pd, v);
975 }
976
977 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
978 int off)
979 {
980 struct throtl_grp *tg = pd_to_tg(pd);
981 unsigned int v = *(unsigned int *)((void *)tg + off);
982
983 if (v == -1)
984 return 0;
985 return __blkg_prfill_u64(sf, pd, v);
986 }
987
988 static int tg_print_conf_u64(struct cgroup *cgrp, struct cftype *cft,
989 struct seq_file *sf)
990 {
991 blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_u64,
992 &blkcg_policy_throtl, cft->private, false);
993 return 0;
994 }
995
996 static int tg_print_conf_uint(struct cgroup *cgrp, struct cftype *cft,
997 struct seq_file *sf)
998 {
999 blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_uint,
1000 &blkcg_policy_throtl, cft->private, false);
1001 return 0;
1002 }
1003
1004 static int tg_set_conf(struct cgroup *cgrp, struct cftype *cft, const char *buf,
1005 bool is_u64)
1006 {
1007 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1008 struct blkg_conf_ctx ctx;
1009 struct throtl_grp *tg;
1010 struct throtl_data *td;
1011 int ret;
1012
1013 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1014 if (ret)
1015 return ret;
1016
1017 tg = blkg_to_tg(ctx.blkg);
1018 td = ctx.blkg->q->td;
1019
1020 if (!ctx.v)
1021 ctx.v = -1;
1022
1023 if (is_u64)
1024 *(u64 *)((void *)tg + cft->private) = ctx.v;
1025 else
1026 *(unsigned int *)((void *)tg + cft->private) = ctx.v;
1027
1028 /* XXX: we don't need the following deferred processing */
1029 xchg(&tg->limits_changed, true);
1030 xchg(&td->limits_changed, true);
1031 throtl_schedule_delayed_work(td, 0);
1032
1033 blkg_conf_finish(&ctx);
1034 return 0;
1035 }
1036
1037 static int tg_set_conf_u64(struct cgroup *cgrp, struct cftype *cft,
1038 const char *buf)
1039 {
1040 return tg_set_conf(cgrp, cft, buf, true);
1041 }
1042
1043 static int tg_set_conf_uint(struct cgroup *cgrp, struct cftype *cft,
1044 const char *buf)
1045 {
1046 return tg_set_conf(cgrp, cft, buf, false);
1047 }
1048
1049 static struct cftype throtl_files[] = {
1050 {
1051 .name = "throttle.read_bps_device",
1052 .private = offsetof(struct throtl_grp, bps[READ]),
1053 .read_seq_string = tg_print_conf_u64,
1054 .write_string = tg_set_conf_u64,
1055 .max_write_len = 256,
1056 },
1057 {
1058 .name = "throttle.write_bps_device",
1059 .private = offsetof(struct throtl_grp, bps[WRITE]),
1060 .read_seq_string = tg_print_conf_u64,
1061 .write_string = tg_set_conf_u64,
1062 .max_write_len = 256,
1063 },
1064 {
1065 .name = "throttle.read_iops_device",
1066 .private = offsetof(struct throtl_grp, iops[READ]),
1067 .read_seq_string = tg_print_conf_uint,
1068 .write_string = tg_set_conf_uint,
1069 .max_write_len = 256,
1070 },
1071 {
1072 .name = "throttle.write_iops_device",
1073 .private = offsetof(struct throtl_grp, iops[WRITE]),
1074 .read_seq_string = tg_print_conf_uint,
1075 .write_string = tg_set_conf_uint,
1076 .max_write_len = 256,
1077 },
1078 {
1079 .name = "throttle.io_service_bytes",
1080 .private = offsetof(struct tg_stats_cpu, service_bytes),
1081 .read_seq_string = tg_print_cpu_rwstat,
1082 },
1083 {
1084 .name = "throttle.io_serviced",
1085 .private = offsetof(struct tg_stats_cpu, serviced),
1086 .read_seq_string = tg_print_cpu_rwstat,
1087 },
1088 { } /* terminate */
1089 };
1090
1091 static void throtl_shutdown_wq(struct request_queue *q)
1092 {
1093 struct throtl_data *td = q->td;
1094
1095 cancel_delayed_work_sync(&td->throtl_work);
1096 }
1097
1098 static struct blkcg_policy blkcg_policy_throtl = {
1099 .pd_size = sizeof(struct throtl_grp),
1100 .cftypes = throtl_files,
1101
1102 .pd_init_fn = throtl_pd_init,
1103 .pd_exit_fn = throtl_pd_exit,
1104 .pd_reset_stats_fn = throtl_pd_reset_stats,
1105 };
1106
1107 bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1108 {
1109 struct throtl_data *td = q->td;
1110 struct throtl_grp *tg;
1111 bool rw = bio_data_dir(bio), update_disptime = true;
1112 struct blkcg *blkcg;
1113 bool throttled = false;
1114
1115 if (bio->bi_rw & REQ_THROTTLED) {
1116 bio->bi_rw &= ~REQ_THROTTLED;
1117 goto out;
1118 }
1119
1120 /*
1121 * A throtl_grp pointer retrieved under rcu can be used to access
1122 * basic fields like stats and io rates. If a group has no rules,
1123 * just update the dispatch stats in lockless manner and return.
1124 */
1125 rcu_read_lock();
1126 blkcg = bio_blkcg(bio);
1127 tg = throtl_lookup_tg(td, blkcg);
1128 if (tg) {
1129 if (tg_no_rule_group(tg, rw)) {
1130 throtl_update_dispatch_stats(tg_to_blkg(tg),
1131 bio->bi_size, bio->bi_rw);
1132 goto out_unlock_rcu;
1133 }
1134 }
1135
1136 /*
1137 * Either group has not been allocated yet or it is not an unlimited
1138 * IO group
1139 */
1140 spin_lock_irq(q->queue_lock);
1141 tg = throtl_lookup_create_tg(td, blkcg);
1142 if (unlikely(!tg))
1143 goto out_unlock;
1144
1145 if (tg->nr_queued[rw]) {
1146 /*
1147 * There is already another bio queued in same dir. No
1148 * need to update dispatch time.
1149 */
1150 update_disptime = false;
1151 goto queue_bio;
1152
1153 }
1154
1155 /* Bio is with-in rate limit of group */
1156 if (tg_may_dispatch(td, tg, bio, NULL)) {
1157 throtl_charge_bio(tg, bio);
1158
1159 /*
1160 * We need to trim slice even when bios are not being queued
1161 * otherwise it might happen that a bio is not queued for
1162 * a long time and slice keeps on extending and trim is not
1163 * called for a long time. Now if limits are reduced suddenly
1164 * we take into account all the IO dispatched so far at new
1165 * low rate and * newly queued IO gets a really long dispatch
1166 * time.
1167 *
1168 * So keep on trimming slice even if bio is not queued.
1169 */
1170 throtl_trim_slice(td, tg, rw);
1171 goto out_unlock;
1172 }
1173
1174 queue_bio:
1175 throtl_log_tg(td, tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu"
1176 " iodisp=%u iops=%u queued=%d/%d",
1177 rw == READ ? 'R' : 'W',
1178 tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1179 tg->io_disp[rw], tg->iops[rw],
1180 tg->nr_queued[READ], tg->nr_queued[WRITE]);
1181
1182 bio_associate_current(bio);
1183 throtl_add_bio_tg(q->td, tg, bio);
1184 throttled = true;
1185
1186 if (update_disptime) {
1187 tg_update_disptime(td, tg);
1188 throtl_schedule_next_dispatch(td);
1189 }
1190
1191 out_unlock:
1192 spin_unlock_irq(q->queue_lock);
1193 out_unlock_rcu:
1194 rcu_read_unlock();
1195 out:
1196 return throttled;
1197 }
1198
1199 /**
1200 * blk_throtl_drain - drain throttled bios
1201 * @q: request_queue to drain throttled bios for
1202 *
1203 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1204 */
1205 void blk_throtl_drain(struct request_queue *q)
1206 __releases(q->queue_lock) __acquires(q->queue_lock)
1207 {
1208 struct throtl_data *td = q->td;
1209 struct throtl_rb_root *st = &td->tg_service_tree;
1210 struct throtl_grp *tg;
1211 struct bio_list bl;
1212 struct bio *bio;
1213
1214 queue_lockdep_assert_held(q);
1215
1216 bio_list_init(&bl);
1217
1218 while ((tg = throtl_rb_first(st))) {
1219 throtl_dequeue_tg(td, tg);
1220
1221 while ((bio = bio_list_peek(&tg->bio_lists[READ])))
1222 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
1223 while ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
1224 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
1225 }
1226 spin_unlock_irq(q->queue_lock);
1227
1228 while ((bio = bio_list_pop(&bl)))
1229 generic_make_request(bio);
1230
1231 spin_lock_irq(q->queue_lock);
1232 }
1233
1234 int blk_throtl_init(struct request_queue *q)
1235 {
1236 struct throtl_data *td;
1237 int ret;
1238
1239 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1240 if (!td)
1241 return -ENOMEM;
1242
1243 td->tg_service_tree = THROTL_RB_ROOT;
1244 td->limits_changed = false;
1245 INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work);
1246
1247 q->td = td;
1248 td->queue = q;
1249
1250 /* activate policy */
1251 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1252 if (ret)
1253 kfree(td);
1254 return ret;
1255 }
1256
1257 void blk_throtl_exit(struct request_queue *q)
1258 {
1259 BUG_ON(!q->td);
1260 throtl_shutdown_wq(q);
1261 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1262 kfree(q->td);
1263 }
1264
1265 static int __init throtl_init(void)
1266 {
1267 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1268 if (!kthrotld_workqueue)
1269 panic("Failed to create kthrotld\n");
1270
1271 return blkcg_policy_register(&blkcg_policy_throtl);
1272 }
1273
1274 module_init(throtl_init);