blk-core: Fix memory corruption if blkcg_init_queue fails
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 #include <linux/ratelimit.h>
33 #include <linux/pm_runtime.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/block.h>
37
38 #include "blk.h"
39 #include "blk-cgroup.h"
40
41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
45
46 DEFINE_IDA(blk_queue_ida);
47
48 /*
49 * For the allocated request tables
50 */
51 static struct kmem_cache *request_cachep;
52
53 /*
54 * For queue allocation
55 */
56 struct kmem_cache *blk_requestq_cachep;
57
58 /*
59 * Controlling structure to kblockd
60 */
61 static struct workqueue_struct *kblockd_workqueue;
62
63 static void drive_stat_acct(struct request *rq, int new_io)
64 {
65 struct hd_struct *part;
66 int rw = rq_data_dir(rq);
67 int cpu;
68
69 if (!blk_do_io_stat(rq))
70 return;
71
72 cpu = part_stat_lock();
73
74 if (!new_io) {
75 part = rq->part;
76 part_stat_inc(cpu, part, merges[rw]);
77 } else {
78 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
79 if (!hd_struct_try_get(part)) {
80 /*
81 * The partition is already being removed,
82 * the request will be accounted on the disk only
83 *
84 * We take a reference on disk->part0 although that
85 * partition will never be deleted, so we can treat
86 * it as any other partition.
87 */
88 part = &rq->rq_disk->part0;
89 hd_struct_get(part);
90 }
91 part_round_stats(cpu, part);
92 part_inc_in_flight(part, rw);
93 rq->part = part;
94 }
95
96 part_stat_unlock();
97 }
98
99 void blk_queue_congestion_threshold(struct request_queue *q)
100 {
101 int nr;
102
103 nr = q->nr_requests - (q->nr_requests / 8) + 1;
104 if (nr > q->nr_requests)
105 nr = q->nr_requests;
106 q->nr_congestion_on = nr;
107
108 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
109 if (nr < 1)
110 nr = 1;
111 q->nr_congestion_off = nr;
112 }
113
114 /**
115 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
116 * @bdev: device
117 *
118 * Locates the passed device's request queue and returns the address of its
119 * backing_dev_info
120 *
121 * Will return NULL if the request queue cannot be located.
122 */
123 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
124 {
125 struct backing_dev_info *ret = NULL;
126 struct request_queue *q = bdev_get_queue(bdev);
127
128 if (q)
129 ret = &q->backing_dev_info;
130 return ret;
131 }
132 EXPORT_SYMBOL(blk_get_backing_dev_info);
133
134 void blk_rq_init(struct request_queue *q, struct request *rq)
135 {
136 memset(rq, 0, sizeof(*rq));
137
138 INIT_LIST_HEAD(&rq->queuelist);
139 INIT_LIST_HEAD(&rq->timeout_list);
140 rq->cpu = -1;
141 rq->q = q;
142 rq->__sector = (sector_t) -1;
143 INIT_HLIST_NODE(&rq->hash);
144 RB_CLEAR_NODE(&rq->rb_node);
145 rq->cmd = rq->__cmd;
146 rq->cmd_len = BLK_MAX_CDB;
147 rq->tag = -1;
148 rq->ref_count = 1;
149 rq->start_time = jiffies;
150 set_start_time_ns(rq);
151 rq->part = NULL;
152 }
153 EXPORT_SYMBOL(blk_rq_init);
154
155 static void req_bio_endio(struct request *rq, struct bio *bio,
156 unsigned int nbytes, int error)
157 {
158 if (error)
159 clear_bit(BIO_UPTODATE, &bio->bi_flags);
160 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
161 error = -EIO;
162
163 if (unlikely(rq->cmd_flags & REQ_QUIET))
164 set_bit(BIO_QUIET, &bio->bi_flags);
165
166 bio_advance(bio, nbytes);
167
168 /* don't actually finish bio if it's part of flush sequence */
169 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
170 bio_endio(bio, error);
171 }
172
173 void blk_dump_rq_flags(struct request *rq, char *msg)
174 {
175 int bit;
176
177 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
178 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
179 rq->cmd_flags);
180
181 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
182 (unsigned long long)blk_rq_pos(rq),
183 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
184 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
185 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
186
187 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
188 printk(KERN_INFO " cdb: ");
189 for (bit = 0; bit < BLK_MAX_CDB; bit++)
190 printk("%02x ", rq->cmd[bit]);
191 printk("\n");
192 }
193 }
194 EXPORT_SYMBOL(blk_dump_rq_flags);
195
196 static void blk_delay_work(struct work_struct *work)
197 {
198 struct request_queue *q;
199
200 q = container_of(work, struct request_queue, delay_work.work);
201 spin_lock_irq(q->queue_lock);
202 __blk_run_queue(q);
203 spin_unlock_irq(q->queue_lock);
204 }
205
206 /**
207 * blk_delay_queue - restart queueing after defined interval
208 * @q: The &struct request_queue in question
209 * @msecs: Delay in msecs
210 *
211 * Description:
212 * Sometimes queueing needs to be postponed for a little while, to allow
213 * resources to come back. This function will make sure that queueing is
214 * restarted around the specified time. Queue lock must be held.
215 */
216 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
217 {
218 if (likely(!blk_queue_dead(q)))
219 queue_delayed_work(kblockd_workqueue, &q->delay_work,
220 msecs_to_jiffies(msecs));
221 }
222 EXPORT_SYMBOL(blk_delay_queue);
223
224 /**
225 * blk_start_queue - restart a previously stopped queue
226 * @q: The &struct request_queue in question
227 *
228 * Description:
229 * blk_start_queue() will clear the stop flag on the queue, and call
230 * the request_fn for the queue if it was in a stopped state when
231 * entered. Also see blk_stop_queue(). Queue lock must be held.
232 **/
233 void blk_start_queue(struct request_queue *q)
234 {
235 WARN_ON(!irqs_disabled());
236
237 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
238 __blk_run_queue(q);
239 }
240 EXPORT_SYMBOL(blk_start_queue);
241
242 /**
243 * blk_stop_queue - stop a queue
244 * @q: The &struct request_queue in question
245 *
246 * Description:
247 * The Linux block layer assumes that a block driver will consume all
248 * entries on the request queue when the request_fn strategy is called.
249 * Often this will not happen, because of hardware limitations (queue
250 * depth settings). If a device driver gets a 'queue full' response,
251 * or if it simply chooses not to queue more I/O at one point, it can
252 * call this function to prevent the request_fn from being called until
253 * the driver has signalled it's ready to go again. This happens by calling
254 * blk_start_queue() to restart queue operations. Queue lock must be held.
255 **/
256 void blk_stop_queue(struct request_queue *q)
257 {
258 cancel_delayed_work(&q->delay_work);
259 queue_flag_set(QUEUE_FLAG_STOPPED, q);
260 }
261 EXPORT_SYMBOL(blk_stop_queue);
262
263 /**
264 * blk_sync_queue - cancel any pending callbacks on a queue
265 * @q: the queue
266 *
267 * Description:
268 * The block layer may perform asynchronous callback activity
269 * on a queue, such as calling the unplug function after a timeout.
270 * A block device may call blk_sync_queue to ensure that any
271 * such activity is cancelled, thus allowing it to release resources
272 * that the callbacks might use. The caller must already have made sure
273 * that its ->make_request_fn will not re-add plugging prior to calling
274 * this function.
275 *
276 * This function does not cancel any asynchronous activity arising
277 * out of elevator or throttling code. That would require elevaotor_exit()
278 * and blkcg_exit_queue() to be called with queue lock initialized.
279 *
280 */
281 void blk_sync_queue(struct request_queue *q)
282 {
283 del_timer_sync(&q->timeout);
284 cancel_delayed_work_sync(&q->delay_work);
285 }
286 EXPORT_SYMBOL(blk_sync_queue);
287
288 /**
289 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
290 * @q: The queue to run
291 *
292 * Description:
293 * Invoke request handling on a queue if there are any pending requests.
294 * May be used to restart request handling after a request has completed.
295 * This variant runs the queue whether or not the queue has been
296 * stopped. Must be called with the queue lock held and interrupts
297 * disabled. See also @blk_run_queue.
298 */
299 inline void __blk_run_queue_uncond(struct request_queue *q)
300 {
301 if (unlikely(blk_queue_dead(q)))
302 return;
303
304 /*
305 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
306 * the queue lock internally. As a result multiple threads may be
307 * running such a request function concurrently. Keep track of the
308 * number of active request_fn invocations such that blk_drain_queue()
309 * can wait until all these request_fn calls have finished.
310 */
311 q->request_fn_active++;
312 q->request_fn(q);
313 q->request_fn_active--;
314 }
315
316 /**
317 * __blk_run_queue - run a single device queue
318 * @q: The queue to run
319 *
320 * Description:
321 * See @blk_run_queue. This variant must be called with the queue lock
322 * held and interrupts disabled.
323 */
324 void __blk_run_queue(struct request_queue *q)
325 {
326 if (unlikely(blk_queue_stopped(q)))
327 return;
328
329 __blk_run_queue_uncond(q);
330 }
331 EXPORT_SYMBOL(__blk_run_queue);
332
333 /**
334 * blk_run_queue_async - run a single device queue in workqueue context
335 * @q: The queue to run
336 *
337 * Description:
338 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
339 * of us. The caller must hold the queue lock.
340 */
341 void blk_run_queue_async(struct request_queue *q)
342 {
343 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
344 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
345 }
346 EXPORT_SYMBOL(blk_run_queue_async);
347
348 /**
349 * blk_run_queue - run a single device queue
350 * @q: The queue to run
351 *
352 * Description:
353 * Invoke request handling on this queue, if it has pending work to do.
354 * May be used to restart queueing when a request has completed.
355 */
356 void blk_run_queue(struct request_queue *q)
357 {
358 unsigned long flags;
359
360 spin_lock_irqsave(q->queue_lock, flags);
361 __blk_run_queue(q);
362 spin_unlock_irqrestore(q->queue_lock, flags);
363 }
364 EXPORT_SYMBOL(blk_run_queue);
365
366 void blk_put_queue(struct request_queue *q)
367 {
368 kobject_put(&q->kobj);
369 }
370 EXPORT_SYMBOL(blk_put_queue);
371
372 /**
373 * __blk_drain_queue - drain requests from request_queue
374 * @q: queue to drain
375 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
376 *
377 * Drain requests from @q. If @drain_all is set, all requests are drained.
378 * If not, only ELVPRIV requests are drained. The caller is responsible
379 * for ensuring that no new requests which need to be drained are queued.
380 */
381 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
382 __releases(q->queue_lock)
383 __acquires(q->queue_lock)
384 {
385 int i;
386
387 lockdep_assert_held(q->queue_lock);
388
389 while (true) {
390 bool drain = false;
391
392 /*
393 * The caller might be trying to drain @q before its
394 * elevator is initialized.
395 */
396 if (q->elevator)
397 elv_drain_elevator(q);
398
399 blkcg_drain_queue(q);
400
401 /*
402 * This function might be called on a queue which failed
403 * driver init after queue creation or is not yet fully
404 * active yet. Some drivers (e.g. fd and loop) get unhappy
405 * in such cases. Kick queue iff dispatch queue has
406 * something on it and @q has request_fn set.
407 */
408 if (!list_empty(&q->queue_head) && q->request_fn)
409 __blk_run_queue(q);
410
411 drain |= q->nr_rqs_elvpriv;
412 drain |= q->request_fn_active;
413
414 /*
415 * Unfortunately, requests are queued at and tracked from
416 * multiple places and there's no single counter which can
417 * be drained. Check all the queues and counters.
418 */
419 if (drain_all) {
420 drain |= !list_empty(&q->queue_head);
421 for (i = 0; i < 2; i++) {
422 drain |= q->nr_rqs[i];
423 drain |= q->in_flight[i];
424 drain |= !list_empty(&q->flush_queue[i]);
425 }
426 }
427
428 if (!drain)
429 break;
430
431 spin_unlock_irq(q->queue_lock);
432
433 msleep(10);
434
435 spin_lock_irq(q->queue_lock);
436 }
437
438 /*
439 * With queue marked dead, any woken up waiter will fail the
440 * allocation path, so the wakeup chaining is lost and we're
441 * left with hung waiters. We need to wake up those waiters.
442 */
443 if (q->request_fn) {
444 struct request_list *rl;
445
446 blk_queue_for_each_rl(rl, q)
447 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
448 wake_up_all(&rl->wait[i]);
449 }
450 }
451
452 /**
453 * blk_queue_bypass_start - enter queue bypass mode
454 * @q: queue of interest
455 *
456 * In bypass mode, only the dispatch FIFO queue of @q is used. This
457 * function makes @q enter bypass mode and drains all requests which were
458 * throttled or issued before. On return, it's guaranteed that no request
459 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
460 * inside queue or RCU read lock.
461 */
462 void blk_queue_bypass_start(struct request_queue *q)
463 {
464 bool drain;
465
466 spin_lock_irq(q->queue_lock);
467 drain = !q->bypass_depth++;
468 queue_flag_set(QUEUE_FLAG_BYPASS, q);
469 spin_unlock_irq(q->queue_lock);
470
471 if (drain) {
472 spin_lock_irq(q->queue_lock);
473 __blk_drain_queue(q, false);
474 spin_unlock_irq(q->queue_lock);
475
476 /* ensure blk_queue_bypass() is %true inside RCU read lock */
477 synchronize_rcu();
478 }
479 }
480 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
481
482 /**
483 * blk_queue_bypass_end - leave queue bypass mode
484 * @q: queue of interest
485 *
486 * Leave bypass mode and restore the normal queueing behavior.
487 */
488 void blk_queue_bypass_end(struct request_queue *q)
489 {
490 spin_lock_irq(q->queue_lock);
491 if (!--q->bypass_depth)
492 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
493 WARN_ON_ONCE(q->bypass_depth < 0);
494 spin_unlock_irq(q->queue_lock);
495 }
496 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
497
498 /**
499 * blk_cleanup_queue - shutdown a request queue
500 * @q: request queue to shutdown
501 *
502 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
503 * put it. All future requests will be failed immediately with -ENODEV.
504 */
505 void blk_cleanup_queue(struct request_queue *q)
506 {
507 spinlock_t *lock = q->queue_lock;
508
509 /* mark @q DYING, no new request or merges will be allowed afterwards */
510 mutex_lock(&q->sysfs_lock);
511 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
512 spin_lock_irq(lock);
513
514 /*
515 * A dying queue is permanently in bypass mode till released. Note
516 * that, unlike blk_queue_bypass_start(), we aren't performing
517 * synchronize_rcu() after entering bypass mode to avoid the delay
518 * as some drivers create and destroy a lot of queues while
519 * probing. This is still safe because blk_release_queue() will be
520 * called only after the queue refcnt drops to zero and nothing,
521 * RCU or not, would be traversing the queue by then.
522 */
523 q->bypass_depth++;
524 queue_flag_set(QUEUE_FLAG_BYPASS, q);
525
526 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
527 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
528 queue_flag_set(QUEUE_FLAG_DYING, q);
529 spin_unlock_irq(lock);
530 mutex_unlock(&q->sysfs_lock);
531
532 /*
533 * Drain all requests queued before DYING marking. Set DEAD flag to
534 * prevent that q->request_fn() gets invoked after draining finished.
535 */
536 spin_lock_irq(lock);
537 __blk_drain_queue(q, true);
538 queue_flag_set(QUEUE_FLAG_DEAD, q);
539 spin_unlock_irq(lock);
540
541 /* @q won't process any more request, flush async actions */
542 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
543 blk_sync_queue(q);
544
545 spin_lock_irq(lock);
546 if (q->queue_lock != &q->__queue_lock)
547 q->queue_lock = &q->__queue_lock;
548 spin_unlock_irq(lock);
549
550 /* @q is and will stay empty, shutdown and put */
551 blk_put_queue(q);
552 }
553 EXPORT_SYMBOL(blk_cleanup_queue);
554
555 int blk_init_rl(struct request_list *rl, struct request_queue *q,
556 gfp_t gfp_mask)
557 {
558 if (unlikely(rl->rq_pool))
559 return 0;
560
561 rl->q = q;
562 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
563 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
564 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
565 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
566
567 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
568 mempool_free_slab, request_cachep,
569 gfp_mask, q->node);
570 if (!rl->rq_pool)
571 return -ENOMEM;
572
573 return 0;
574 }
575
576 void blk_exit_rl(struct request_list *rl)
577 {
578 if (rl->rq_pool)
579 mempool_destroy(rl->rq_pool);
580 }
581
582 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
583 {
584 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
585 }
586 EXPORT_SYMBOL(blk_alloc_queue);
587
588 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
589 {
590 struct request_queue *q;
591 int err;
592
593 q = kmem_cache_alloc_node(blk_requestq_cachep,
594 gfp_mask | __GFP_ZERO, node_id);
595 if (!q)
596 return NULL;
597
598 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
599 if (q->id < 0)
600 goto fail_q;
601
602 q->backing_dev_info.ra_pages =
603 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
604 q->backing_dev_info.state = 0;
605 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
606 q->backing_dev_info.name = "block";
607 q->node = node_id;
608
609 err = bdi_init(&q->backing_dev_info);
610 if (err)
611 goto fail_id;
612
613 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
614 laptop_mode_timer_fn, (unsigned long) q);
615 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
616 INIT_LIST_HEAD(&q->queue_head);
617 INIT_LIST_HEAD(&q->timeout_list);
618 INIT_LIST_HEAD(&q->icq_list);
619 #ifdef CONFIG_BLK_CGROUP
620 INIT_LIST_HEAD(&q->blkg_list);
621 #endif
622 INIT_LIST_HEAD(&q->flush_queue[0]);
623 INIT_LIST_HEAD(&q->flush_queue[1]);
624 INIT_LIST_HEAD(&q->flush_data_in_flight);
625 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
626
627 kobject_init(&q->kobj, &blk_queue_ktype);
628
629 mutex_init(&q->sysfs_lock);
630 spin_lock_init(&q->__queue_lock);
631
632 /*
633 * By default initialize queue_lock to internal lock and driver can
634 * override it later if need be.
635 */
636 q->queue_lock = &q->__queue_lock;
637
638 /*
639 * A queue starts its life with bypass turned on to avoid
640 * unnecessary bypass on/off overhead and nasty surprises during
641 * init. The initial bypass will be finished when the queue is
642 * registered by blk_register_queue().
643 */
644 q->bypass_depth = 1;
645 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
646
647 if (blkcg_init_queue(q))
648 goto fail_bdi;
649
650 return q;
651
652 fail_bdi:
653 bdi_destroy(&q->backing_dev_info);
654 fail_id:
655 ida_simple_remove(&blk_queue_ida, q->id);
656 fail_q:
657 kmem_cache_free(blk_requestq_cachep, q);
658 return NULL;
659 }
660 EXPORT_SYMBOL(blk_alloc_queue_node);
661
662 /**
663 * blk_init_queue - prepare a request queue for use with a block device
664 * @rfn: The function to be called to process requests that have been
665 * placed on the queue.
666 * @lock: Request queue spin lock
667 *
668 * Description:
669 * If a block device wishes to use the standard request handling procedures,
670 * which sorts requests and coalesces adjacent requests, then it must
671 * call blk_init_queue(). The function @rfn will be called when there
672 * are requests on the queue that need to be processed. If the device
673 * supports plugging, then @rfn may not be called immediately when requests
674 * are available on the queue, but may be called at some time later instead.
675 * Plugged queues are generally unplugged when a buffer belonging to one
676 * of the requests on the queue is needed, or due to memory pressure.
677 *
678 * @rfn is not required, or even expected, to remove all requests off the
679 * queue, but only as many as it can handle at a time. If it does leave
680 * requests on the queue, it is responsible for arranging that the requests
681 * get dealt with eventually.
682 *
683 * The queue spin lock must be held while manipulating the requests on the
684 * request queue; this lock will be taken also from interrupt context, so irq
685 * disabling is needed for it.
686 *
687 * Function returns a pointer to the initialized request queue, or %NULL if
688 * it didn't succeed.
689 *
690 * Note:
691 * blk_init_queue() must be paired with a blk_cleanup_queue() call
692 * when the block device is deactivated (such as at module unload).
693 **/
694
695 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
696 {
697 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
698 }
699 EXPORT_SYMBOL(blk_init_queue);
700
701 struct request_queue *
702 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
703 {
704 struct request_queue *uninit_q, *q;
705
706 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
707 if (!uninit_q)
708 return NULL;
709
710 q = blk_init_allocated_queue(uninit_q, rfn, lock);
711 if (!q)
712 blk_cleanup_queue(uninit_q);
713
714 return q;
715 }
716 EXPORT_SYMBOL(blk_init_queue_node);
717
718 struct request_queue *
719 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
720 spinlock_t *lock)
721 {
722 if (!q)
723 return NULL;
724
725 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
726 return NULL;
727
728 q->request_fn = rfn;
729 q->prep_rq_fn = NULL;
730 q->unprep_rq_fn = NULL;
731 q->queue_flags |= QUEUE_FLAG_DEFAULT;
732
733 /* Override internal queue lock with supplied lock pointer */
734 if (lock)
735 q->queue_lock = lock;
736
737 /*
738 * This also sets hw/phys segments, boundary and size
739 */
740 blk_queue_make_request(q, blk_queue_bio);
741
742 q->sg_reserved_size = INT_MAX;
743
744 /* init elevator */
745 if (elevator_init(q, NULL))
746 return NULL;
747 return q;
748 }
749 EXPORT_SYMBOL(blk_init_allocated_queue);
750
751 bool blk_get_queue(struct request_queue *q)
752 {
753 if (likely(!blk_queue_dying(q))) {
754 __blk_get_queue(q);
755 return true;
756 }
757
758 return false;
759 }
760 EXPORT_SYMBOL(blk_get_queue);
761
762 static inline void blk_free_request(struct request_list *rl, struct request *rq)
763 {
764 if (rq->cmd_flags & REQ_ELVPRIV) {
765 elv_put_request(rl->q, rq);
766 if (rq->elv.icq)
767 put_io_context(rq->elv.icq->ioc);
768 }
769
770 mempool_free(rq, rl->rq_pool);
771 }
772
773 /*
774 * ioc_batching returns true if the ioc is a valid batching request and
775 * should be given priority access to a request.
776 */
777 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
778 {
779 if (!ioc)
780 return 0;
781
782 /*
783 * Make sure the process is able to allocate at least 1 request
784 * even if the batch times out, otherwise we could theoretically
785 * lose wakeups.
786 */
787 return ioc->nr_batch_requests == q->nr_batching ||
788 (ioc->nr_batch_requests > 0
789 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
790 }
791
792 /*
793 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
794 * will cause the process to be a "batcher" on all queues in the system. This
795 * is the behaviour we want though - once it gets a wakeup it should be given
796 * a nice run.
797 */
798 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
799 {
800 if (!ioc || ioc_batching(q, ioc))
801 return;
802
803 ioc->nr_batch_requests = q->nr_batching;
804 ioc->last_waited = jiffies;
805 }
806
807 static void __freed_request(struct request_list *rl, int sync)
808 {
809 struct request_queue *q = rl->q;
810
811 /*
812 * bdi isn't aware of blkcg yet. As all async IOs end up root
813 * blkcg anyway, just use root blkcg state.
814 */
815 if (rl == &q->root_rl &&
816 rl->count[sync] < queue_congestion_off_threshold(q))
817 blk_clear_queue_congested(q, sync);
818
819 if (rl->count[sync] + 1 <= q->nr_requests) {
820 if (waitqueue_active(&rl->wait[sync]))
821 wake_up(&rl->wait[sync]);
822
823 blk_clear_rl_full(rl, sync);
824 }
825 }
826
827 /*
828 * A request has just been released. Account for it, update the full and
829 * congestion status, wake up any waiters. Called under q->queue_lock.
830 */
831 static void freed_request(struct request_list *rl, unsigned int flags)
832 {
833 struct request_queue *q = rl->q;
834 int sync = rw_is_sync(flags);
835
836 q->nr_rqs[sync]--;
837 rl->count[sync]--;
838 if (flags & REQ_ELVPRIV)
839 q->nr_rqs_elvpriv--;
840
841 __freed_request(rl, sync);
842
843 if (unlikely(rl->starved[sync ^ 1]))
844 __freed_request(rl, sync ^ 1);
845 }
846
847 /*
848 * Determine if elevator data should be initialized when allocating the
849 * request associated with @bio.
850 */
851 static bool blk_rq_should_init_elevator(struct bio *bio)
852 {
853 if (!bio)
854 return true;
855
856 /*
857 * Flush requests do not use the elevator so skip initialization.
858 * This allows a request to share the flush and elevator data.
859 */
860 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
861 return false;
862
863 return true;
864 }
865
866 /**
867 * rq_ioc - determine io_context for request allocation
868 * @bio: request being allocated is for this bio (can be %NULL)
869 *
870 * Determine io_context to use for request allocation for @bio. May return
871 * %NULL if %current->io_context doesn't exist.
872 */
873 static struct io_context *rq_ioc(struct bio *bio)
874 {
875 #ifdef CONFIG_BLK_CGROUP
876 if (bio && bio->bi_ioc)
877 return bio->bi_ioc;
878 #endif
879 return current->io_context;
880 }
881
882 /**
883 * __get_request - get a free request
884 * @rl: request list to allocate from
885 * @rw_flags: RW and SYNC flags
886 * @bio: bio to allocate request for (can be %NULL)
887 * @gfp_mask: allocation mask
888 *
889 * Get a free request from @q. This function may fail under memory
890 * pressure or if @q is dead.
891 *
892 * Must be callled with @q->queue_lock held and,
893 * Returns %NULL on failure, with @q->queue_lock held.
894 * Returns !%NULL on success, with @q->queue_lock *not held*.
895 */
896 static struct request *__get_request(struct request_list *rl, int rw_flags,
897 struct bio *bio, gfp_t gfp_mask)
898 {
899 struct request_queue *q = rl->q;
900 struct request *rq;
901 struct elevator_type *et = q->elevator->type;
902 struct io_context *ioc = rq_ioc(bio);
903 struct io_cq *icq = NULL;
904 const bool is_sync = rw_is_sync(rw_flags) != 0;
905 int may_queue;
906
907 if (unlikely(blk_queue_dying(q)))
908 return NULL;
909
910 may_queue = elv_may_queue(q, rw_flags);
911 if (may_queue == ELV_MQUEUE_NO)
912 goto rq_starved;
913
914 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
915 if (rl->count[is_sync]+1 >= q->nr_requests) {
916 /*
917 * The queue will fill after this allocation, so set
918 * it as full, and mark this process as "batching".
919 * This process will be allowed to complete a batch of
920 * requests, others will be blocked.
921 */
922 if (!blk_rl_full(rl, is_sync)) {
923 ioc_set_batching(q, ioc);
924 blk_set_rl_full(rl, is_sync);
925 } else {
926 if (may_queue != ELV_MQUEUE_MUST
927 && !ioc_batching(q, ioc)) {
928 /*
929 * The queue is full and the allocating
930 * process is not a "batcher", and not
931 * exempted by the IO scheduler
932 */
933 return NULL;
934 }
935 }
936 }
937 /*
938 * bdi isn't aware of blkcg yet. As all async IOs end up
939 * root blkcg anyway, just use root blkcg state.
940 */
941 if (rl == &q->root_rl)
942 blk_set_queue_congested(q, is_sync);
943 }
944
945 /*
946 * Only allow batching queuers to allocate up to 50% over the defined
947 * limit of requests, otherwise we could have thousands of requests
948 * allocated with any setting of ->nr_requests
949 */
950 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
951 return NULL;
952
953 q->nr_rqs[is_sync]++;
954 rl->count[is_sync]++;
955 rl->starved[is_sync] = 0;
956
957 /*
958 * Decide whether the new request will be managed by elevator. If
959 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
960 * prevent the current elevator from being destroyed until the new
961 * request is freed. This guarantees icq's won't be destroyed and
962 * makes creating new ones safe.
963 *
964 * Also, lookup icq while holding queue_lock. If it doesn't exist,
965 * it will be created after releasing queue_lock.
966 */
967 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
968 rw_flags |= REQ_ELVPRIV;
969 q->nr_rqs_elvpriv++;
970 if (et->icq_cache && ioc)
971 icq = ioc_lookup_icq(ioc, q);
972 }
973
974 if (blk_queue_io_stat(q))
975 rw_flags |= REQ_IO_STAT;
976 spin_unlock_irq(q->queue_lock);
977
978 /* allocate and init request */
979 rq = mempool_alloc(rl->rq_pool, gfp_mask);
980 if (!rq)
981 goto fail_alloc;
982
983 blk_rq_init(q, rq);
984 blk_rq_set_rl(rq, rl);
985 rq->cmd_flags = rw_flags | REQ_ALLOCED;
986
987 /* init elvpriv */
988 if (rw_flags & REQ_ELVPRIV) {
989 if (unlikely(et->icq_cache && !icq)) {
990 if (ioc)
991 icq = ioc_create_icq(ioc, q, gfp_mask);
992 if (!icq)
993 goto fail_elvpriv;
994 }
995
996 rq->elv.icq = icq;
997 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
998 goto fail_elvpriv;
999
1000 /* @rq->elv.icq holds io_context until @rq is freed */
1001 if (icq)
1002 get_io_context(icq->ioc);
1003 }
1004 out:
1005 /*
1006 * ioc may be NULL here, and ioc_batching will be false. That's
1007 * OK, if the queue is under the request limit then requests need
1008 * not count toward the nr_batch_requests limit. There will always
1009 * be some limit enforced by BLK_BATCH_TIME.
1010 */
1011 if (ioc_batching(q, ioc))
1012 ioc->nr_batch_requests--;
1013
1014 trace_block_getrq(q, bio, rw_flags & 1);
1015 return rq;
1016
1017 fail_elvpriv:
1018 /*
1019 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1020 * and may fail indefinitely under memory pressure and thus
1021 * shouldn't stall IO. Treat this request as !elvpriv. This will
1022 * disturb iosched and blkcg but weird is bettern than dead.
1023 */
1024 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1025 dev_name(q->backing_dev_info.dev));
1026
1027 rq->cmd_flags &= ~REQ_ELVPRIV;
1028 rq->elv.icq = NULL;
1029
1030 spin_lock_irq(q->queue_lock);
1031 q->nr_rqs_elvpriv--;
1032 spin_unlock_irq(q->queue_lock);
1033 goto out;
1034
1035 fail_alloc:
1036 /*
1037 * Allocation failed presumably due to memory. Undo anything we
1038 * might have messed up.
1039 *
1040 * Allocating task should really be put onto the front of the wait
1041 * queue, but this is pretty rare.
1042 */
1043 spin_lock_irq(q->queue_lock);
1044 freed_request(rl, rw_flags);
1045
1046 /*
1047 * in the very unlikely event that allocation failed and no
1048 * requests for this direction was pending, mark us starved so that
1049 * freeing of a request in the other direction will notice
1050 * us. another possible fix would be to split the rq mempool into
1051 * READ and WRITE
1052 */
1053 rq_starved:
1054 if (unlikely(rl->count[is_sync] == 0))
1055 rl->starved[is_sync] = 1;
1056 return NULL;
1057 }
1058
1059 /**
1060 * get_request - get a free request
1061 * @q: request_queue to allocate request from
1062 * @rw_flags: RW and SYNC flags
1063 * @bio: bio to allocate request for (can be %NULL)
1064 * @gfp_mask: allocation mask
1065 *
1066 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1067 * function keeps retrying under memory pressure and fails iff @q is dead.
1068 *
1069 * Must be callled with @q->queue_lock held and,
1070 * Returns %NULL on failure, with @q->queue_lock held.
1071 * Returns !%NULL on success, with @q->queue_lock *not held*.
1072 */
1073 static struct request *get_request(struct request_queue *q, int rw_flags,
1074 struct bio *bio, gfp_t gfp_mask)
1075 {
1076 const bool is_sync = rw_is_sync(rw_flags) != 0;
1077 DEFINE_WAIT(wait);
1078 struct request_list *rl;
1079 struct request *rq;
1080
1081 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1082 retry:
1083 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1084 if (rq)
1085 return rq;
1086
1087 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1088 blk_put_rl(rl);
1089 return NULL;
1090 }
1091
1092 /* wait on @rl and retry */
1093 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1094 TASK_UNINTERRUPTIBLE);
1095
1096 trace_block_sleeprq(q, bio, rw_flags & 1);
1097
1098 spin_unlock_irq(q->queue_lock);
1099 io_schedule();
1100
1101 /*
1102 * After sleeping, we become a "batching" process and will be able
1103 * to allocate at least one request, and up to a big batch of them
1104 * for a small period time. See ioc_batching, ioc_set_batching
1105 */
1106 ioc_set_batching(q, current->io_context);
1107
1108 spin_lock_irq(q->queue_lock);
1109 finish_wait(&rl->wait[is_sync], &wait);
1110
1111 goto retry;
1112 }
1113
1114 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1115 {
1116 struct request *rq;
1117
1118 BUG_ON(rw != READ && rw != WRITE);
1119
1120 /* create ioc upfront */
1121 create_io_context(gfp_mask, q->node);
1122
1123 spin_lock_irq(q->queue_lock);
1124 rq = get_request(q, rw, NULL, gfp_mask);
1125 if (!rq)
1126 spin_unlock_irq(q->queue_lock);
1127 /* q->queue_lock is unlocked at this point */
1128
1129 return rq;
1130 }
1131 EXPORT_SYMBOL(blk_get_request);
1132
1133 /**
1134 * blk_make_request - given a bio, allocate a corresponding struct request.
1135 * @q: target request queue
1136 * @bio: The bio describing the memory mappings that will be submitted for IO.
1137 * It may be a chained-bio properly constructed by block/bio layer.
1138 * @gfp_mask: gfp flags to be used for memory allocation
1139 *
1140 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1141 * type commands. Where the struct request needs to be farther initialized by
1142 * the caller. It is passed a &struct bio, which describes the memory info of
1143 * the I/O transfer.
1144 *
1145 * The caller of blk_make_request must make sure that bi_io_vec
1146 * are set to describe the memory buffers. That bio_data_dir() will return
1147 * the needed direction of the request. (And all bio's in the passed bio-chain
1148 * are properly set accordingly)
1149 *
1150 * If called under none-sleepable conditions, mapped bio buffers must not
1151 * need bouncing, by calling the appropriate masked or flagged allocator,
1152 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1153 * BUG.
1154 *
1155 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1156 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1157 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1158 * completion of a bio that hasn't been submitted yet, thus resulting in a
1159 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1160 * of bio_alloc(), as that avoids the mempool deadlock.
1161 * If possible a big IO should be split into smaller parts when allocation
1162 * fails. Partial allocation should not be an error, or you risk a live-lock.
1163 */
1164 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1165 gfp_t gfp_mask)
1166 {
1167 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1168
1169 if (unlikely(!rq))
1170 return ERR_PTR(-ENOMEM);
1171
1172 for_each_bio(bio) {
1173 struct bio *bounce_bio = bio;
1174 int ret;
1175
1176 blk_queue_bounce(q, &bounce_bio);
1177 ret = blk_rq_append_bio(q, rq, bounce_bio);
1178 if (unlikely(ret)) {
1179 blk_put_request(rq);
1180 return ERR_PTR(ret);
1181 }
1182 }
1183
1184 return rq;
1185 }
1186 EXPORT_SYMBOL(blk_make_request);
1187
1188 /**
1189 * blk_requeue_request - put a request back on queue
1190 * @q: request queue where request should be inserted
1191 * @rq: request to be inserted
1192 *
1193 * Description:
1194 * Drivers often keep queueing requests until the hardware cannot accept
1195 * more, when that condition happens we need to put the request back
1196 * on the queue. Must be called with queue lock held.
1197 */
1198 void blk_requeue_request(struct request_queue *q, struct request *rq)
1199 {
1200 blk_delete_timer(rq);
1201 blk_clear_rq_complete(rq);
1202 trace_block_rq_requeue(q, rq);
1203
1204 if (blk_rq_tagged(rq))
1205 blk_queue_end_tag(q, rq);
1206
1207 BUG_ON(blk_queued_rq(rq));
1208
1209 elv_requeue_request(q, rq);
1210 }
1211 EXPORT_SYMBOL(blk_requeue_request);
1212
1213 static void add_acct_request(struct request_queue *q, struct request *rq,
1214 int where)
1215 {
1216 drive_stat_acct(rq, 1);
1217 __elv_add_request(q, rq, where);
1218 }
1219
1220 static void part_round_stats_single(int cpu, struct hd_struct *part,
1221 unsigned long now)
1222 {
1223 if (now == part->stamp)
1224 return;
1225
1226 if (part_in_flight(part)) {
1227 __part_stat_add(cpu, part, time_in_queue,
1228 part_in_flight(part) * (now - part->stamp));
1229 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1230 }
1231 part->stamp = now;
1232 }
1233
1234 /**
1235 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1236 * @cpu: cpu number for stats access
1237 * @part: target partition
1238 *
1239 * The average IO queue length and utilisation statistics are maintained
1240 * by observing the current state of the queue length and the amount of
1241 * time it has been in this state for.
1242 *
1243 * Normally, that accounting is done on IO completion, but that can result
1244 * in more than a second's worth of IO being accounted for within any one
1245 * second, leading to >100% utilisation. To deal with that, we call this
1246 * function to do a round-off before returning the results when reading
1247 * /proc/diskstats. This accounts immediately for all queue usage up to
1248 * the current jiffies and restarts the counters again.
1249 */
1250 void part_round_stats(int cpu, struct hd_struct *part)
1251 {
1252 unsigned long now = jiffies;
1253
1254 if (part->partno)
1255 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1256 part_round_stats_single(cpu, part, now);
1257 }
1258 EXPORT_SYMBOL_GPL(part_round_stats);
1259
1260 #ifdef CONFIG_PM_RUNTIME
1261 static void blk_pm_put_request(struct request *rq)
1262 {
1263 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1264 pm_runtime_mark_last_busy(rq->q->dev);
1265 }
1266 #else
1267 static inline void blk_pm_put_request(struct request *rq) {}
1268 #endif
1269
1270 /*
1271 * queue lock must be held
1272 */
1273 void __blk_put_request(struct request_queue *q, struct request *req)
1274 {
1275 if (unlikely(!q))
1276 return;
1277 if (unlikely(--req->ref_count))
1278 return;
1279
1280 blk_pm_put_request(req);
1281
1282 elv_completed_request(q, req);
1283
1284 /* this is a bio leak */
1285 WARN_ON(req->bio != NULL);
1286
1287 /*
1288 * Request may not have originated from ll_rw_blk. if not,
1289 * it didn't come out of our reserved rq pools
1290 */
1291 if (req->cmd_flags & REQ_ALLOCED) {
1292 unsigned int flags = req->cmd_flags;
1293 struct request_list *rl = blk_rq_rl(req);
1294
1295 BUG_ON(!list_empty(&req->queuelist));
1296 BUG_ON(!hlist_unhashed(&req->hash));
1297
1298 blk_free_request(rl, req);
1299 freed_request(rl, flags);
1300 blk_put_rl(rl);
1301 }
1302 }
1303 EXPORT_SYMBOL_GPL(__blk_put_request);
1304
1305 void blk_put_request(struct request *req)
1306 {
1307 unsigned long flags;
1308 struct request_queue *q = req->q;
1309
1310 spin_lock_irqsave(q->queue_lock, flags);
1311 __blk_put_request(q, req);
1312 spin_unlock_irqrestore(q->queue_lock, flags);
1313 }
1314 EXPORT_SYMBOL(blk_put_request);
1315
1316 /**
1317 * blk_add_request_payload - add a payload to a request
1318 * @rq: request to update
1319 * @page: page backing the payload
1320 * @len: length of the payload.
1321 *
1322 * This allows to later add a payload to an already submitted request by
1323 * a block driver. The driver needs to take care of freeing the payload
1324 * itself.
1325 *
1326 * Note that this is a quite horrible hack and nothing but handling of
1327 * discard requests should ever use it.
1328 */
1329 void blk_add_request_payload(struct request *rq, struct page *page,
1330 unsigned int len)
1331 {
1332 struct bio *bio = rq->bio;
1333
1334 bio->bi_io_vec->bv_page = page;
1335 bio->bi_io_vec->bv_offset = 0;
1336 bio->bi_io_vec->bv_len = len;
1337
1338 bio->bi_size = len;
1339 bio->bi_vcnt = 1;
1340 bio->bi_phys_segments = 1;
1341
1342 rq->__data_len = rq->resid_len = len;
1343 rq->nr_phys_segments = 1;
1344 rq->buffer = bio_data(bio);
1345 }
1346 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1347
1348 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1349 struct bio *bio)
1350 {
1351 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1352
1353 if (!ll_back_merge_fn(q, req, bio))
1354 return false;
1355
1356 trace_block_bio_backmerge(q, req, bio);
1357
1358 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1359 blk_rq_set_mixed_merge(req);
1360
1361 req->biotail->bi_next = bio;
1362 req->biotail = bio;
1363 req->__data_len += bio->bi_size;
1364 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1365
1366 drive_stat_acct(req, 0);
1367 return true;
1368 }
1369
1370 static bool bio_attempt_front_merge(struct request_queue *q,
1371 struct request *req, struct bio *bio)
1372 {
1373 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1374
1375 if (!ll_front_merge_fn(q, req, bio))
1376 return false;
1377
1378 trace_block_bio_frontmerge(q, req, bio);
1379
1380 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1381 blk_rq_set_mixed_merge(req);
1382
1383 bio->bi_next = req->bio;
1384 req->bio = bio;
1385
1386 /*
1387 * may not be valid. if the low level driver said
1388 * it didn't need a bounce buffer then it better
1389 * not touch req->buffer either...
1390 */
1391 req->buffer = bio_data(bio);
1392 req->__sector = bio->bi_sector;
1393 req->__data_len += bio->bi_size;
1394 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1395
1396 drive_stat_acct(req, 0);
1397 return true;
1398 }
1399
1400 /**
1401 * attempt_plug_merge - try to merge with %current's plugged list
1402 * @q: request_queue new bio is being queued at
1403 * @bio: new bio being queued
1404 * @request_count: out parameter for number of traversed plugged requests
1405 *
1406 * Determine whether @bio being queued on @q can be merged with a request
1407 * on %current's plugged list. Returns %true if merge was successful,
1408 * otherwise %false.
1409 *
1410 * Plugging coalesces IOs from the same issuer for the same purpose without
1411 * going through @q->queue_lock. As such it's more of an issuing mechanism
1412 * than scheduling, and the request, while may have elvpriv data, is not
1413 * added on the elevator at this point. In addition, we don't have
1414 * reliable access to the elevator outside queue lock. Only check basic
1415 * merging parameters without querying the elevator.
1416 */
1417 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1418 unsigned int *request_count)
1419 {
1420 struct blk_plug *plug;
1421 struct request *rq;
1422 bool ret = false;
1423
1424 plug = current->plug;
1425 if (!plug)
1426 goto out;
1427 *request_count = 0;
1428
1429 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1430 int el_ret;
1431
1432 if (rq->q == q)
1433 (*request_count)++;
1434
1435 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1436 continue;
1437
1438 el_ret = blk_try_merge(rq, bio);
1439 if (el_ret == ELEVATOR_BACK_MERGE) {
1440 ret = bio_attempt_back_merge(q, rq, bio);
1441 if (ret)
1442 break;
1443 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1444 ret = bio_attempt_front_merge(q, rq, bio);
1445 if (ret)
1446 break;
1447 }
1448 }
1449 out:
1450 return ret;
1451 }
1452
1453 void init_request_from_bio(struct request *req, struct bio *bio)
1454 {
1455 req->cmd_type = REQ_TYPE_FS;
1456
1457 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1458 if (bio->bi_rw & REQ_RAHEAD)
1459 req->cmd_flags |= REQ_FAILFAST_MASK;
1460
1461 req->errors = 0;
1462 req->__sector = bio->bi_sector;
1463 req->ioprio = bio_prio(bio);
1464 blk_rq_bio_prep(req->q, req, bio);
1465 }
1466
1467 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1468 {
1469 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1470 struct blk_plug *plug;
1471 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1472 struct request *req;
1473 unsigned int request_count = 0;
1474
1475 /*
1476 * low level driver can indicate that it wants pages above a
1477 * certain limit bounced to low memory (ie for highmem, or even
1478 * ISA dma in theory)
1479 */
1480 blk_queue_bounce(q, &bio);
1481
1482 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1483 bio_endio(bio, -EIO);
1484 return;
1485 }
1486
1487 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1488 spin_lock_irq(q->queue_lock);
1489 where = ELEVATOR_INSERT_FLUSH;
1490 goto get_rq;
1491 }
1492
1493 /*
1494 * Check if we can merge with the plugged list before grabbing
1495 * any locks.
1496 */
1497 if (attempt_plug_merge(q, bio, &request_count))
1498 return;
1499
1500 spin_lock_irq(q->queue_lock);
1501
1502 el_ret = elv_merge(q, &req, bio);
1503 if (el_ret == ELEVATOR_BACK_MERGE) {
1504 if (bio_attempt_back_merge(q, req, bio)) {
1505 elv_bio_merged(q, req, bio);
1506 if (!attempt_back_merge(q, req))
1507 elv_merged_request(q, req, el_ret);
1508 goto out_unlock;
1509 }
1510 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1511 if (bio_attempt_front_merge(q, req, bio)) {
1512 elv_bio_merged(q, req, bio);
1513 if (!attempt_front_merge(q, req))
1514 elv_merged_request(q, req, el_ret);
1515 goto out_unlock;
1516 }
1517 }
1518
1519 get_rq:
1520 /*
1521 * This sync check and mask will be re-done in init_request_from_bio(),
1522 * but we need to set it earlier to expose the sync flag to the
1523 * rq allocator and io schedulers.
1524 */
1525 rw_flags = bio_data_dir(bio);
1526 if (sync)
1527 rw_flags |= REQ_SYNC;
1528
1529 /*
1530 * Grab a free request. This is might sleep but can not fail.
1531 * Returns with the queue unlocked.
1532 */
1533 req = get_request(q, rw_flags, bio, GFP_NOIO);
1534 if (unlikely(!req)) {
1535 bio_endio(bio, -ENODEV); /* @q is dead */
1536 goto out_unlock;
1537 }
1538
1539 /*
1540 * After dropping the lock and possibly sleeping here, our request
1541 * may now be mergeable after it had proven unmergeable (above).
1542 * We don't worry about that case for efficiency. It won't happen
1543 * often, and the elevators are able to handle it.
1544 */
1545 init_request_from_bio(req, bio);
1546
1547 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1548 req->cpu = raw_smp_processor_id();
1549
1550 plug = current->plug;
1551 if (plug) {
1552 /*
1553 * If this is the first request added after a plug, fire
1554 * of a plug trace. If others have been added before, check
1555 * if we have multiple devices in this plug. If so, make a
1556 * note to sort the list before dispatch.
1557 */
1558 if (list_empty(&plug->list))
1559 trace_block_plug(q);
1560 else {
1561 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1562 blk_flush_plug_list(plug, false);
1563 trace_block_plug(q);
1564 }
1565 }
1566 list_add_tail(&req->queuelist, &plug->list);
1567 drive_stat_acct(req, 1);
1568 } else {
1569 spin_lock_irq(q->queue_lock);
1570 add_acct_request(q, req, where);
1571 __blk_run_queue(q);
1572 out_unlock:
1573 spin_unlock_irq(q->queue_lock);
1574 }
1575 }
1576 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1577
1578 /*
1579 * If bio->bi_dev is a partition, remap the location
1580 */
1581 static inline void blk_partition_remap(struct bio *bio)
1582 {
1583 struct block_device *bdev = bio->bi_bdev;
1584
1585 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1586 struct hd_struct *p = bdev->bd_part;
1587
1588 bio->bi_sector += p->start_sect;
1589 bio->bi_bdev = bdev->bd_contains;
1590
1591 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1592 bdev->bd_dev,
1593 bio->bi_sector - p->start_sect);
1594 }
1595 }
1596
1597 static void handle_bad_sector(struct bio *bio)
1598 {
1599 char b[BDEVNAME_SIZE];
1600
1601 printk(KERN_INFO "attempt to access beyond end of device\n");
1602 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1603 bdevname(bio->bi_bdev, b),
1604 bio->bi_rw,
1605 (unsigned long long)bio_end_sector(bio),
1606 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1607
1608 set_bit(BIO_EOF, &bio->bi_flags);
1609 }
1610
1611 #ifdef CONFIG_FAIL_MAKE_REQUEST
1612
1613 static DECLARE_FAULT_ATTR(fail_make_request);
1614
1615 static int __init setup_fail_make_request(char *str)
1616 {
1617 return setup_fault_attr(&fail_make_request, str);
1618 }
1619 __setup("fail_make_request=", setup_fail_make_request);
1620
1621 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1622 {
1623 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1624 }
1625
1626 static int __init fail_make_request_debugfs(void)
1627 {
1628 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1629 NULL, &fail_make_request);
1630
1631 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1632 }
1633
1634 late_initcall(fail_make_request_debugfs);
1635
1636 #else /* CONFIG_FAIL_MAKE_REQUEST */
1637
1638 static inline bool should_fail_request(struct hd_struct *part,
1639 unsigned int bytes)
1640 {
1641 return false;
1642 }
1643
1644 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1645
1646 /*
1647 * Check whether this bio extends beyond the end of the device.
1648 */
1649 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1650 {
1651 sector_t maxsector;
1652
1653 if (!nr_sectors)
1654 return 0;
1655
1656 /* Test device or partition size, when known. */
1657 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1658 if (maxsector) {
1659 sector_t sector = bio->bi_sector;
1660
1661 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1662 /*
1663 * This may well happen - the kernel calls bread()
1664 * without checking the size of the device, e.g., when
1665 * mounting a device.
1666 */
1667 handle_bad_sector(bio);
1668 return 1;
1669 }
1670 }
1671
1672 return 0;
1673 }
1674
1675 static noinline_for_stack bool
1676 generic_make_request_checks(struct bio *bio)
1677 {
1678 struct request_queue *q;
1679 int nr_sectors = bio_sectors(bio);
1680 int err = -EIO;
1681 char b[BDEVNAME_SIZE];
1682 struct hd_struct *part;
1683
1684 might_sleep();
1685
1686 if (bio_check_eod(bio, nr_sectors))
1687 goto end_io;
1688
1689 q = bdev_get_queue(bio->bi_bdev);
1690 if (unlikely(!q)) {
1691 printk(KERN_ERR
1692 "generic_make_request: Trying to access "
1693 "nonexistent block-device %s (%Lu)\n",
1694 bdevname(bio->bi_bdev, b),
1695 (long long) bio->bi_sector);
1696 goto end_io;
1697 }
1698
1699 if (likely(bio_is_rw(bio) &&
1700 nr_sectors > queue_max_hw_sectors(q))) {
1701 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1702 bdevname(bio->bi_bdev, b),
1703 bio_sectors(bio),
1704 queue_max_hw_sectors(q));
1705 goto end_io;
1706 }
1707
1708 part = bio->bi_bdev->bd_part;
1709 if (should_fail_request(part, bio->bi_size) ||
1710 should_fail_request(&part_to_disk(part)->part0,
1711 bio->bi_size))
1712 goto end_io;
1713
1714 /*
1715 * If this device has partitions, remap block n
1716 * of partition p to block n+start(p) of the disk.
1717 */
1718 blk_partition_remap(bio);
1719
1720 if (bio_check_eod(bio, nr_sectors))
1721 goto end_io;
1722
1723 /*
1724 * Filter flush bio's early so that make_request based
1725 * drivers without flush support don't have to worry
1726 * about them.
1727 */
1728 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1729 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1730 if (!nr_sectors) {
1731 err = 0;
1732 goto end_io;
1733 }
1734 }
1735
1736 if ((bio->bi_rw & REQ_DISCARD) &&
1737 (!blk_queue_discard(q) ||
1738 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1739 err = -EOPNOTSUPP;
1740 goto end_io;
1741 }
1742
1743 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1744 err = -EOPNOTSUPP;
1745 goto end_io;
1746 }
1747
1748 /*
1749 * Various block parts want %current->io_context and lazy ioc
1750 * allocation ends up trading a lot of pain for a small amount of
1751 * memory. Just allocate it upfront. This may fail and block
1752 * layer knows how to live with it.
1753 */
1754 create_io_context(GFP_ATOMIC, q->node);
1755
1756 if (blk_throtl_bio(q, bio))
1757 return false; /* throttled, will be resubmitted later */
1758
1759 trace_block_bio_queue(q, bio);
1760 return true;
1761
1762 end_io:
1763 bio_endio(bio, err);
1764 return false;
1765 }
1766
1767 /**
1768 * generic_make_request - hand a buffer to its device driver for I/O
1769 * @bio: The bio describing the location in memory and on the device.
1770 *
1771 * generic_make_request() is used to make I/O requests of block
1772 * devices. It is passed a &struct bio, which describes the I/O that needs
1773 * to be done.
1774 *
1775 * generic_make_request() does not return any status. The
1776 * success/failure status of the request, along with notification of
1777 * completion, is delivered asynchronously through the bio->bi_end_io
1778 * function described (one day) else where.
1779 *
1780 * The caller of generic_make_request must make sure that bi_io_vec
1781 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1782 * set to describe the device address, and the
1783 * bi_end_io and optionally bi_private are set to describe how
1784 * completion notification should be signaled.
1785 *
1786 * generic_make_request and the drivers it calls may use bi_next if this
1787 * bio happens to be merged with someone else, and may resubmit the bio to
1788 * a lower device by calling into generic_make_request recursively, which
1789 * means the bio should NOT be touched after the call to ->make_request_fn.
1790 */
1791 void generic_make_request(struct bio *bio)
1792 {
1793 struct bio_list bio_list_on_stack;
1794
1795 if (!generic_make_request_checks(bio))
1796 return;
1797
1798 /*
1799 * We only want one ->make_request_fn to be active at a time, else
1800 * stack usage with stacked devices could be a problem. So use
1801 * current->bio_list to keep a list of requests submited by a
1802 * make_request_fn function. current->bio_list is also used as a
1803 * flag to say if generic_make_request is currently active in this
1804 * task or not. If it is NULL, then no make_request is active. If
1805 * it is non-NULL, then a make_request is active, and new requests
1806 * should be added at the tail
1807 */
1808 if (current->bio_list) {
1809 bio_list_add(current->bio_list, bio);
1810 return;
1811 }
1812
1813 /* following loop may be a bit non-obvious, and so deserves some
1814 * explanation.
1815 * Before entering the loop, bio->bi_next is NULL (as all callers
1816 * ensure that) so we have a list with a single bio.
1817 * We pretend that we have just taken it off a longer list, so
1818 * we assign bio_list to a pointer to the bio_list_on_stack,
1819 * thus initialising the bio_list of new bios to be
1820 * added. ->make_request() may indeed add some more bios
1821 * through a recursive call to generic_make_request. If it
1822 * did, we find a non-NULL value in bio_list and re-enter the loop
1823 * from the top. In this case we really did just take the bio
1824 * of the top of the list (no pretending) and so remove it from
1825 * bio_list, and call into ->make_request() again.
1826 */
1827 BUG_ON(bio->bi_next);
1828 bio_list_init(&bio_list_on_stack);
1829 current->bio_list = &bio_list_on_stack;
1830 do {
1831 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1832
1833 q->make_request_fn(q, bio);
1834
1835 bio = bio_list_pop(current->bio_list);
1836 } while (bio);
1837 current->bio_list = NULL; /* deactivate */
1838 }
1839 EXPORT_SYMBOL(generic_make_request);
1840
1841 /**
1842 * submit_bio - submit a bio to the block device layer for I/O
1843 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1844 * @bio: The &struct bio which describes the I/O
1845 *
1846 * submit_bio() is very similar in purpose to generic_make_request(), and
1847 * uses that function to do most of the work. Both are fairly rough
1848 * interfaces; @bio must be presetup and ready for I/O.
1849 *
1850 */
1851 void submit_bio(int rw, struct bio *bio)
1852 {
1853 bio->bi_rw |= rw;
1854
1855 /*
1856 * If it's a regular read/write or a barrier with data attached,
1857 * go through the normal accounting stuff before submission.
1858 */
1859 if (bio_has_data(bio)) {
1860 unsigned int count;
1861
1862 if (unlikely(rw & REQ_WRITE_SAME))
1863 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1864 else
1865 count = bio_sectors(bio);
1866
1867 if (rw & WRITE) {
1868 count_vm_events(PGPGOUT, count);
1869 } else {
1870 task_io_account_read(bio->bi_size);
1871 count_vm_events(PGPGIN, count);
1872 }
1873
1874 if (unlikely(block_dump)) {
1875 char b[BDEVNAME_SIZE];
1876 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1877 current->comm, task_pid_nr(current),
1878 (rw & WRITE) ? "WRITE" : "READ",
1879 (unsigned long long)bio->bi_sector,
1880 bdevname(bio->bi_bdev, b),
1881 count);
1882 }
1883 }
1884
1885 generic_make_request(bio);
1886 }
1887 EXPORT_SYMBOL(submit_bio);
1888
1889 /**
1890 * blk_rq_check_limits - Helper function to check a request for the queue limit
1891 * @q: the queue
1892 * @rq: the request being checked
1893 *
1894 * Description:
1895 * @rq may have been made based on weaker limitations of upper-level queues
1896 * in request stacking drivers, and it may violate the limitation of @q.
1897 * Since the block layer and the underlying device driver trust @rq
1898 * after it is inserted to @q, it should be checked against @q before
1899 * the insertion using this generic function.
1900 *
1901 * This function should also be useful for request stacking drivers
1902 * in some cases below, so export this function.
1903 * Request stacking drivers like request-based dm may change the queue
1904 * limits while requests are in the queue (e.g. dm's table swapping).
1905 * Such request stacking drivers should check those requests agaist
1906 * the new queue limits again when they dispatch those requests,
1907 * although such checkings are also done against the old queue limits
1908 * when submitting requests.
1909 */
1910 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1911 {
1912 if (!rq_mergeable(rq))
1913 return 0;
1914
1915 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1916 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1917 return -EIO;
1918 }
1919
1920 /*
1921 * queue's settings related to segment counting like q->bounce_pfn
1922 * may differ from that of other stacking queues.
1923 * Recalculate it to check the request correctly on this queue's
1924 * limitation.
1925 */
1926 blk_recalc_rq_segments(rq);
1927 if (rq->nr_phys_segments > queue_max_segments(q)) {
1928 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1929 return -EIO;
1930 }
1931
1932 return 0;
1933 }
1934 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1935
1936 /**
1937 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1938 * @q: the queue to submit the request
1939 * @rq: the request being queued
1940 */
1941 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1942 {
1943 unsigned long flags;
1944 int where = ELEVATOR_INSERT_BACK;
1945
1946 if (blk_rq_check_limits(q, rq))
1947 return -EIO;
1948
1949 if (rq->rq_disk &&
1950 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1951 return -EIO;
1952
1953 spin_lock_irqsave(q->queue_lock, flags);
1954 if (unlikely(blk_queue_dying(q))) {
1955 spin_unlock_irqrestore(q->queue_lock, flags);
1956 return -ENODEV;
1957 }
1958
1959 /*
1960 * Submitting request must be dequeued before calling this function
1961 * because it will be linked to another request_queue
1962 */
1963 BUG_ON(blk_queued_rq(rq));
1964
1965 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1966 where = ELEVATOR_INSERT_FLUSH;
1967
1968 add_acct_request(q, rq, where);
1969 if (where == ELEVATOR_INSERT_FLUSH)
1970 __blk_run_queue(q);
1971 spin_unlock_irqrestore(q->queue_lock, flags);
1972
1973 return 0;
1974 }
1975 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1976
1977 /**
1978 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1979 * @rq: request to examine
1980 *
1981 * Description:
1982 * A request could be merge of IOs which require different failure
1983 * handling. This function determines the number of bytes which
1984 * can be failed from the beginning of the request without
1985 * crossing into area which need to be retried further.
1986 *
1987 * Return:
1988 * The number of bytes to fail.
1989 *
1990 * Context:
1991 * queue_lock must be held.
1992 */
1993 unsigned int blk_rq_err_bytes(const struct request *rq)
1994 {
1995 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1996 unsigned int bytes = 0;
1997 struct bio *bio;
1998
1999 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2000 return blk_rq_bytes(rq);
2001
2002 /*
2003 * Currently the only 'mixing' which can happen is between
2004 * different fastfail types. We can safely fail portions
2005 * which have all the failfast bits that the first one has -
2006 * the ones which are at least as eager to fail as the first
2007 * one.
2008 */
2009 for (bio = rq->bio; bio; bio = bio->bi_next) {
2010 if ((bio->bi_rw & ff) != ff)
2011 break;
2012 bytes += bio->bi_size;
2013 }
2014
2015 /* this could lead to infinite loop */
2016 BUG_ON(blk_rq_bytes(rq) && !bytes);
2017 return bytes;
2018 }
2019 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2020
2021 static void blk_account_io_completion(struct request *req, unsigned int bytes)
2022 {
2023 if (blk_do_io_stat(req)) {
2024 const int rw = rq_data_dir(req);
2025 struct hd_struct *part;
2026 int cpu;
2027
2028 cpu = part_stat_lock();
2029 part = req->part;
2030 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2031 part_stat_unlock();
2032 }
2033 }
2034
2035 static void blk_account_io_done(struct request *req)
2036 {
2037 /*
2038 * Account IO completion. flush_rq isn't accounted as a
2039 * normal IO on queueing nor completion. Accounting the
2040 * containing request is enough.
2041 */
2042 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2043 unsigned long duration = jiffies - req->start_time;
2044 const int rw = rq_data_dir(req);
2045 struct hd_struct *part;
2046 int cpu;
2047
2048 cpu = part_stat_lock();
2049 part = req->part;
2050
2051 part_stat_inc(cpu, part, ios[rw]);
2052 part_stat_add(cpu, part, ticks[rw], duration);
2053 part_round_stats(cpu, part);
2054 part_dec_in_flight(part, rw);
2055
2056 hd_struct_put(part);
2057 part_stat_unlock();
2058 }
2059 }
2060
2061 #ifdef CONFIG_PM_RUNTIME
2062 /*
2063 * Don't process normal requests when queue is suspended
2064 * or in the process of suspending/resuming
2065 */
2066 static struct request *blk_pm_peek_request(struct request_queue *q,
2067 struct request *rq)
2068 {
2069 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2070 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2071 return NULL;
2072 else
2073 return rq;
2074 }
2075 #else
2076 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2077 struct request *rq)
2078 {
2079 return rq;
2080 }
2081 #endif
2082
2083 /**
2084 * blk_peek_request - peek at the top of a request queue
2085 * @q: request queue to peek at
2086 *
2087 * Description:
2088 * Return the request at the top of @q. The returned request
2089 * should be started using blk_start_request() before LLD starts
2090 * processing it.
2091 *
2092 * Return:
2093 * Pointer to the request at the top of @q if available. Null
2094 * otherwise.
2095 *
2096 * Context:
2097 * queue_lock must be held.
2098 */
2099 struct request *blk_peek_request(struct request_queue *q)
2100 {
2101 struct request *rq;
2102 int ret;
2103
2104 while ((rq = __elv_next_request(q)) != NULL) {
2105
2106 rq = blk_pm_peek_request(q, rq);
2107 if (!rq)
2108 break;
2109
2110 if (!(rq->cmd_flags & REQ_STARTED)) {
2111 /*
2112 * This is the first time the device driver
2113 * sees this request (possibly after
2114 * requeueing). Notify IO scheduler.
2115 */
2116 if (rq->cmd_flags & REQ_SORTED)
2117 elv_activate_rq(q, rq);
2118
2119 /*
2120 * just mark as started even if we don't start
2121 * it, a request that has been delayed should
2122 * not be passed by new incoming requests
2123 */
2124 rq->cmd_flags |= REQ_STARTED;
2125 trace_block_rq_issue(q, rq);
2126 }
2127
2128 if (!q->boundary_rq || q->boundary_rq == rq) {
2129 q->end_sector = rq_end_sector(rq);
2130 q->boundary_rq = NULL;
2131 }
2132
2133 if (rq->cmd_flags & REQ_DONTPREP)
2134 break;
2135
2136 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2137 /*
2138 * make sure space for the drain appears we
2139 * know we can do this because max_hw_segments
2140 * has been adjusted to be one fewer than the
2141 * device can handle
2142 */
2143 rq->nr_phys_segments++;
2144 }
2145
2146 if (!q->prep_rq_fn)
2147 break;
2148
2149 ret = q->prep_rq_fn(q, rq);
2150 if (ret == BLKPREP_OK) {
2151 break;
2152 } else if (ret == BLKPREP_DEFER) {
2153 /*
2154 * the request may have been (partially) prepped.
2155 * we need to keep this request in the front to
2156 * avoid resource deadlock. REQ_STARTED will
2157 * prevent other fs requests from passing this one.
2158 */
2159 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2160 !(rq->cmd_flags & REQ_DONTPREP)) {
2161 /*
2162 * remove the space for the drain we added
2163 * so that we don't add it again
2164 */
2165 --rq->nr_phys_segments;
2166 }
2167
2168 rq = NULL;
2169 break;
2170 } else if (ret == BLKPREP_KILL) {
2171 rq->cmd_flags |= REQ_QUIET;
2172 /*
2173 * Mark this request as started so we don't trigger
2174 * any debug logic in the end I/O path.
2175 */
2176 blk_start_request(rq);
2177 __blk_end_request_all(rq, -EIO);
2178 } else {
2179 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2180 break;
2181 }
2182 }
2183
2184 return rq;
2185 }
2186 EXPORT_SYMBOL(blk_peek_request);
2187
2188 void blk_dequeue_request(struct request *rq)
2189 {
2190 struct request_queue *q = rq->q;
2191
2192 BUG_ON(list_empty(&rq->queuelist));
2193 BUG_ON(ELV_ON_HASH(rq));
2194
2195 list_del_init(&rq->queuelist);
2196
2197 /*
2198 * the time frame between a request being removed from the lists
2199 * and to it is freed is accounted as io that is in progress at
2200 * the driver side.
2201 */
2202 if (blk_account_rq(rq)) {
2203 q->in_flight[rq_is_sync(rq)]++;
2204 set_io_start_time_ns(rq);
2205 }
2206 }
2207
2208 /**
2209 * blk_start_request - start request processing on the driver
2210 * @req: request to dequeue
2211 *
2212 * Description:
2213 * Dequeue @req and start timeout timer on it. This hands off the
2214 * request to the driver.
2215 *
2216 * Block internal functions which don't want to start timer should
2217 * call blk_dequeue_request().
2218 *
2219 * Context:
2220 * queue_lock must be held.
2221 */
2222 void blk_start_request(struct request *req)
2223 {
2224 blk_dequeue_request(req);
2225
2226 /*
2227 * We are now handing the request to the hardware, initialize
2228 * resid_len to full count and add the timeout handler.
2229 */
2230 req->resid_len = blk_rq_bytes(req);
2231 if (unlikely(blk_bidi_rq(req)))
2232 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2233
2234 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2235 blk_add_timer(req);
2236 }
2237 EXPORT_SYMBOL(blk_start_request);
2238
2239 /**
2240 * blk_fetch_request - fetch a request from a request queue
2241 * @q: request queue to fetch a request from
2242 *
2243 * Description:
2244 * Return the request at the top of @q. The request is started on
2245 * return and LLD can start processing it immediately.
2246 *
2247 * Return:
2248 * Pointer to the request at the top of @q if available. Null
2249 * otherwise.
2250 *
2251 * Context:
2252 * queue_lock must be held.
2253 */
2254 struct request *blk_fetch_request(struct request_queue *q)
2255 {
2256 struct request *rq;
2257
2258 rq = blk_peek_request(q);
2259 if (rq)
2260 blk_start_request(rq);
2261 return rq;
2262 }
2263 EXPORT_SYMBOL(blk_fetch_request);
2264
2265 /**
2266 * blk_update_request - Special helper function for request stacking drivers
2267 * @req: the request being processed
2268 * @error: %0 for success, < %0 for error
2269 * @nr_bytes: number of bytes to complete @req
2270 *
2271 * Description:
2272 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2273 * the request structure even if @req doesn't have leftover.
2274 * If @req has leftover, sets it up for the next range of segments.
2275 *
2276 * This special helper function is only for request stacking drivers
2277 * (e.g. request-based dm) so that they can handle partial completion.
2278 * Actual device drivers should use blk_end_request instead.
2279 *
2280 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2281 * %false return from this function.
2282 *
2283 * Return:
2284 * %false - this request doesn't have any more data
2285 * %true - this request has more data
2286 **/
2287 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2288 {
2289 int total_bytes;
2290
2291 if (!req->bio)
2292 return false;
2293
2294 trace_block_rq_complete(req->q, req);
2295
2296 /*
2297 * For fs requests, rq is just carrier of independent bio's
2298 * and each partial completion should be handled separately.
2299 * Reset per-request error on each partial completion.
2300 *
2301 * TODO: tj: This is too subtle. It would be better to let
2302 * low level drivers do what they see fit.
2303 */
2304 if (req->cmd_type == REQ_TYPE_FS)
2305 req->errors = 0;
2306
2307 if (error && req->cmd_type == REQ_TYPE_FS &&
2308 !(req->cmd_flags & REQ_QUIET)) {
2309 char *error_type;
2310
2311 switch (error) {
2312 case -ENOLINK:
2313 error_type = "recoverable transport";
2314 break;
2315 case -EREMOTEIO:
2316 error_type = "critical target";
2317 break;
2318 case -EBADE:
2319 error_type = "critical nexus";
2320 break;
2321 case -EIO:
2322 default:
2323 error_type = "I/O";
2324 break;
2325 }
2326 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2327 error_type, req->rq_disk ?
2328 req->rq_disk->disk_name : "?",
2329 (unsigned long long)blk_rq_pos(req));
2330
2331 }
2332
2333 blk_account_io_completion(req, nr_bytes);
2334
2335 total_bytes = 0;
2336 while (req->bio) {
2337 struct bio *bio = req->bio;
2338 unsigned bio_bytes = min(bio->bi_size, nr_bytes);
2339
2340 if (bio_bytes == bio->bi_size)
2341 req->bio = bio->bi_next;
2342
2343 req_bio_endio(req, bio, bio_bytes, error);
2344
2345 total_bytes += bio_bytes;
2346 nr_bytes -= bio_bytes;
2347
2348 if (!nr_bytes)
2349 break;
2350 }
2351
2352 /*
2353 * completely done
2354 */
2355 if (!req->bio) {
2356 /*
2357 * Reset counters so that the request stacking driver
2358 * can find how many bytes remain in the request
2359 * later.
2360 */
2361 req->__data_len = 0;
2362 return false;
2363 }
2364
2365 req->__data_len -= total_bytes;
2366 req->buffer = bio_data(req->bio);
2367
2368 /* update sector only for requests with clear definition of sector */
2369 if (req->cmd_type == REQ_TYPE_FS)
2370 req->__sector += total_bytes >> 9;
2371
2372 /* mixed attributes always follow the first bio */
2373 if (req->cmd_flags & REQ_MIXED_MERGE) {
2374 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2375 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2376 }
2377
2378 /*
2379 * If total number of sectors is less than the first segment
2380 * size, something has gone terribly wrong.
2381 */
2382 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2383 blk_dump_rq_flags(req, "request botched");
2384 req->__data_len = blk_rq_cur_bytes(req);
2385 }
2386
2387 /* recalculate the number of segments */
2388 blk_recalc_rq_segments(req);
2389
2390 return true;
2391 }
2392 EXPORT_SYMBOL_GPL(blk_update_request);
2393
2394 static bool blk_update_bidi_request(struct request *rq, int error,
2395 unsigned int nr_bytes,
2396 unsigned int bidi_bytes)
2397 {
2398 if (blk_update_request(rq, error, nr_bytes))
2399 return true;
2400
2401 /* Bidi request must be completed as a whole */
2402 if (unlikely(blk_bidi_rq(rq)) &&
2403 blk_update_request(rq->next_rq, error, bidi_bytes))
2404 return true;
2405
2406 if (blk_queue_add_random(rq->q))
2407 add_disk_randomness(rq->rq_disk);
2408
2409 return false;
2410 }
2411
2412 /**
2413 * blk_unprep_request - unprepare a request
2414 * @req: the request
2415 *
2416 * This function makes a request ready for complete resubmission (or
2417 * completion). It happens only after all error handling is complete,
2418 * so represents the appropriate moment to deallocate any resources
2419 * that were allocated to the request in the prep_rq_fn. The queue
2420 * lock is held when calling this.
2421 */
2422 void blk_unprep_request(struct request *req)
2423 {
2424 struct request_queue *q = req->q;
2425
2426 req->cmd_flags &= ~REQ_DONTPREP;
2427 if (q->unprep_rq_fn)
2428 q->unprep_rq_fn(q, req);
2429 }
2430 EXPORT_SYMBOL_GPL(blk_unprep_request);
2431
2432 /*
2433 * queue lock must be held
2434 */
2435 static void blk_finish_request(struct request *req, int error)
2436 {
2437 if (blk_rq_tagged(req))
2438 blk_queue_end_tag(req->q, req);
2439
2440 BUG_ON(blk_queued_rq(req));
2441
2442 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2443 laptop_io_completion(&req->q->backing_dev_info);
2444
2445 blk_delete_timer(req);
2446
2447 if (req->cmd_flags & REQ_DONTPREP)
2448 blk_unprep_request(req);
2449
2450
2451 blk_account_io_done(req);
2452
2453 if (req->end_io)
2454 req->end_io(req, error);
2455 else {
2456 if (blk_bidi_rq(req))
2457 __blk_put_request(req->next_rq->q, req->next_rq);
2458
2459 __blk_put_request(req->q, req);
2460 }
2461 }
2462
2463 /**
2464 * blk_end_bidi_request - Complete a bidi request
2465 * @rq: the request to complete
2466 * @error: %0 for success, < %0 for error
2467 * @nr_bytes: number of bytes to complete @rq
2468 * @bidi_bytes: number of bytes to complete @rq->next_rq
2469 *
2470 * Description:
2471 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2472 * Drivers that supports bidi can safely call this member for any
2473 * type of request, bidi or uni. In the later case @bidi_bytes is
2474 * just ignored.
2475 *
2476 * Return:
2477 * %false - we are done with this request
2478 * %true - still buffers pending for this request
2479 **/
2480 static bool blk_end_bidi_request(struct request *rq, int error,
2481 unsigned int nr_bytes, unsigned int bidi_bytes)
2482 {
2483 struct request_queue *q = rq->q;
2484 unsigned long flags;
2485
2486 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2487 return true;
2488
2489 spin_lock_irqsave(q->queue_lock, flags);
2490 blk_finish_request(rq, error);
2491 spin_unlock_irqrestore(q->queue_lock, flags);
2492
2493 return false;
2494 }
2495
2496 /**
2497 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2498 * @rq: the request to complete
2499 * @error: %0 for success, < %0 for error
2500 * @nr_bytes: number of bytes to complete @rq
2501 * @bidi_bytes: number of bytes to complete @rq->next_rq
2502 *
2503 * Description:
2504 * Identical to blk_end_bidi_request() except that queue lock is
2505 * assumed to be locked on entry and remains so on return.
2506 *
2507 * Return:
2508 * %false - we are done with this request
2509 * %true - still buffers pending for this request
2510 **/
2511 bool __blk_end_bidi_request(struct request *rq, int error,
2512 unsigned int nr_bytes, unsigned int bidi_bytes)
2513 {
2514 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2515 return true;
2516
2517 blk_finish_request(rq, error);
2518
2519 return false;
2520 }
2521
2522 /**
2523 * blk_end_request - Helper function for drivers to complete the request.
2524 * @rq: the request being processed
2525 * @error: %0 for success, < %0 for error
2526 * @nr_bytes: number of bytes to complete
2527 *
2528 * Description:
2529 * Ends I/O on a number of bytes attached to @rq.
2530 * If @rq has leftover, sets it up for the next range of segments.
2531 *
2532 * Return:
2533 * %false - we are done with this request
2534 * %true - still buffers pending for this request
2535 **/
2536 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2537 {
2538 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2539 }
2540 EXPORT_SYMBOL(blk_end_request);
2541
2542 /**
2543 * blk_end_request_all - Helper function for drives to finish the request.
2544 * @rq: the request to finish
2545 * @error: %0 for success, < %0 for error
2546 *
2547 * Description:
2548 * Completely finish @rq.
2549 */
2550 void blk_end_request_all(struct request *rq, int error)
2551 {
2552 bool pending;
2553 unsigned int bidi_bytes = 0;
2554
2555 if (unlikely(blk_bidi_rq(rq)))
2556 bidi_bytes = blk_rq_bytes(rq->next_rq);
2557
2558 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2559 BUG_ON(pending);
2560 }
2561 EXPORT_SYMBOL(blk_end_request_all);
2562
2563 /**
2564 * blk_end_request_cur - Helper function to finish the current request chunk.
2565 * @rq: the request to finish the current chunk for
2566 * @error: %0 for success, < %0 for error
2567 *
2568 * Description:
2569 * Complete the current consecutively mapped chunk from @rq.
2570 *
2571 * Return:
2572 * %false - we are done with this request
2573 * %true - still buffers pending for this request
2574 */
2575 bool blk_end_request_cur(struct request *rq, int error)
2576 {
2577 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2578 }
2579 EXPORT_SYMBOL(blk_end_request_cur);
2580
2581 /**
2582 * blk_end_request_err - Finish a request till the next failure boundary.
2583 * @rq: the request to finish till the next failure boundary for
2584 * @error: must be negative errno
2585 *
2586 * Description:
2587 * Complete @rq till the next failure boundary.
2588 *
2589 * Return:
2590 * %false - we are done with this request
2591 * %true - still buffers pending for this request
2592 */
2593 bool blk_end_request_err(struct request *rq, int error)
2594 {
2595 WARN_ON(error >= 0);
2596 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2597 }
2598 EXPORT_SYMBOL_GPL(blk_end_request_err);
2599
2600 /**
2601 * __blk_end_request - Helper function for drivers to complete the request.
2602 * @rq: the request being processed
2603 * @error: %0 for success, < %0 for error
2604 * @nr_bytes: number of bytes to complete
2605 *
2606 * Description:
2607 * Must be called with queue lock held unlike blk_end_request().
2608 *
2609 * Return:
2610 * %false - we are done with this request
2611 * %true - still buffers pending for this request
2612 **/
2613 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2614 {
2615 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2616 }
2617 EXPORT_SYMBOL(__blk_end_request);
2618
2619 /**
2620 * __blk_end_request_all - Helper function for drives to finish the request.
2621 * @rq: the request to finish
2622 * @error: %0 for success, < %0 for error
2623 *
2624 * Description:
2625 * Completely finish @rq. Must be called with queue lock held.
2626 */
2627 void __blk_end_request_all(struct request *rq, int error)
2628 {
2629 bool pending;
2630 unsigned int bidi_bytes = 0;
2631
2632 if (unlikely(blk_bidi_rq(rq)))
2633 bidi_bytes = blk_rq_bytes(rq->next_rq);
2634
2635 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2636 BUG_ON(pending);
2637 }
2638 EXPORT_SYMBOL(__blk_end_request_all);
2639
2640 /**
2641 * __blk_end_request_cur - Helper function to finish the current request chunk.
2642 * @rq: the request to finish the current chunk for
2643 * @error: %0 for success, < %0 for error
2644 *
2645 * Description:
2646 * Complete the current consecutively mapped chunk from @rq. Must
2647 * be called with queue lock held.
2648 *
2649 * Return:
2650 * %false - we are done with this request
2651 * %true - still buffers pending for this request
2652 */
2653 bool __blk_end_request_cur(struct request *rq, int error)
2654 {
2655 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2656 }
2657 EXPORT_SYMBOL(__blk_end_request_cur);
2658
2659 /**
2660 * __blk_end_request_err - Finish a request till the next failure boundary.
2661 * @rq: the request to finish till the next failure boundary for
2662 * @error: must be negative errno
2663 *
2664 * Description:
2665 * Complete @rq till the next failure boundary. Must be called
2666 * with queue lock held.
2667 *
2668 * Return:
2669 * %false - we are done with this request
2670 * %true - still buffers pending for this request
2671 */
2672 bool __blk_end_request_err(struct request *rq, int error)
2673 {
2674 WARN_ON(error >= 0);
2675 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2676 }
2677 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2678
2679 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2680 struct bio *bio)
2681 {
2682 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2683 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2684
2685 if (bio_has_data(bio)) {
2686 rq->nr_phys_segments = bio_phys_segments(q, bio);
2687 rq->buffer = bio_data(bio);
2688 }
2689 rq->__data_len = bio->bi_size;
2690 rq->bio = rq->biotail = bio;
2691
2692 if (bio->bi_bdev)
2693 rq->rq_disk = bio->bi_bdev->bd_disk;
2694 }
2695
2696 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2697 /**
2698 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2699 * @rq: the request to be flushed
2700 *
2701 * Description:
2702 * Flush all pages in @rq.
2703 */
2704 void rq_flush_dcache_pages(struct request *rq)
2705 {
2706 struct req_iterator iter;
2707 struct bio_vec *bvec;
2708
2709 rq_for_each_segment(bvec, rq, iter)
2710 flush_dcache_page(bvec->bv_page);
2711 }
2712 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2713 #endif
2714
2715 /**
2716 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2717 * @q : the queue of the device being checked
2718 *
2719 * Description:
2720 * Check if underlying low-level drivers of a device are busy.
2721 * If the drivers want to export their busy state, they must set own
2722 * exporting function using blk_queue_lld_busy() first.
2723 *
2724 * Basically, this function is used only by request stacking drivers
2725 * to stop dispatching requests to underlying devices when underlying
2726 * devices are busy. This behavior helps more I/O merging on the queue
2727 * of the request stacking driver and prevents I/O throughput regression
2728 * on burst I/O load.
2729 *
2730 * Return:
2731 * 0 - Not busy (The request stacking driver should dispatch request)
2732 * 1 - Busy (The request stacking driver should stop dispatching request)
2733 */
2734 int blk_lld_busy(struct request_queue *q)
2735 {
2736 if (q->lld_busy_fn)
2737 return q->lld_busy_fn(q);
2738
2739 return 0;
2740 }
2741 EXPORT_SYMBOL_GPL(blk_lld_busy);
2742
2743 /**
2744 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2745 * @rq: the clone request to be cleaned up
2746 *
2747 * Description:
2748 * Free all bios in @rq for a cloned request.
2749 */
2750 void blk_rq_unprep_clone(struct request *rq)
2751 {
2752 struct bio *bio;
2753
2754 while ((bio = rq->bio) != NULL) {
2755 rq->bio = bio->bi_next;
2756
2757 bio_put(bio);
2758 }
2759 }
2760 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2761
2762 /*
2763 * Copy attributes of the original request to the clone request.
2764 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2765 */
2766 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2767 {
2768 dst->cpu = src->cpu;
2769 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2770 dst->cmd_type = src->cmd_type;
2771 dst->__sector = blk_rq_pos(src);
2772 dst->__data_len = blk_rq_bytes(src);
2773 dst->nr_phys_segments = src->nr_phys_segments;
2774 dst->ioprio = src->ioprio;
2775 dst->extra_len = src->extra_len;
2776 }
2777
2778 /**
2779 * blk_rq_prep_clone - Helper function to setup clone request
2780 * @rq: the request to be setup
2781 * @rq_src: original request to be cloned
2782 * @bs: bio_set that bios for clone are allocated from
2783 * @gfp_mask: memory allocation mask for bio
2784 * @bio_ctr: setup function to be called for each clone bio.
2785 * Returns %0 for success, non %0 for failure.
2786 * @data: private data to be passed to @bio_ctr
2787 *
2788 * Description:
2789 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2790 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2791 * are not copied, and copying such parts is the caller's responsibility.
2792 * Also, pages which the original bios are pointing to are not copied
2793 * and the cloned bios just point same pages.
2794 * So cloned bios must be completed before original bios, which means
2795 * the caller must complete @rq before @rq_src.
2796 */
2797 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2798 struct bio_set *bs, gfp_t gfp_mask,
2799 int (*bio_ctr)(struct bio *, struct bio *, void *),
2800 void *data)
2801 {
2802 struct bio *bio, *bio_src;
2803
2804 if (!bs)
2805 bs = fs_bio_set;
2806
2807 blk_rq_init(NULL, rq);
2808
2809 __rq_for_each_bio(bio_src, rq_src) {
2810 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2811 if (!bio)
2812 goto free_and_out;
2813
2814 if (bio_ctr && bio_ctr(bio, bio_src, data))
2815 goto free_and_out;
2816
2817 if (rq->bio) {
2818 rq->biotail->bi_next = bio;
2819 rq->biotail = bio;
2820 } else
2821 rq->bio = rq->biotail = bio;
2822 }
2823
2824 __blk_rq_prep_clone(rq, rq_src);
2825
2826 return 0;
2827
2828 free_and_out:
2829 if (bio)
2830 bio_put(bio);
2831 blk_rq_unprep_clone(rq);
2832
2833 return -ENOMEM;
2834 }
2835 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2836
2837 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2838 {
2839 return queue_work(kblockd_workqueue, work);
2840 }
2841 EXPORT_SYMBOL(kblockd_schedule_work);
2842
2843 int kblockd_schedule_delayed_work(struct request_queue *q,
2844 struct delayed_work *dwork, unsigned long delay)
2845 {
2846 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2847 }
2848 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2849
2850 #define PLUG_MAGIC 0x91827364
2851
2852 /**
2853 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2854 * @plug: The &struct blk_plug that needs to be initialized
2855 *
2856 * Description:
2857 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2858 * pending I/O should the task end up blocking between blk_start_plug() and
2859 * blk_finish_plug(). This is important from a performance perspective, but
2860 * also ensures that we don't deadlock. For instance, if the task is blocking
2861 * for a memory allocation, memory reclaim could end up wanting to free a
2862 * page belonging to that request that is currently residing in our private
2863 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2864 * this kind of deadlock.
2865 */
2866 void blk_start_plug(struct blk_plug *plug)
2867 {
2868 struct task_struct *tsk = current;
2869
2870 plug->magic = PLUG_MAGIC;
2871 INIT_LIST_HEAD(&plug->list);
2872 INIT_LIST_HEAD(&plug->cb_list);
2873
2874 /*
2875 * If this is a nested plug, don't actually assign it. It will be
2876 * flushed on its own.
2877 */
2878 if (!tsk->plug) {
2879 /*
2880 * Store ordering should not be needed here, since a potential
2881 * preempt will imply a full memory barrier
2882 */
2883 tsk->plug = plug;
2884 }
2885 }
2886 EXPORT_SYMBOL(blk_start_plug);
2887
2888 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2889 {
2890 struct request *rqa = container_of(a, struct request, queuelist);
2891 struct request *rqb = container_of(b, struct request, queuelist);
2892
2893 return !(rqa->q < rqb->q ||
2894 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2895 }
2896
2897 /*
2898 * If 'from_schedule' is true, then postpone the dispatch of requests
2899 * until a safe kblockd context. We due this to avoid accidental big
2900 * additional stack usage in driver dispatch, in places where the originally
2901 * plugger did not intend it.
2902 */
2903 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2904 bool from_schedule)
2905 __releases(q->queue_lock)
2906 {
2907 trace_block_unplug(q, depth, !from_schedule);
2908
2909 if (from_schedule)
2910 blk_run_queue_async(q);
2911 else
2912 __blk_run_queue(q);
2913 spin_unlock(q->queue_lock);
2914 }
2915
2916 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2917 {
2918 LIST_HEAD(callbacks);
2919
2920 while (!list_empty(&plug->cb_list)) {
2921 list_splice_init(&plug->cb_list, &callbacks);
2922
2923 while (!list_empty(&callbacks)) {
2924 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2925 struct blk_plug_cb,
2926 list);
2927 list_del(&cb->list);
2928 cb->callback(cb, from_schedule);
2929 }
2930 }
2931 }
2932
2933 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2934 int size)
2935 {
2936 struct blk_plug *plug = current->plug;
2937 struct blk_plug_cb *cb;
2938
2939 if (!plug)
2940 return NULL;
2941
2942 list_for_each_entry(cb, &plug->cb_list, list)
2943 if (cb->callback == unplug && cb->data == data)
2944 return cb;
2945
2946 /* Not currently on the callback list */
2947 BUG_ON(size < sizeof(*cb));
2948 cb = kzalloc(size, GFP_ATOMIC);
2949 if (cb) {
2950 cb->data = data;
2951 cb->callback = unplug;
2952 list_add(&cb->list, &plug->cb_list);
2953 }
2954 return cb;
2955 }
2956 EXPORT_SYMBOL(blk_check_plugged);
2957
2958 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2959 {
2960 struct request_queue *q;
2961 unsigned long flags;
2962 struct request *rq;
2963 LIST_HEAD(list);
2964 unsigned int depth;
2965
2966 BUG_ON(plug->magic != PLUG_MAGIC);
2967
2968 flush_plug_callbacks(plug, from_schedule);
2969 if (list_empty(&plug->list))
2970 return;
2971
2972 list_splice_init(&plug->list, &list);
2973
2974 list_sort(NULL, &list, plug_rq_cmp);
2975
2976 q = NULL;
2977 depth = 0;
2978
2979 /*
2980 * Save and disable interrupts here, to avoid doing it for every
2981 * queue lock we have to take.
2982 */
2983 local_irq_save(flags);
2984 while (!list_empty(&list)) {
2985 rq = list_entry_rq(list.next);
2986 list_del_init(&rq->queuelist);
2987 BUG_ON(!rq->q);
2988 if (rq->q != q) {
2989 /*
2990 * This drops the queue lock
2991 */
2992 if (q)
2993 queue_unplugged(q, depth, from_schedule);
2994 q = rq->q;
2995 depth = 0;
2996 spin_lock(q->queue_lock);
2997 }
2998
2999 /*
3000 * Short-circuit if @q is dead
3001 */
3002 if (unlikely(blk_queue_dying(q))) {
3003 __blk_end_request_all(rq, -ENODEV);
3004 continue;
3005 }
3006
3007 /*
3008 * rq is already accounted, so use raw insert
3009 */
3010 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3011 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3012 else
3013 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3014
3015 depth++;
3016 }
3017
3018 /*
3019 * This drops the queue lock
3020 */
3021 if (q)
3022 queue_unplugged(q, depth, from_schedule);
3023
3024 local_irq_restore(flags);
3025 }
3026
3027 void blk_finish_plug(struct blk_plug *plug)
3028 {
3029 blk_flush_plug_list(plug, false);
3030
3031 if (plug == current->plug)
3032 current->plug = NULL;
3033 }
3034 EXPORT_SYMBOL(blk_finish_plug);
3035
3036 #ifdef CONFIG_PM_RUNTIME
3037 /**
3038 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3039 * @q: the queue of the device
3040 * @dev: the device the queue belongs to
3041 *
3042 * Description:
3043 * Initialize runtime-PM-related fields for @q and start auto suspend for
3044 * @dev. Drivers that want to take advantage of request-based runtime PM
3045 * should call this function after @dev has been initialized, and its
3046 * request queue @q has been allocated, and runtime PM for it can not happen
3047 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3048 * cases, driver should call this function before any I/O has taken place.
3049 *
3050 * This function takes care of setting up using auto suspend for the device,
3051 * the autosuspend delay is set to -1 to make runtime suspend impossible
3052 * until an updated value is either set by user or by driver. Drivers do
3053 * not need to touch other autosuspend settings.
3054 *
3055 * The block layer runtime PM is request based, so only works for drivers
3056 * that use request as their IO unit instead of those directly use bio's.
3057 */
3058 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3059 {
3060 q->dev = dev;
3061 q->rpm_status = RPM_ACTIVE;
3062 pm_runtime_set_autosuspend_delay(q->dev, -1);
3063 pm_runtime_use_autosuspend(q->dev);
3064 }
3065 EXPORT_SYMBOL(blk_pm_runtime_init);
3066
3067 /**
3068 * blk_pre_runtime_suspend - Pre runtime suspend check
3069 * @q: the queue of the device
3070 *
3071 * Description:
3072 * This function will check if runtime suspend is allowed for the device
3073 * by examining if there are any requests pending in the queue. If there
3074 * are requests pending, the device can not be runtime suspended; otherwise,
3075 * the queue's status will be updated to SUSPENDING and the driver can
3076 * proceed to suspend the device.
3077 *
3078 * For the not allowed case, we mark last busy for the device so that
3079 * runtime PM core will try to autosuspend it some time later.
3080 *
3081 * This function should be called near the start of the device's
3082 * runtime_suspend callback.
3083 *
3084 * Return:
3085 * 0 - OK to runtime suspend the device
3086 * -EBUSY - Device should not be runtime suspended
3087 */
3088 int blk_pre_runtime_suspend(struct request_queue *q)
3089 {
3090 int ret = 0;
3091
3092 spin_lock_irq(q->queue_lock);
3093 if (q->nr_pending) {
3094 ret = -EBUSY;
3095 pm_runtime_mark_last_busy(q->dev);
3096 } else {
3097 q->rpm_status = RPM_SUSPENDING;
3098 }
3099 spin_unlock_irq(q->queue_lock);
3100 return ret;
3101 }
3102 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3103
3104 /**
3105 * blk_post_runtime_suspend - Post runtime suspend processing
3106 * @q: the queue of the device
3107 * @err: return value of the device's runtime_suspend function
3108 *
3109 * Description:
3110 * Update the queue's runtime status according to the return value of the
3111 * device's runtime suspend function and mark last busy for the device so
3112 * that PM core will try to auto suspend the device at a later time.
3113 *
3114 * This function should be called near the end of the device's
3115 * runtime_suspend callback.
3116 */
3117 void blk_post_runtime_suspend(struct request_queue *q, int err)
3118 {
3119 spin_lock_irq(q->queue_lock);
3120 if (!err) {
3121 q->rpm_status = RPM_SUSPENDED;
3122 } else {
3123 q->rpm_status = RPM_ACTIVE;
3124 pm_runtime_mark_last_busy(q->dev);
3125 }
3126 spin_unlock_irq(q->queue_lock);
3127 }
3128 EXPORT_SYMBOL(blk_post_runtime_suspend);
3129
3130 /**
3131 * blk_pre_runtime_resume - Pre runtime resume processing
3132 * @q: the queue of the device
3133 *
3134 * Description:
3135 * Update the queue's runtime status to RESUMING in preparation for the
3136 * runtime resume of the device.
3137 *
3138 * This function should be called near the start of the device's
3139 * runtime_resume callback.
3140 */
3141 void blk_pre_runtime_resume(struct request_queue *q)
3142 {
3143 spin_lock_irq(q->queue_lock);
3144 q->rpm_status = RPM_RESUMING;
3145 spin_unlock_irq(q->queue_lock);
3146 }
3147 EXPORT_SYMBOL(blk_pre_runtime_resume);
3148
3149 /**
3150 * blk_post_runtime_resume - Post runtime resume processing
3151 * @q: the queue of the device
3152 * @err: return value of the device's runtime_resume function
3153 *
3154 * Description:
3155 * Update the queue's runtime status according to the return value of the
3156 * device's runtime_resume function. If it is successfully resumed, process
3157 * the requests that are queued into the device's queue when it is resuming
3158 * and then mark last busy and initiate autosuspend for it.
3159 *
3160 * This function should be called near the end of the device's
3161 * runtime_resume callback.
3162 */
3163 void blk_post_runtime_resume(struct request_queue *q, int err)
3164 {
3165 spin_lock_irq(q->queue_lock);
3166 if (!err) {
3167 q->rpm_status = RPM_ACTIVE;
3168 __blk_run_queue(q);
3169 pm_runtime_mark_last_busy(q->dev);
3170 pm_request_autosuspend(q->dev);
3171 } else {
3172 q->rpm_status = RPM_SUSPENDED;
3173 }
3174 spin_unlock_irq(q->queue_lock);
3175 }
3176 EXPORT_SYMBOL(blk_post_runtime_resume);
3177 #endif
3178
3179 int __init blk_dev_init(void)
3180 {
3181 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3182 sizeof(((struct request *)0)->cmd_flags));
3183
3184 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3185 kblockd_workqueue = alloc_workqueue("kblockd",
3186 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3187 if (!kblockd_workqueue)
3188 panic("Failed to create kblockd\n");
3189
3190 request_cachep = kmem_cache_create("blkdev_requests",
3191 sizeof(struct request), 0, SLAB_PANIC, NULL);
3192
3193 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3194 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3195
3196 return 0;
3197 }