cfq-iosched: fix incorrect filing of rt async cfqq
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 #include <linux/ratelimit.h>
33 #include <linux/pm_runtime.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/block.h>
37
38 #include "blk.h"
39 #include "blk-cgroup.h"
40
41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
45
46 DEFINE_IDA(blk_queue_ida);
47
48 /*
49 * For the allocated request tables
50 */
51 static struct kmem_cache *request_cachep;
52
53 /*
54 * For queue allocation
55 */
56 struct kmem_cache *blk_requestq_cachep;
57
58 /*
59 * Controlling structure to kblockd
60 */
61 static struct workqueue_struct *kblockd_workqueue;
62
63 static void drive_stat_acct(struct request *rq, int new_io)
64 {
65 struct hd_struct *part;
66 int rw = rq_data_dir(rq);
67 int cpu;
68
69 if (!blk_do_io_stat(rq))
70 return;
71
72 cpu = part_stat_lock();
73
74 if (!new_io) {
75 part = rq->part;
76 part_stat_inc(cpu, part, merges[rw]);
77 } else {
78 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
79 if (!hd_struct_try_get(part)) {
80 /*
81 * The partition is already being removed,
82 * the request will be accounted on the disk only
83 *
84 * We take a reference on disk->part0 although that
85 * partition will never be deleted, so we can treat
86 * it as any other partition.
87 */
88 part = &rq->rq_disk->part0;
89 hd_struct_get(part);
90 }
91 part_round_stats(cpu, part);
92 part_inc_in_flight(part, rw);
93 rq->part = part;
94 }
95
96 part_stat_unlock();
97 }
98
99 void blk_queue_congestion_threshold(struct request_queue *q)
100 {
101 int nr;
102
103 nr = q->nr_requests - (q->nr_requests / 8) + 1;
104 if (nr > q->nr_requests)
105 nr = q->nr_requests;
106 q->nr_congestion_on = nr;
107
108 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
109 if (nr < 1)
110 nr = 1;
111 q->nr_congestion_off = nr;
112 }
113
114 /**
115 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
116 * @bdev: device
117 *
118 * Locates the passed device's request queue and returns the address of its
119 * backing_dev_info
120 *
121 * Will return NULL if the request queue cannot be located.
122 */
123 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
124 {
125 struct backing_dev_info *ret = NULL;
126 struct request_queue *q = bdev_get_queue(bdev);
127
128 if (q)
129 ret = &q->backing_dev_info;
130 return ret;
131 }
132 EXPORT_SYMBOL(blk_get_backing_dev_info);
133
134 void blk_rq_init(struct request_queue *q, struct request *rq)
135 {
136 memset(rq, 0, sizeof(*rq));
137
138 INIT_LIST_HEAD(&rq->queuelist);
139 INIT_LIST_HEAD(&rq->timeout_list);
140 rq->cpu = -1;
141 rq->q = q;
142 rq->__sector = (sector_t) -1;
143 INIT_HLIST_NODE(&rq->hash);
144 RB_CLEAR_NODE(&rq->rb_node);
145 rq->cmd = rq->__cmd;
146 rq->cmd_len = BLK_MAX_CDB;
147 rq->tag = -1;
148 rq->ref_count = 1;
149 rq->start_time = jiffies;
150 set_start_time_ns(rq);
151 rq->part = NULL;
152 }
153 EXPORT_SYMBOL(blk_rq_init);
154
155 static void req_bio_endio(struct request *rq, struct bio *bio,
156 unsigned int nbytes, int error)
157 {
158 if (error)
159 clear_bit(BIO_UPTODATE, &bio->bi_flags);
160 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
161 error = -EIO;
162
163 if (unlikely(rq->cmd_flags & REQ_QUIET))
164 set_bit(BIO_QUIET, &bio->bi_flags);
165
166 bio_advance(bio, nbytes);
167
168 /* don't actually finish bio if it's part of flush sequence */
169 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
170 bio_endio(bio, error);
171 }
172
173 void blk_dump_rq_flags(struct request *rq, char *msg)
174 {
175 int bit;
176
177 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
178 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
179 rq->cmd_flags);
180
181 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
182 (unsigned long long)blk_rq_pos(rq),
183 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
184 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
185 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
186
187 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
188 printk(KERN_INFO " cdb: ");
189 for (bit = 0; bit < BLK_MAX_CDB; bit++)
190 printk("%02x ", rq->cmd[bit]);
191 printk("\n");
192 }
193 }
194 EXPORT_SYMBOL(blk_dump_rq_flags);
195
196 static void blk_delay_work(struct work_struct *work)
197 {
198 struct request_queue *q;
199
200 q = container_of(work, struct request_queue, delay_work.work);
201 spin_lock_irq(q->queue_lock);
202 __blk_run_queue(q);
203 spin_unlock_irq(q->queue_lock);
204 }
205
206 /**
207 * blk_delay_queue - restart queueing after defined interval
208 * @q: The &struct request_queue in question
209 * @msecs: Delay in msecs
210 *
211 * Description:
212 * Sometimes queueing needs to be postponed for a little while, to allow
213 * resources to come back. This function will make sure that queueing is
214 * restarted around the specified time. Queue lock must be held.
215 */
216 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
217 {
218 if (likely(!blk_queue_dead(q)))
219 queue_delayed_work(kblockd_workqueue, &q->delay_work,
220 msecs_to_jiffies(msecs));
221 }
222 EXPORT_SYMBOL(blk_delay_queue);
223
224 /**
225 * blk_start_queue - restart a previously stopped queue
226 * @q: The &struct request_queue in question
227 *
228 * Description:
229 * blk_start_queue() will clear the stop flag on the queue, and call
230 * the request_fn for the queue if it was in a stopped state when
231 * entered. Also see blk_stop_queue(). Queue lock must be held.
232 **/
233 void blk_start_queue(struct request_queue *q)
234 {
235 WARN_ON(!irqs_disabled());
236
237 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
238 __blk_run_queue(q);
239 }
240 EXPORT_SYMBOL(blk_start_queue);
241
242 /**
243 * blk_stop_queue - stop a queue
244 * @q: The &struct request_queue in question
245 *
246 * Description:
247 * The Linux block layer assumes that a block driver will consume all
248 * entries on the request queue when the request_fn strategy is called.
249 * Often this will not happen, because of hardware limitations (queue
250 * depth settings). If a device driver gets a 'queue full' response,
251 * or if it simply chooses not to queue more I/O at one point, it can
252 * call this function to prevent the request_fn from being called until
253 * the driver has signalled it's ready to go again. This happens by calling
254 * blk_start_queue() to restart queue operations. Queue lock must be held.
255 **/
256 void blk_stop_queue(struct request_queue *q)
257 {
258 cancel_delayed_work(&q->delay_work);
259 queue_flag_set(QUEUE_FLAG_STOPPED, q);
260 }
261 EXPORT_SYMBOL(blk_stop_queue);
262
263 /**
264 * blk_sync_queue - cancel any pending callbacks on a queue
265 * @q: the queue
266 *
267 * Description:
268 * The block layer may perform asynchronous callback activity
269 * on a queue, such as calling the unplug function after a timeout.
270 * A block device may call blk_sync_queue to ensure that any
271 * such activity is cancelled, thus allowing it to release resources
272 * that the callbacks might use. The caller must already have made sure
273 * that its ->make_request_fn will not re-add plugging prior to calling
274 * this function.
275 *
276 * This function does not cancel any asynchronous activity arising
277 * out of elevator or throttling code. That would require elevaotor_exit()
278 * and blkcg_exit_queue() to be called with queue lock initialized.
279 *
280 */
281 void blk_sync_queue(struct request_queue *q)
282 {
283 del_timer_sync(&q->timeout);
284 cancel_delayed_work_sync(&q->delay_work);
285 }
286 EXPORT_SYMBOL(blk_sync_queue);
287
288 /**
289 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
290 * @q: The queue to run
291 *
292 * Description:
293 * Invoke request handling on a queue if there are any pending requests.
294 * May be used to restart request handling after a request has completed.
295 * This variant runs the queue whether or not the queue has been
296 * stopped. Must be called with the queue lock held and interrupts
297 * disabled. See also @blk_run_queue.
298 */
299 inline void __blk_run_queue_uncond(struct request_queue *q)
300 {
301 if (unlikely(blk_queue_dead(q)))
302 return;
303
304 /*
305 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
306 * the queue lock internally. As a result multiple threads may be
307 * running such a request function concurrently. Keep track of the
308 * number of active request_fn invocations such that blk_drain_queue()
309 * can wait until all these request_fn calls have finished.
310 */
311 q->request_fn_active++;
312 q->request_fn(q);
313 q->request_fn_active--;
314 }
315
316 /**
317 * __blk_run_queue - run a single device queue
318 * @q: The queue to run
319 *
320 * Description:
321 * See @blk_run_queue. This variant must be called with the queue lock
322 * held and interrupts disabled.
323 */
324 void __blk_run_queue(struct request_queue *q)
325 {
326 if (unlikely(blk_queue_stopped(q)))
327 return;
328
329 __blk_run_queue_uncond(q);
330 }
331 EXPORT_SYMBOL(__blk_run_queue);
332
333 /**
334 * blk_run_queue_async - run a single device queue in workqueue context
335 * @q: The queue to run
336 *
337 * Description:
338 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
339 * of us. The caller must hold the queue lock.
340 */
341 void blk_run_queue_async(struct request_queue *q)
342 {
343 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
344 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
345 }
346 EXPORT_SYMBOL(blk_run_queue_async);
347
348 /**
349 * blk_run_queue - run a single device queue
350 * @q: The queue to run
351 *
352 * Description:
353 * Invoke request handling on this queue, if it has pending work to do.
354 * May be used to restart queueing when a request has completed.
355 */
356 void blk_run_queue(struct request_queue *q)
357 {
358 unsigned long flags;
359
360 spin_lock_irqsave(q->queue_lock, flags);
361 __blk_run_queue(q);
362 spin_unlock_irqrestore(q->queue_lock, flags);
363 }
364 EXPORT_SYMBOL(blk_run_queue);
365
366 void blk_put_queue(struct request_queue *q)
367 {
368 kobject_put(&q->kobj);
369 }
370 EXPORT_SYMBOL(blk_put_queue);
371
372 /**
373 * __blk_drain_queue - drain requests from request_queue
374 * @q: queue to drain
375 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
376 *
377 * Drain requests from @q. If @drain_all is set, all requests are drained.
378 * If not, only ELVPRIV requests are drained. The caller is responsible
379 * for ensuring that no new requests which need to be drained are queued.
380 */
381 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
382 __releases(q->queue_lock)
383 __acquires(q->queue_lock)
384 {
385 int i;
386
387 lockdep_assert_held(q->queue_lock);
388
389 while (true) {
390 bool drain = false;
391
392 /*
393 * The caller might be trying to drain @q before its
394 * elevator is initialized.
395 */
396 if (q->elevator)
397 elv_drain_elevator(q);
398
399 blkcg_drain_queue(q);
400
401 /*
402 * This function might be called on a queue which failed
403 * driver init after queue creation or is not yet fully
404 * active yet. Some drivers (e.g. fd and loop) get unhappy
405 * in such cases. Kick queue iff dispatch queue has
406 * something on it and @q has request_fn set.
407 */
408 if (!list_empty(&q->queue_head) && q->request_fn)
409 __blk_run_queue(q);
410
411 drain |= q->nr_rqs_elvpriv;
412 drain |= q->request_fn_active;
413
414 /*
415 * Unfortunately, requests are queued at and tracked from
416 * multiple places and there's no single counter which can
417 * be drained. Check all the queues and counters.
418 */
419 if (drain_all) {
420 drain |= !list_empty(&q->queue_head);
421 for (i = 0; i < 2; i++) {
422 drain |= q->nr_rqs[i];
423 drain |= q->in_flight[i];
424 drain |= !list_empty(&q->flush_queue[i]);
425 }
426 }
427
428 if (!drain)
429 break;
430
431 spin_unlock_irq(q->queue_lock);
432
433 msleep(10);
434
435 spin_lock_irq(q->queue_lock);
436 }
437
438 /*
439 * With queue marked dead, any woken up waiter will fail the
440 * allocation path, so the wakeup chaining is lost and we're
441 * left with hung waiters. We need to wake up those waiters.
442 */
443 if (q->request_fn) {
444 struct request_list *rl;
445
446 blk_queue_for_each_rl(rl, q)
447 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
448 wake_up_all(&rl->wait[i]);
449 }
450 }
451
452 /**
453 * blk_queue_bypass_start - enter queue bypass mode
454 * @q: queue of interest
455 *
456 * In bypass mode, only the dispatch FIFO queue of @q is used. This
457 * function makes @q enter bypass mode and drains all requests which were
458 * throttled or issued before. On return, it's guaranteed that no request
459 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
460 * inside queue or RCU read lock.
461 */
462 void blk_queue_bypass_start(struct request_queue *q)
463 {
464 bool drain;
465
466 spin_lock_irq(q->queue_lock);
467 drain = !q->bypass_depth++;
468 queue_flag_set(QUEUE_FLAG_BYPASS, q);
469 spin_unlock_irq(q->queue_lock);
470
471 if (drain) {
472 spin_lock_irq(q->queue_lock);
473 __blk_drain_queue(q, false);
474 spin_unlock_irq(q->queue_lock);
475
476 /* ensure blk_queue_bypass() is %true inside RCU read lock */
477 synchronize_rcu();
478 }
479 }
480 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
481
482 /**
483 * blk_queue_bypass_end - leave queue bypass mode
484 * @q: queue of interest
485 *
486 * Leave bypass mode and restore the normal queueing behavior.
487 */
488 void blk_queue_bypass_end(struct request_queue *q)
489 {
490 spin_lock_irq(q->queue_lock);
491 if (!--q->bypass_depth)
492 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
493 WARN_ON_ONCE(q->bypass_depth < 0);
494 spin_unlock_irq(q->queue_lock);
495 }
496 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
497
498 /**
499 * blk_cleanup_queue - shutdown a request queue
500 * @q: request queue to shutdown
501 *
502 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
503 * put it. All future requests will be failed immediately with -ENODEV.
504 */
505 void blk_cleanup_queue(struct request_queue *q)
506 {
507 spinlock_t *lock = q->queue_lock;
508
509 /* mark @q DYING, no new request or merges will be allowed afterwards */
510 mutex_lock(&q->sysfs_lock);
511 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
512 spin_lock_irq(lock);
513
514 /*
515 * A dying queue is permanently in bypass mode till released. Note
516 * that, unlike blk_queue_bypass_start(), we aren't performing
517 * synchronize_rcu() after entering bypass mode to avoid the delay
518 * as some drivers create and destroy a lot of queues while
519 * probing. This is still safe because blk_release_queue() will be
520 * called only after the queue refcnt drops to zero and nothing,
521 * RCU or not, would be traversing the queue by then.
522 */
523 q->bypass_depth++;
524 queue_flag_set(QUEUE_FLAG_BYPASS, q);
525
526 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
527 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
528 queue_flag_set(QUEUE_FLAG_DYING, q);
529 spin_unlock_irq(lock);
530 mutex_unlock(&q->sysfs_lock);
531
532 /*
533 * Drain all requests queued before DYING marking. Set DEAD flag to
534 * prevent that q->request_fn() gets invoked after draining finished.
535 */
536 spin_lock_irq(lock);
537 __blk_drain_queue(q, true);
538 queue_flag_set(QUEUE_FLAG_DEAD, q);
539 spin_unlock_irq(lock);
540
541 /* @q won't process any more request, flush async actions */
542 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
543 blk_sync_queue(q);
544
545 spin_lock_irq(lock);
546 if (q->queue_lock != &q->__queue_lock)
547 q->queue_lock = &q->__queue_lock;
548 spin_unlock_irq(lock);
549
550 /* @q is and will stay empty, shutdown and put */
551 blk_put_queue(q);
552 }
553 EXPORT_SYMBOL(blk_cleanup_queue);
554
555 int blk_init_rl(struct request_list *rl, struct request_queue *q,
556 gfp_t gfp_mask)
557 {
558 if (unlikely(rl->rq_pool))
559 return 0;
560
561 rl->q = q;
562 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
563 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
564 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
565 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
566
567 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
568 mempool_free_slab, request_cachep,
569 gfp_mask, q->node);
570 if (!rl->rq_pool)
571 return -ENOMEM;
572
573 return 0;
574 }
575
576 void blk_exit_rl(struct request_list *rl)
577 {
578 if (rl->rq_pool)
579 mempool_destroy(rl->rq_pool);
580 }
581
582 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
583 {
584 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
585 }
586 EXPORT_SYMBOL(blk_alloc_queue);
587
588 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
589 {
590 struct request_queue *q;
591 int err;
592
593 q = kmem_cache_alloc_node(blk_requestq_cachep,
594 gfp_mask | __GFP_ZERO, node_id);
595 if (!q)
596 return NULL;
597
598 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
599 if (q->id < 0)
600 goto fail_q;
601
602 q->backing_dev_info.ra_pages =
603 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
604 q->backing_dev_info.state = 0;
605 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
606 q->backing_dev_info.name = "block";
607 q->node = node_id;
608
609 err = bdi_init(&q->backing_dev_info);
610 if (err)
611 goto fail_id;
612
613 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
614 laptop_mode_timer_fn, (unsigned long) q);
615 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
616 INIT_LIST_HEAD(&q->queue_head);
617 INIT_LIST_HEAD(&q->timeout_list);
618 INIT_LIST_HEAD(&q->icq_list);
619 #ifdef CONFIG_BLK_CGROUP
620 INIT_LIST_HEAD(&q->blkg_list);
621 #endif
622 INIT_LIST_HEAD(&q->flush_queue[0]);
623 INIT_LIST_HEAD(&q->flush_queue[1]);
624 INIT_LIST_HEAD(&q->flush_data_in_flight);
625 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
626
627 kobject_init(&q->kobj, &blk_queue_ktype);
628
629 mutex_init(&q->sysfs_lock);
630 spin_lock_init(&q->__queue_lock);
631
632 /*
633 * By default initialize queue_lock to internal lock and driver can
634 * override it later if need be.
635 */
636 q->queue_lock = &q->__queue_lock;
637
638 /*
639 * A queue starts its life with bypass turned on to avoid
640 * unnecessary bypass on/off overhead and nasty surprises during
641 * init. The initial bypass will be finished when the queue is
642 * registered by blk_register_queue().
643 */
644 q->bypass_depth = 1;
645 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
646
647 if (blkcg_init_queue(q))
648 goto fail_bdi;
649
650 return q;
651
652 fail_bdi:
653 bdi_destroy(&q->backing_dev_info);
654 fail_id:
655 ida_simple_remove(&blk_queue_ida, q->id);
656 fail_q:
657 kmem_cache_free(blk_requestq_cachep, q);
658 return NULL;
659 }
660 EXPORT_SYMBOL(blk_alloc_queue_node);
661
662 /**
663 * blk_init_queue - prepare a request queue for use with a block device
664 * @rfn: The function to be called to process requests that have been
665 * placed on the queue.
666 * @lock: Request queue spin lock
667 *
668 * Description:
669 * If a block device wishes to use the standard request handling procedures,
670 * which sorts requests and coalesces adjacent requests, then it must
671 * call blk_init_queue(). The function @rfn will be called when there
672 * are requests on the queue that need to be processed. If the device
673 * supports plugging, then @rfn may not be called immediately when requests
674 * are available on the queue, but may be called at some time later instead.
675 * Plugged queues are generally unplugged when a buffer belonging to one
676 * of the requests on the queue is needed, or due to memory pressure.
677 *
678 * @rfn is not required, or even expected, to remove all requests off the
679 * queue, but only as many as it can handle at a time. If it does leave
680 * requests on the queue, it is responsible for arranging that the requests
681 * get dealt with eventually.
682 *
683 * The queue spin lock must be held while manipulating the requests on the
684 * request queue; this lock will be taken also from interrupt context, so irq
685 * disabling is needed for it.
686 *
687 * Function returns a pointer to the initialized request queue, or %NULL if
688 * it didn't succeed.
689 *
690 * Note:
691 * blk_init_queue() must be paired with a blk_cleanup_queue() call
692 * when the block device is deactivated (such as at module unload).
693 **/
694
695 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
696 {
697 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
698 }
699 EXPORT_SYMBOL(blk_init_queue);
700
701 struct request_queue *
702 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
703 {
704 struct request_queue *uninit_q, *q;
705
706 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
707 if (!uninit_q)
708 return NULL;
709
710 q = blk_init_allocated_queue(uninit_q, rfn, lock);
711 if (!q)
712 blk_cleanup_queue(uninit_q);
713
714 return q;
715 }
716 EXPORT_SYMBOL(blk_init_queue_node);
717
718 struct request_queue *
719 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
720 spinlock_t *lock)
721 {
722 if (!q)
723 return NULL;
724
725 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
726 return NULL;
727
728 q->request_fn = rfn;
729 q->prep_rq_fn = NULL;
730 q->unprep_rq_fn = NULL;
731 q->queue_flags |= QUEUE_FLAG_DEFAULT;
732
733 /* Override internal queue lock with supplied lock pointer */
734 if (lock)
735 q->queue_lock = lock;
736
737 /*
738 * This also sets hw/phys segments, boundary and size
739 */
740 blk_queue_make_request(q, blk_queue_bio);
741
742 q->sg_reserved_size = INT_MAX;
743
744 /* Protect q->elevator from elevator_change */
745 mutex_lock(&q->sysfs_lock);
746
747 /* init elevator */
748 if (elevator_init(q, NULL)) {
749 mutex_unlock(&q->sysfs_lock);
750 return NULL;
751 }
752
753 mutex_unlock(&q->sysfs_lock);
754
755 return q;
756 }
757 EXPORT_SYMBOL(blk_init_allocated_queue);
758
759 bool blk_get_queue(struct request_queue *q)
760 {
761 if (likely(!blk_queue_dying(q))) {
762 __blk_get_queue(q);
763 return true;
764 }
765
766 return false;
767 }
768 EXPORT_SYMBOL(blk_get_queue);
769
770 static inline void blk_free_request(struct request_list *rl, struct request *rq)
771 {
772 if (rq->cmd_flags & REQ_ELVPRIV) {
773 elv_put_request(rl->q, rq);
774 if (rq->elv.icq)
775 put_io_context(rq->elv.icq->ioc);
776 }
777
778 mempool_free(rq, rl->rq_pool);
779 }
780
781 /*
782 * ioc_batching returns true if the ioc is a valid batching request and
783 * should be given priority access to a request.
784 */
785 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
786 {
787 if (!ioc)
788 return 0;
789
790 /*
791 * Make sure the process is able to allocate at least 1 request
792 * even if the batch times out, otherwise we could theoretically
793 * lose wakeups.
794 */
795 return ioc->nr_batch_requests == q->nr_batching ||
796 (ioc->nr_batch_requests > 0
797 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
798 }
799
800 /*
801 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
802 * will cause the process to be a "batcher" on all queues in the system. This
803 * is the behaviour we want though - once it gets a wakeup it should be given
804 * a nice run.
805 */
806 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
807 {
808 if (!ioc || ioc_batching(q, ioc))
809 return;
810
811 ioc->nr_batch_requests = q->nr_batching;
812 ioc->last_waited = jiffies;
813 }
814
815 static void __freed_request(struct request_list *rl, int sync)
816 {
817 struct request_queue *q = rl->q;
818
819 /*
820 * bdi isn't aware of blkcg yet. As all async IOs end up root
821 * blkcg anyway, just use root blkcg state.
822 */
823 if (rl == &q->root_rl &&
824 rl->count[sync] < queue_congestion_off_threshold(q))
825 blk_clear_queue_congested(q, sync);
826
827 if (rl->count[sync] + 1 <= q->nr_requests) {
828 if (waitqueue_active(&rl->wait[sync]))
829 wake_up(&rl->wait[sync]);
830
831 blk_clear_rl_full(rl, sync);
832 }
833 }
834
835 /*
836 * A request has just been released. Account for it, update the full and
837 * congestion status, wake up any waiters. Called under q->queue_lock.
838 */
839 static void freed_request(struct request_list *rl, unsigned int flags)
840 {
841 struct request_queue *q = rl->q;
842 int sync = rw_is_sync(flags);
843
844 q->nr_rqs[sync]--;
845 rl->count[sync]--;
846 if (flags & REQ_ELVPRIV)
847 q->nr_rqs_elvpriv--;
848
849 __freed_request(rl, sync);
850
851 if (unlikely(rl->starved[sync ^ 1]))
852 __freed_request(rl, sync ^ 1);
853 }
854
855 /*
856 * Determine if elevator data should be initialized when allocating the
857 * request associated with @bio.
858 */
859 static bool blk_rq_should_init_elevator(struct bio *bio)
860 {
861 if (!bio)
862 return true;
863
864 /*
865 * Flush requests do not use the elevator so skip initialization.
866 * This allows a request to share the flush and elevator data.
867 */
868 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
869 return false;
870
871 return true;
872 }
873
874 /**
875 * rq_ioc - determine io_context for request allocation
876 * @bio: request being allocated is for this bio (can be %NULL)
877 *
878 * Determine io_context to use for request allocation for @bio. May return
879 * %NULL if %current->io_context doesn't exist.
880 */
881 static struct io_context *rq_ioc(struct bio *bio)
882 {
883 #ifdef CONFIG_BLK_CGROUP
884 if (bio && bio->bi_ioc)
885 return bio->bi_ioc;
886 #endif
887 return current->io_context;
888 }
889
890 /**
891 * __get_request - get a free request
892 * @rl: request list to allocate from
893 * @rw_flags: RW and SYNC flags
894 * @bio: bio to allocate request for (can be %NULL)
895 * @gfp_mask: allocation mask
896 *
897 * Get a free request from @q. This function may fail under memory
898 * pressure or if @q is dead.
899 *
900 * Must be callled with @q->queue_lock held and,
901 * Returns %NULL on failure, with @q->queue_lock held.
902 * Returns !%NULL on success, with @q->queue_lock *not held*.
903 */
904 static struct request *__get_request(struct request_list *rl, int rw_flags,
905 struct bio *bio, gfp_t gfp_mask)
906 {
907 struct request_queue *q = rl->q;
908 struct request *rq;
909 struct elevator_type *et = q->elevator->type;
910 struct io_context *ioc = rq_ioc(bio);
911 struct io_cq *icq = NULL;
912 const bool is_sync = rw_is_sync(rw_flags) != 0;
913 int may_queue;
914
915 if (unlikely(blk_queue_dying(q)))
916 return NULL;
917
918 may_queue = elv_may_queue(q, rw_flags);
919 if (may_queue == ELV_MQUEUE_NO)
920 goto rq_starved;
921
922 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
923 if (rl->count[is_sync]+1 >= q->nr_requests) {
924 /*
925 * The queue will fill after this allocation, so set
926 * it as full, and mark this process as "batching".
927 * This process will be allowed to complete a batch of
928 * requests, others will be blocked.
929 */
930 if (!blk_rl_full(rl, is_sync)) {
931 ioc_set_batching(q, ioc);
932 blk_set_rl_full(rl, is_sync);
933 } else {
934 if (may_queue != ELV_MQUEUE_MUST
935 && !ioc_batching(q, ioc)) {
936 /*
937 * The queue is full and the allocating
938 * process is not a "batcher", and not
939 * exempted by the IO scheduler
940 */
941 return NULL;
942 }
943 }
944 }
945 /*
946 * bdi isn't aware of blkcg yet. As all async IOs end up
947 * root blkcg anyway, just use root blkcg state.
948 */
949 if (rl == &q->root_rl)
950 blk_set_queue_congested(q, is_sync);
951 }
952
953 /*
954 * Only allow batching queuers to allocate up to 50% over the defined
955 * limit of requests, otherwise we could have thousands of requests
956 * allocated with any setting of ->nr_requests
957 */
958 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
959 return NULL;
960
961 q->nr_rqs[is_sync]++;
962 rl->count[is_sync]++;
963 rl->starved[is_sync] = 0;
964
965 /*
966 * Decide whether the new request will be managed by elevator. If
967 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
968 * prevent the current elevator from being destroyed until the new
969 * request is freed. This guarantees icq's won't be destroyed and
970 * makes creating new ones safe.
971 *
972 * Also, lookup icq while holding queue_lock. If it doesn't exist,
973 * it will be created after releasing queue_lock.
974 */
975 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
976 rw_flags |= REQ_ELVPRIV;
977 q->nr_rqs_elvpriv++;
978 if (et->icq_cache && ioc)
979 icq = ioc_lookup_icq(ioc, q);
980 }
981
982 if (blk_queue_io_stat(q))
983 rw_flags |= REQ_IO_STAT;
984 spin_unlock_irq(q->queue_lock);
985
986 /* allocate and init request */
987 rq = mempool_alloc(rl->rq_pool, gfp_mask);
988 if (!rq)
989 goto fail_alloc;
990
991 blk_rq_init(q, rq);
992 blk_rq_set_rl(rq, rl);
993 rq->cmd_flags = rw_flags | REQ_ALLOCED;
994
995 /* init elvpriv */
996 if (rw_flags & REQ_ELVPRIV) {
997 if (unlikely(et->icq_cache && !icq)) {
998 if (ioc)
999 icq = ioc_create_icq(ioc, q, gfp_mask);
1000 if (!icq)
1001 goto fail_elvpriv;
1002 }
1003
1004 rq->elv.icq = icq;
1005 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1006 goto fail_elvpriv;
1007
1008 /* @rq->elv.icq holds io_context until @rq is freed */
1009 if (icq)
1010 get_io_context(icq->ioc);
1011 }
1012 out:
1013 /*
1014 * ioc may be NULL here, and ioc_batching will be false. That's
1015 * OK, if the queue is under the request limit then requests need
1016 * not count toward the nr_batch_requests limit. There will always
1017 * be some limit enforced by BLK_BATCH_TIME.
1018 */
1019 if (ioc_batching(q, ioc))
1020 ioc->nr_batch_requests--;
1021
1022 trace_block_getrq(q, bio, rw_flags & 1);
1023 return rq;
1024
1025 fail_elvpriv:
1026 /*
1027 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1028 * and may fail indefinitely under memory pressure and thus
1029 * shouldn't stall IO. Treat this request as !elvpriv. This will
1030 * disturb iosched and blkcg but weird is bettern than dead.
1031 */
1032 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1033 dev_name(q->backing_dev_info.dev));
1034
1035 rq->cmd_flags &= ~REQ_ELVPRIV;
1036 rq->elv.icq = NULL;
1037
1038 spin_lock_irq(q->queue_lock);
1039 q->nr_rqs_elvpriv--;
1040 spin_unlock_irq(q->queue_lock);
1041 goto out;
1042
1043 fail_alloc:
1044 /*
1045 * Allocation failed presumably due to memory. Undo anything we
1046 * might have messed up.
1047 *
1048 * Allocating task should really be put onto the front of the wait
1049 * queue, but this is pretty rare.
1050 */
1051 spin_lock_irq(q->queue_lock);
1052 freed_request(rl, rw_flags);
1053
1054 /*
1055 * in the very unlikely event that allocation failed and no
1056 * requests for this direction was pending, mark us starved so that
1057 * freeing of a request in the other direction will notice
1058 * us. another possible fix would be to split the rq mempool into
1059 * READ and WRITE
1060 */
1061 rq_starved:
1062 if (unlikely(rl->count[is_sync] == 0))
1063 rl->starved[is_sync] = 1;
1064 return NULL;
1065 }
1066
1067 /**
1068 * get_request - get a free request
1069 * @q: request_queue to allocate request from
1070 * @rw_flags: RW and SYNC flags
1071 * @bio: bio to allocate request for (can be %NULL)
1072 * @gfp_mask: allocation mask
1073 *
1074 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1075 * function keeps retrying under memory pressure and fails iff @q is dead.
1076 *
1077 * Must be callled with @q->queue_lock held and,
1078 * Returns %NULL on failure, with @q->queue_lock held.
1079 * Returns !%NULL on success, with @q->queue_lock *not held*.
1080 */
1081 static struct request *get_request(struct request_queue *q, int rw_flags,
1082 struct bio *bio, gfp_t gfp_mask)
1083 {
1084 const bool is_sync = rw_is_sync(rw_flags) != 0;
1085 DEFINE_WAIT(wait);
1086 struct request_list *rl;
1087 struct request *rq;
1088
1089 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1090 retry:
1091 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1092 if (rq)
1093 return rq;
1094
1095 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1096 blk_put_rl(rl);
1097 return NULL;
1098 }
1099
1100 /* wait on @rl and retry */
1101 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1102 TASK_UNINTERRUPTIBLE);
1103
1104 trace_block_sleeprq(q, bio, rw_flags & 1);
1105
1106 spin_unlock_irq(q->queue_lock);
1107 io_schedule();
1108
1109 /*
1110 * After sleeping, we become a "batching" process and will be able
1111 * to allocate at least one request, and up to a big batch of them
1112 * for a small period time. See ioc_batching, ioc_set_batching
1113 */
1114 ioc_set_batching(q, current->io_context);
1115
1116 spin_lock_irq(q->queue_lock);
1117 finish_wait(&rl->wait[is_sync], &wait);
1118
1119 goto retry;
1120 }
1121
1122 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1123 {
1124 struct request *rq;
1125
1126 BUG_ON(rw != READ && rw != WRITE);
1127
1128 /* create ioc upfront */
1129 create_io_context(gfp_mask, q->node);
1130
1131 spin_lock_irq(q->queue_lock);
1132 rq = get_request(q, rw, NULL, gfp_mask);
1133 if (!rq)
1134 spin_unlock_irq(q->queue_lock);
1135 /* q->queue_lock is unlocked at this point */
1136
1137 return rq;
1138 }
1139 EXPORT_SYMBOL(blk_get_request);
1140
1141 /**
1142 * blk_make_request - given a bio, allocate a corresponding struct request.
1143 * @q: target request queue
1144 * @bio: The bio describing the memory mappings that will be submitted for IO.
1145 * It may be a chained-bio properly constructed by block/bio layer.
1146 * @gfp_mask: gfp flags to be used for memory allocation
1147 *
1148 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1149 * type commands. Where the struct request needs to be farther initialized by
1150 * the caller. It is passed a &struct bio, which describes the memory info of
1151 * the I/O transfer.
1152 *
1153 * The caller of blk_make_request must make sure that bi_io_vec
1154 * are set to describe the memory buffers. That bio_data_dir() will return
1155 * the needed direction of the request. (And all bio's in the passed bio-chain
1156 * are properly set accordingly)
1157 *
1158 * If called under none-sleepable conditions, mapped bio buffers must not
1159 * need bouncing, by calling the appropriate masked or flagged allocator,
1160 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1161 * BUG.
1162 *
1163 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1164 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1165 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1166 * completion of a bio that hasn't been submitted yet, thus resulting in a
1167 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1168 * of bio_alloc(), as that avoids the mempool deadlock.
1169 * If possible a big IO should be split into smaller parts when allocation
1170 * fails. Partial allocation should not be an error, or you risk a live-lock.
1171 */
1172 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1173 gfp_t gfp_mask)
1174 {
1175 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1176
1177 if (unlikely(!rq))
1178 return ERR_PTR(-ENOMEM);
1179
1180 for_each_bio(bio) {
1181 struct bio *bounce_bio = bio;
1182 int ret;
1183
1184 blk_queue_bounce(q, &bounce_bio);
1185 ret = blk_rq_append_bio(q, rq, bounce_bio);
1186 if (unlikely(ret)) {
1187 blk_put_request(rq);
1188 return ERR_PTR(ret);
1189 }
1190 }
1191
1192 return rq;
1193 }
1194 EXPORT_SYMBOL(blk_make_request);
1195
1196 /**
1197 * blk_requeue_request - put a request back on queue
1198 * @q: request queue where request should be inserted
1199 * @rq: request to be inserted
1200 *
1201 * Description:
1202 * Drivers often keep queueing requests until the hardware cannot accept
1203 * more, when that condition happens we need to put the request back
1204 * on the queue. Must be called with queue lock held.
1205 */
1206 void blk_requeue_request(struct request_queue *q, struct request *rq)
1207 {
1208 blk_delete_timer(rq);
1209 blk_clear_rq_complete(rq);
1210 trace_block_rq_requeue(q, rq);
1211
1212 if (blk_rq_tagged(rq))
1213 blk_queue_end_tag(q, rq);
1214
1215 BUG_ON(blk_queued_rq(rq));
1216
1217 elv_requeue_request(q, rq);
1218 }
1219 EXPORT_SYMBOL(blk_requeue_request);
1220
1221 static void add_acct_request(struct request_queue *q, struct request *rq,
1222 int where)
1223 {
1224 drive_stat_acct(rq, 1);
1225 __elv_add_request(q, rq, where);
1226 }
1227
1228 static void part_round_stats_single(int cpu, struct hd_struct *part,
1229 unsigned long now)
1230 {
1231 if (now == part->stamp)
1232 return;
1233
1234 if (part_in_flight(part)) {
1235 __part_stat_add(cpu, part, time_in_queue,
1236 part_in_flight(part) * (now - part->stamp));
1237 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1238 }
1239 part->stamp = now;
1240 }
1241
1242 /**
1243 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1244 * @cpu: cpu number for stats access
1245 * @part: target partition
1246 *
1247 * The average IO queue length and utilisation statistics are maintained
1248 * by observing the current state of the queue length and the amount of
1249 * time it has been in this state for.
1250 *
1251 * Normally, that accounting is done on IO completion, but that can result
1252 * in more than a second's worth of IO being accounted for within any one
1253 * second, leading to >100% utilisation. To deal with that, we call this
1254 * function to do a round-off before returning the results when reading
1255 * /proc/diskstats. This accounts immediately for all queue usage up to
1256 * the current jiffies and restarts the counters again.
1257 */
1258 void part_round_stats(int cpu, struct hd_struct *part)
1259 {
1260 unsigned long now = jiffies;
1261
1262 if (part->partno)
1263 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1264 part_round_stats_single(cpu, part, now);
1265 }
1266 EXPORT_SYMBOL_GPL(part_round_stats);
1267
1268 #ifdef CONFIG_PM_RUNTIME
1269 static void blk_pm_put_request(struct request *rq)
1270 {
1271 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1272 pm_runtime_mark_last_busy(rq->q->dev);
1273 }
1274 #else
1275 static inline void blk_pm_put_request(struct request *rq) {}
1276 #endif
1277
1278 /*
1279 * queue lock must be held
1280 */
1281 void __blk_put_request(struct request_queue *q, struct request *req)
1282 {
1283 if (unlikely(!q))
1284 return;
1285 if (unlikely(--req->ref_count))
1286 return;
1287
1288 blk_pm_put_request(req);
1289
1290 elv_completed_request(q, req);
1291
1292 /* this is a bio leak */
1293 WARN_ON(req->bio != NULL);
1294
1295 /*
1296 * Request may not have originated from ll_rw_blk. if not,
1297 * it didn't come out of our reserved rq pools
1298 */
1299 if (req->cmd_flags & REQ_ALLOCED) {
1300 unsigned int flags = req->cmd_flags;
1301 struct request_list *rl = blk_rq_rl(req);
1302
1303 BUG_ON(!list_empty(&req->queuelist));
1304 BUG_ON(!hlist_unhashed(&req->hash));
1305
1306 blk_free_request(rl, req);
1307 freed_request(rl, flags);
1308 blk_put_rl(rl);
1309 }
1310 }
1311 EXPORT_SYMBOL_GPL(__blk_put_request);
1312
1313 void blk_put_request(struct request *req)
1314 {
1315 unsigned long flags;
1316 struct request_queue *q = req->q;
1317
1318 spin_lock_irqsave(q->queue_lock, flags);
1319 __blk_put_request(q, req);
1320 spin_unlock_irqrestore(q->queue_lock, flags);
1321 }
1322 EXPORT_SYMBOL(blk_put_request);
1323
1324 /**
1325 * blk_add_request_payload - add a payload to a request
1326 * @rq: request to update
1327 * @page: page backing the payload
1328 * @len: length of the payload.
1329 *
1330 * This allows to later add a payload to an already submitted request by
1331 * a block driver. The driver needs to take care of freeing the payload
1332 * itself.
1333 *
1334 * Note that this is a quite horrible hack and nothing but handling of
1335 * discard requests should ever use it.
1336 */
1337 void blk_add_request_payload(struct request *rq, struct page *page,
1338 unsigned int len)
1339 {
1340 struct bio *bio = rq->bio;
1341
1342 bio->bi_io_vec->bv_page = page;
1343 bio->bi_io_vec->bv_offset = 0;
1344 bio->bi_io_vec->bv_len = len;
1345
1346 bio->bi_size = len;
1347 bio->bi_vcnt = 1;
1348 bio->bi_phys_segments = 1;
1349
1350 rq->__data_len = rq->resid_len = len;
1351 rq->nr_phys_segments = 1;
1352 rq->buffer = bio_data(bio);
1353 }
1354 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1355
1356 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1357 struct bio *bio)
1358 {
1359 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1360
1361 if (!ll_back_merge_fn(q, req, bio))
1362 return false;
1363
1364 trace_block_bio_backmerge(q, req, bio);
1365
1366 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1367 blk_rq_set_mixed_merge(req);
1368
1369 req->biotail->bi_next = bio;
1370 req->biotail = bio;
1371 req->__data_len += bio->bi_size;
1372 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1373
1374 drive_stat_acct(req, 0);
1375 return true;
1376 }
1377
1378 static bool bio_attempt_front_merge(struct request_queue *q,
1379 struct request *req, struct bio *bio)
1380 {
1381 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1382
1383 if (!ll_front_merge_fn(q, req, bio))
1384 return false;
1385
1386 trace_block_bio_frontmerge(q, req, bio);
1387
1388 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1389 blk_rq_set_mixed_merge(req);
1390
1391 bio->bi_next = req->bio;
1392 req->bio = bio;
1393
1394 /*
1395 * may not be valid. if the low level driver said
1396 * it didn't need a bounce buffer then it better
1397 * not touch req->buffer either...
1398 */
1399 req->buffer = bio_data(bio);
1400 req->__sector = bio->bi_sector;
1401 req->__data_len += bio->bi_size;
1402 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1403
1404 drive_stat_acct(req, 0);
1405 return true;
1406 }
1407
1408 /**
1409 * attempt_plug_merge - try to merge with %current's plugged list
1410 * @q: request_queue new bio is being queued at
1411 * @bio: new bio being queued
1412 * @request_count: out parameter for number of traversed plugged requests
1413 *
1414 * Determine whether @bio being queued on @q can be merged with a request
1415 * on %current's plugged list. Returns %true if merge was successful,
1416 * otherwise %false.
1417 *
1418 * Plugging coalesces IOs from the same issuer for the same purpose without
1419 * going through @q->queue_lock. As such it's more of an issuing mechanism
1420 * than scheduling, and the request, while may have elvpriv data, is not
1421 * added on the elevator at this point. In addition, we don't have
1422 * reliable access to the elevator outside queue lock. Only check basic
1423 * merging parameters without querying the elevator.
1424 */
1425 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1426 unsigned int *request_count)
1427 {
1428 struct blk_plug *plug;
1429 struct request *rq;
1430 bool ret = false;
1431
1432 plug = current->plug;
1433 if (!plug)
1434 goto out;
1435 *request_count = 0;
1436
1437 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1438 int el_ret;
1439
1440 if (rq->q == q)
1441 (*request_count)++;
1442
1443 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1444 continue;
1445
1446 el_ret = blk_try_merge(rq, bio);
1447 if (el_ret == ELEVATOR_BACK_MERGE) {
1448 ret = bio_attempt_back_merge(q, rq, bio);
1449 if (ret)
1450 break;
1451 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1452 ret = bio_attempt_front_merge(q, rq, bio);
1453 if (ret)
1454 break;
1455 }
1456 }
1457 out:
1458 return ret;
1459 }
1460
1461 void init_request_from_bio(struct request *req, struct bio *bio)
1462 {
1463 req->cmd_type = REQ_TYPE_FS;
1464
1465 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1466 if (bio->bi_rw & REQ_RAHEAD)
1467 req->cmd_flags |= REQ_FAILFAST_MASK;
1468
1469 req->errors = 0;
1470 req->__sector = bio->bi_sector;
1471 req->ioprio = bio_prio(bio);
1472 blk_rq_bio_prep(req->q, req, bio);
1473 }
1474
1475 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1476 {
1477 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1478 struct blk_plug *plug;
1479 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1480 struct request *req;
1481 unsigned int request_count = 0;
1482
1483 /*
1484 * low level driver can indicate that it wants pages above a
1485 * certain limit bounced to low memory (ie for highmem, or even
1486 * ISA dma in theory)
1487 */
1488 blk_queue_bounce(q, &bio);
1489
1490 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1491 bio_endio(bio, -EIO);
1492 return;
1493 }
1494
1495 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1496 spin_lock_irq(q->queue_lock);
1497 where = ELEVATOR_INSERT_FLUSH;
1498 goto get_rq;
1499 }
1500
1501 /*
1502 * Check if we can merge with the plugged list before grabbing
1503 * any locks.
1504 */
1505 if (attempt_plug_merge(q, bio, &request_count))
1506 return;
1507
1508 spin_lock_irq(q->queue_lock);
1509
1510 el_ret = elv_merge(q, &req, bio);
1511 if (el_ret == ELEVATOR_BACK_MERGE) {
1512 if (bio_attempt_back_merge(q, req, bio)) {
1513 elv_bio_merged(q, req, bio);
1514 if (!attempt_back_merge(q, req))
1515 elv_merged_request(q, req, el_ret);
1516 goto out_unlock;
1517 }
1518 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1519 if (bio_attempt_front_merge(q, req, bio)) {
1520 elv_bio_merged(q, req, bio);
1521 if (!attempt_front_merge(q, req))
1522 elv_merged_request(q, req, el_ret);
1523 goto out_unlock;
1524 }
1525 }
1526
1527 get_rq:
1528 /*
1529 * This sync check and mask will be re-done in init_request_from_bio(),
1530 * but we need to set it earlier to expose the sync flag to the
1531 * rq allocator and io schedulers.
1532 */
1533 rw_flags = bio_data_dir(bio);
1534 if (sync)
1535 rw_flags |= REQ_SYNC;
1536
1537 /*
1538 * Grab a free request. This is might sleep but can not fail.
1539 * Returns with the queue unlocked.
1540 */
1541 req = get_request(q, rw_flags, bio, GFP_NOIO);
1542 if (unlikely(!req)) {
1543 bio_endio(bio, -ENODEV); /* @q is dead */
1544 goto out_unlock;
1545 }
1546
1547 /*
1548 * After dropping the lock and possibly sleeping here, our request
1549 * may now be mergeable after it had proven unmergeable (above).
1550 * We don't worry about that case for efficiency. It won't happen
1551 * often, and the elevators are able to handle it.
1552 */
1553 init_request_from_bio(req, bio);
1554
1555 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1556 req->cpu = raw_smp_processor_id();
1557
1558 plug = current->plug;
1559 if (plug) {
1560 /*
1561 * If this is the first request added after a plug, fire
1562 * of a plug trace. If others have been added before, check
1563 * if we have multiple devices in this plug. If so, make a
1564 * note to sort the list before dispatch.
1565 */
1566 if (list_empty(&plug->list))
1567 trace_block_plug(q);
1568 else {
1569 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1570 blk_flush_plug_list(plug, false);
1571 trace_block_plug(q);
1572 }
1573 }
1574 list_add_tail(&req->queuelist, &plug->list);
1575 drive_stat_acct(req, 1);
1576 } else {
1577 spin_lock_irq(q->queue_lock);
1578 add_acct_request(q, req, where);
1579 __blk_run_queue(q);
1580 out_unlock:
1581 spin_unlock_irq(q->queue_lock);
1582 }
1583 }
1584 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1585
1586 /*
1587 * If bio->bi_dev is a partition, remap the location
1588 */
1589 static inline void blk_partition_remap(struct bio *bio)
1590 {
1591 struct block_device *bdev = bio->bi_bdev;
1592
1593 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1594 struct hd_struct *p = bdev->bd_part;
1595
1596 bio->bi_sector += p->start_sect;
1597 bio->bi_bdev = bdev->bd_contains;
1598
1599 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1600 bdev->bd_dev,
1601 bio->bi_sector - p->start_sect);
1602 }
1603 }
1604
1605 static void handle_bad_sector(struct bio *bio)
1606 {
1607 char b[BDEVNAME_SIZE];
1608
1609 printk(KERN_INFO "attempt to access beyond end of device\n");
1610 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1611 bdevname(bio->bi_bdev, b),
1612 bio->bi_rw,
1613 (unsigned long long)bio_end_sector(bio),
1614 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1615
1616 set_bit(BIO_EOF, &bio->bi_flags);
1617 }
1618
1619 #ifdef CONFIG_FAIL_MAKE_REQUEST
1620
1621 static DECLARE_FAULT_ATTR(fail_make_request);
1622
1623 static int __init setup_fail_make_request(char *str)
1624 {
1625 return setup_fault_attr(&fail_make_request, str);
1626 }
1627 __setup("fail_make_request=", setup_fail_make_request);
1628
1629 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1630 {
1631 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1632 }
1633
1634 static int __init fail_make_request_debugfs(void)
1635 {
1636 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1637 NULL, &fail_make_request);
1638
1639 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1640 }
1641
1642 late_initcall(fail_make_request_debugfs);
1643
1644 #else /* CONFIG_FAIL_MAKE_REQUEST */
1645
1646 static inline bool should_fail_request(struct hd_struct *part,
1647 unsigned int bytes)
1648 {
1649 return false;
1650 }
1651
1652 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1653
1654 /*
1655 * Check whether this bio extends beyond the end of the device.
1656 */
1657 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1658 {
1659 sector_t maxsector;
1660
1661 if (!nr_sectors)
1662 return 0;
1663
1664 /* Test device or partition size, when known. */
1665 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1666 if (maxsector) {
1667 sector_t sector = bio->bi_sector;
1668
1669 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1670 /*
1671 * This may well happen - the kernel calls bread()
1672 * without checking the size of the device, e.g., when
1673 * mounting a device.
1674 */
1675 handle_bad_sector(bio);
1676 return 1;
1677 }
1678 }
1679
1680 return 0;
1681 }
1682
1683 static noinline_for_stack bool
1684 generic_make_request_checks(struct bio *bio)
1685 {
1686 struct request_queue *q;
1687 int nr_sectors = bio_sectors(bio);
1688 int err = -EIO;
1689 char b[BDEVNAME_SIZE];
1690 struct hd_struct *part;
1691
1692 might_sleep();
1693
1694 if (bio_check_eod(bio, nr_sectors))
1695 goto end_io;
1696
1697 q = bdev_get_queue(bio->bi_bdev);
1698 if (unlikely(!q)) {
1699 printk(KERN_ERR
1700 "generic_make_request: Trying to access "
1701 "nonexistent block-device %s (%Lu)\n",
1702 bdevname(bio->bi_bdev, b),
1703 (long long) bio->bi_sector);
1704 goto end_io;
1705 }
1706
1707 if (likely(bio_is_rw(bio) &&
1708 nr_sectors > queue_max_hw_sectors(q))) {
1709 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1710 bdevname(bio->bi_bdev, b),
1711 bio_sectors(bio),
1712 queue_max_hw_sectors(q));
1713 goto end_io;
1714 }
1715
1716 part = bio->bi_bdev->bd_part;
1717 if (should_fail_request(part, bio->bi_size) ||
1718 should_fail_request(&part_to_disk(part)->part0,
1719 bio->bi_size))
1720 goto end_io;
1721
1722 /*
1723 * If this device has partitions, remap block n
1724 * of partition p to block n+start(p) of the disk.
1725 */
1726 blk_partition_remap(bio);
1727
1728 if (bio_check_eod(bio, nr_sectors))
1729 goto end_io;
1730
1731 /*
1732 * Filter flush bio's early so that make_request based
1733 * drivers without flush support don't have to worry
1734 * about them.
1735 */
1736 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1737 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1738 if (!nr_sectors) {
1739 err = 0;
1740 goto end_io;
1741 }
1742 }
1743
1744 if ((bio->bi_rw & REQ_DISCARD) &&
1745 (!blk_queue_discard(q) ||
1746 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1747 err = -EOPNOTSUPP;
1748 goto end_io;
1749 }
1750
1751 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1752 err = -EOPNOTSUPP;
1753 goto end_io;
1754 }
1755
1756 /*
1757 * Various block parts want %current->io_context and lazy ioc
1758 * allocation ends up trading a lot of pain for a small amount of
1759 * memory. Just allocate it upfront. This may fail and block
1760 * layer knows how to live with it.
1761 */
1762 create_io_context(GFP_ATOMIC, q->node);
1763
1764 if (blk_throtl_bio(q, bio))
1765 return false; /* throttled, will be resubmitted later */
1766
1767 trace_block_bio_queue(q, bio);
1768 return true;
1769
1770 end_io:
1771 bio_endio(bio, err);
1772 return false;
1773 }
1774
1775 /**
1776 * generic_make_request - hand a buffer to its device driver for I/O
1777 * @bio: The bio describing the location in memory and on the device.
1778 *
1779 * generic_make_request() is used to make I/O requests of block
1780 * devices. It is passed a &struct bio, which describes the I/O that needs
1781 * to be done.
1782 *
1783 * generic_make_request() does not return any status. The
1784 * success/failure status of the request, along with notification of
1785 * completion, is delivered asynchronously through the bio->bi_end_io
1786 * function described (one day) else where.
1787 *
1788 * The caller of generic_make_request must make sure that bi_io_vec
1789 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1790 * set to describe the device address, and the
1791 * bi_end_io and optionally bi_private are set to describe how
1792 * completion notification should be signaled.
1793 *
1794 * generic_make_request and the drivers it calls may use bi_next if this
1795 * bio happens to be merged with someone else, and may resubmit the bio to
1796 * a lower device by calling into generic_make_request recursively, which
1797 * means the bio should NOT be touched after the call to ->make_request_fn.
1798 */
1799 void generic_make_request(struct bio *bio)
1800 {
1801 struct bio_list bio_list_on_stack;
1802
1803 if (!generic_make_request_checks(bio))
1804 return;
1805
1806 /*
1807 * We only want one ->make_request_fn to be active at a time, else
1808 * stack usage with stacked devices could be a problem. So use
1809 * current->bio_list to keep a list of requests submited by a
1810 * make_request_fn function. current->bio_list is also used as a
1811 * flag to say if generic_make_request is currently active in this
1812 * task or not. If it is NULL, then no make_request is active. If
1813 * it is non-NULL, then a make_request is active, and new requests
1814 * should be added at the tail
1815 */
1816 if (current->bio_list) {
1817 bio_list_add(current->bio_list, bio);
1818 return;
1819 }
1820
1821 /* following loop may be a bit non-obvious, and so deserves some
1822 * explanation.
1823 * Before entering the loop, bio->bi_next is NULL (as all callers
1824 * ensure that) so we have a list with a single bio.
1825 * We pretend that we have just taken it off a longer list, so
1826 * we assign bio_list to a pointer to the bio_list_on_stack,
1827 * thus initialising the bio_list of new bios to be
1828 * added. ->make_request() may indeed add some more bios
1829 * through a recursive call to generic_make_request. If it
1830 * did, we find a non-NULL value in bio_list and re-enter the loop
1831 * from the top. In this case we really did just take the bio
1832 * of the top of the list (no pretending) and so remove it from
1833 * bio_list, and call into ->make_request() again.
1834 */
1835 BUG_ON(bio->bi_next);
1836 bio_list_init(&bio_list_on_stack);
1837 current->bio_list = &bio_list_on_stack;
1838 do {
1839 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1840
1841 q->make_request_fn(q, bio);
1842
1843 bio = bio_list_pop(current->bio_list);
1844 } while (bio);
1845 current->bio_list = NULL; /* deactivate */
1846 }
1847 EXPORT_SYMBOL(generic_make_request);
1848
1849 /**
1850 * submit_bio - submit a bio to the block device layer for I/O
1851 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1852 * @bio: The &struct bio which describes the I/O
1853 *
1854 * submit_bio() is very similar in purpose to generic_make_request(), and
1855 * uses that function to do most of the work. Both are fairly rough
1856 * interfaces; @bio must be presetup and ready for I/O.
1857 *
1858 */
1859 void submit_bio(int rw, struct bio *bio)
1860 {
1861 bio->bi_rw |= rw;
1862
1863 /*
1864 * If it's a regular read/write or a barrier with data attached,
1865 * go through the normal accounting stuff before submission.
1866 */
1867 if (bio_has_data(bio)) {
1868 unsigned int count;
1869
1870 if (unlikely(rw & REQ_WRITE_SAME))
1871 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1872 else
1873 count = bio_sectors(bio);
1874
1875 if (rw & WRITE) {
1876 count_vm_events(PGPGOUT, count);
1877 } else {
1878 task_io_account_read(bio->bi_size);
1879 count_vm_events(PGPGIN, count);
1880 }
1881
1882 if (unlikely(block_dump)) {
1883 char b[BDEVNAME_SIZE];
1884 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1885 current->comm, task_pid_nr(current),
1886 (rw & WRITE) ? "WRITE" : "READ",
1887 (unsigned long long)bio->bi_sector,
1888 bdevname(bio->bi_bdev, b),
1889 count);
1890 }
1891 }
1892
1893 generic_make_request(bio);
1894 }
1895 EXPORT_SYMBOL(submit_bio);
1896
1897 /**
1898 * blk_rq_check_limits - Helper function to check a request for the queue limit
1899 * @q: the queue
1900 * @rq: the request being checked
1901 *
1902 * Description:
1903 * @rq may have been made based on weaker limitations of upper-level queues
1904 * in request stacking drivers, and it may violate the limitation of @q.
1905 * Since the block layer and the underlying device driver trust @rq
1906 * after it is inserted to @q, it should be checked against @q before
1907 * the insertion using this generic function.
1908 *
1909 * This function should also be useful for request stacking drivers
1910 * in some cases below, so export this function.
1911 * Request stacking drivers like request-based dm may change the queue
1912 * limits while requests are in the queue (e.g. dm's table swapping).
1913 * Such request stacking drivers should check those requests agaist
1914 * the new queue limits again when they dispatch those requests,
1915 * although such checkings are also done against the old queue limits
1916 * when submitting requests.
1917 */
1918 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1919 {
1920 if (!rq_mergeable(rq))
1921 return 0;
1922
1923 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1924 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1925 return -EIO;
1926 }
1927
1928 /*
1929 * queue's settings related to segment counting like q->bounce_pfn
1930 * may differ from that of other stacking queues.
1931 * Recalculate it to check the request correctly on this queue's
1932 * limitation.
1933 */
1934 blk_recalc_rq_segments(rq);
1935 if (rq->nr_phys_segments > queue_max_segments(q)) {
1936 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1937 return -EIO;
1938 }
1939
1940 return 0;
1941 }
1942 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1943
1944 /**
1945 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1946 * @q: the queue to submit the request
1947 * @rq: the request being queued
1948 */
1949 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1950 {
1951 unsigned long flags;
1952 int where = ELEVATOR_INSERT_BACK;
1953
1954 if (blk_rq_check_limits(q, rq))
1955 return -EIO;
1956
1957 if (rq->rq_disk &&
1958 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1959 return -EIO;
1960
1961 spin_lock_irqsave(q->queue_lock, flags);
1962 if (unlikely(blk_queue_dying(q))) {
1963 spin_unlock_irqrestore(q->queue_lock, flags);
1964 return -ENODEV;
1965 }
1966
1967 /*
1968 * Submitting request must be dequeued before calling this function
1969 * because it will be linked to another request_queue
1970 */
1971 BUG_ON(blk_queued_rq(rq));
1972
1973 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1974 where = ELEVATOR_INSERT_FLUSH;
1975
1976 add_acct_request(q, rq, where);
1977 if (where == ELEVATOR_INSERT_FLUSH)
1978 __blk_run_queue(q);
1979 spin_unlock_irqrestore(q->queue_lock, flags);
1980
1981 return 0;
1982 }
1983 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1984
1985 /**
1986 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1987 * @rq: request to examine
1988 *
1989 * Description:
1990 * A request could be merge of IOs which require different failure
1991 * handling. This function determines the number of bytes which
1992 * can be failed from the beginning of the request without
1993 * crossing into area which need to be retried further.
1994 *
1995 * Return:
1996 * The number of bytes to fail.
1997 *
1998 * Context:
1999 * queue_lock must be held.
2000 */
2001 unsigned int blk_rq_err_bytes(const struct request *rq)
2002 {
2003 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2004 unsigned int bytes = 0;
2005 struct bio *bio;
2006
2007 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2008 return blk_rq_bytes(rq);
2009
2010 /*
2011 * Currently the only 'mixing' which can happen is between
2012 * different fastfail types. We can safely fail portions
2013 * which have all the failfast bits that the first one has -
2014 * the ones which are at least as eager to fail as the first
2015 * one.
2016 */
2017 for (bio = rq->bio; bio; bio = bio->bi_next) {
2018 if ((bio->bi_rw & ff) != ff)
2019 break;
2020 bytes += bio->bi_size;
2021 }
2022
2023 /* this could lead to infinite loop */
2024 BUG_ON(blk_rq_bytes(rq) && !bytes);
2025 return bytes;
2026 }
2027 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2028
2029 static void blk_account_io_completion(struct request *req, unsigned int bytes)
2030 {
2031 if (blk_do_io_stat(req)) {
2032 const int rw = rq_data_dir(req);
2033 struct hd_struct *part;
2034 int cpu;
2035
2036 cpu = part_stat_lock();
2037 part = req->part;
2038 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2039 part_stat_unlock();
2040 }
2041 }
2042
2043 static void blk_account_io_done(struct request *req)
2044 {
2045 /*
2046 * Account IO completion. flush_rq isn't accounted as a
2047 * normal IO on queueing nor completion. Accounting the
2048 * containing request is enough.
2049 */
2050 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2051 unsigned long duration = jiffies - req->start_time;
2052 const int rw = rq_data_dir(req);
2053 struct hd_struct *part;
2054 int cpu;
2055
2056 cpu = part_stat_lock();
2057 part = req->part;
2058
2059 part_stat_inc(cpu, part, ios[rw]);
2060 part_stat_add(cpu, part, ticks[rw], duration);
2061 part_round_stats(cpu, part);
2062 part_dec_in_flight(part, rw);
2063
2064 hd_struct_put(part);
2065 part_stat_unlock();
2066 }
2067 }
2068
2069 #ifdef CONFIG_PM_RUNTIME
2070 /*
2071 * Don't process normal requests when queue is suspended
2072 * or in the process of suspending/resuming
2073 */
2074 static struct request *blk_pm_peek_request(struct request_queue *q,
2075 struct request *rq)
2076 {
2077 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2078 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2079 return NULL;
2080 else
2081 return rq;
2082 }
2083 #else
2084 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2085 struct request *rq)
2086 {
2087 return rq;
2088 }
2089 #endif
2090
2091 /**
2092 * blk_peek_request - peek at the top of a request queue
2093 * @q: request queue to peek at
2094 *
2095 * Description:
2096 * Return the request at the top of @q. The returned request
2097 * should be started using blk_start_request() before LLD starts
2098 * processing it.
2099 *
2100 * Return:
2101 * Pointer to the request at the top of @q if available. Null
2102 * otherwise.
2103 *
2104 * Context:
2105 * queue_lock must be held.
2106 */
2107 struct request *blk_peek_request(struct request_queue *q)
2108 {
2109 struct request *rq;
2110 int ret;
2111
2112 while ((rq = __elv_next_request(q)) != NULL) {
2113
2114 rq = blk_pm_peek_request(q, rq);
2115 if (!rq)
2116 break;
2117
2118 if (!(rq->cmd_flags & REQ_STARTED)) {
2119 /*
2120 * This is the first time the device driver
2121 * sees this request (possibly after
2122 * requeueing). Notify IO scheduler.
2123 */
2124 if (rq->cmd_flags & REQ_SORTED)
2125 elv_activate_rq(q, rq);
2126
2127 /*
2128 * just mark as started even if we don't start
2129 * it, a request that has been delayed should
2130 * not be passed by new incoming requests
2131 */
2132 rq->cmd_flags |= REQ_STARTED;
2133 trace_block_rq_issue(q, rq);
2134 }
2135
2136 if (!q->boundary_rq || q->boundary_rq == rq) {
2137 q->end_sector = rq_end_sector(rq);
2138 q->boundary_rq = NULL;
2139 }
2140
2141 if (rq->cmd_flags & REQ_DONTPREP)
2142 break;
2143
2144 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2145 /*
2146 * make sure space for the drain appears we
2147 * know we can do this because max_hw_segments
2148 * has been adjusted to be one fewer than the
2149 * device can handle
2150 */
2151 rq->nr_phys_segments++;
2152 }
2153
2154 if (!q->prep_rq_fn)
2155 break;
2156
2157 ret = q->prep_rq_fn(q, rq);
2158 if (ret == BLKPREP_OK) {
2159 break;
2160 } else if (ret == BLKPREP_DEFER) {
2161 /*
2162 * the request may have been (partially) prepped.
2163 * we need to keep this request in the front to
2164 * avoid resource deadlock. REQ_STARTED will
2165 * prevent other fs requests from passing this one.
2166 */
2167 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2168 !(rq->cmd_flags & REQ_DONTPREP)) {
2169 /*
2170 * remove the space for the drain we added
2171 * so that we don't add it again
2172 */
2173 --rq->nr_phys_segments;
2174 }
2175
2176 rq = NULL;
2177 break;
2178 } else if (ret == BLKPREP_KILL) {
2179 rq->cmd_flags |= REQ_QUIET;
2180 /*
2181 * Mark this request as started so we don't trigger
2182 * any debug logic in the end I/O path.
2183 */
2184 blk_start_request(rq);
2185 __blk_end_request_all(rq, -EIO);
2186 } else {
2187 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2188 break;
2189 }
2190 }
2191
2192 return rq;
2193 }
2194 EXPORT_SYMBOL(blk_peek_request);
2195
2196 void blk_dequeue_request(struct request *rq)
2197 {
2198 struct request_queue *q = rq->q;
2199
2200 BUG_ON(list_empty(&rq->queuelist));
2201 BUG_ON(ELV_ON_HASH(rq));
2202
2203 list_del_init(&rq->queuelist);
2204
2205 /*
2206 * the time frame between a request being removed from the lists
2207 * and to it is freed is accounted as io that is in progress at
2208 * the driver side.
2209 */
2210 if (blk_account_rq(rq)) {
2211 q->in_flight[rq_is_sync(rq)]++;
2212 set_io_start_time_ns(rq);
2213 }
2214 }
2215
2216 /**
2217 * blk_start_request - start request processing on the driver
2218 * @req: request to dequeue
2219 *
2220 * Description:
2221 * Dequeue @req and start timeout timer on it. This hands off the
2222 * request to the driver.
2223 *
2224 * Block internal functions which don't want to start timer should
2225 * call blk_dequeue_request().
2226 *
2227 * Context:
2228 * queue_lock must be held.
2229 */
2230 void blk_start_request(struct request *req)
2231 {
2232 blk_dequeue_request(req);
2233
2234 /*
2235 * We are now handing the request to the hardware, initialize
2236 * resid_len to full count and add the timeout handler.
2237 */
2238 req->resid_len = blk_rq_bytes(req);
2239 if (unlikely(blk_bidi_rq(req)))
2240 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2241
2242 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2243 blk_add_timer(req);
2244 }
2245 EXPORT_SYMBOL(blk_start_request);
2246
2247 /**
2248 * blk_fetch_request - fetch a request from a request queue
2249 * @q: request queue to fetch a request from
2250 *
2251 * Description:
2252 * Return the request at the top of @q. The request is started on
2253 * return and LLD can start processing it immediately.
2254 *
2255 * Return:
2256 * Pointer to the request at the top of @q if available. Null
2257 * otherwise.
2258 *
2259 * Context:
2260 * queue_lock must be held.
2261 */
2262 struct request *blk_fetch_request(struct request_queue *q)
2263 {
2264 struct request *rq;
2265
2266 rq = blk_peek_request(q);
2267 if (rq)
2268 blk_start_request(rq);
2269 return rq;
2270 }
2271 EXPORT_SYMBOL(blk_fetch_request);
2272
2273 /**
2274 * blk_update_request - Special helper function for request stacking drivers
2275 * @req: the request being processed
2276 * @error: %0 for success, < %0 for error
2277 * @nr_bytes: number of bytes to complete @req
2278 *
2279 * Description:
2280 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2281 * the request structure even if @req doesn't have leftover.
2282 * If @req has leftover, sets it up for the next range of segments.
2283 *
2284 * This special helper function is only for request stacking drivers
2285 * (e.g. request-based dm) so that they can handle partial completion.
2286 * Actual device drivers should use blk_end_request instead.
2287 *
2288 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2289 * %false return from this function.
2290 *
2291 * Return:
2292 * %false - this request doesn't have any more data
2293 * %true - this request has more data
2294 **/
2295 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2296 {
2297 int total_bytes;
2298
2299 if (!req->bio)
2300 return false;
2301
2302 trace_block_rq_complete(req->q, req, nr_bytes);
2303
2304 /*
2305 * For fs requests, rq is just carrier of independent bio's
2306 * and each partial completion should be handled separately.
2307 * Reset per-request error on each partial completion.
2308 *
2309 * TODO: tj: This is too subtle. It would be better to let
2310 * low level drivers do what they see fit.
2311 */
2312 if (req->cmd_type == REQ_TYPE_FS)
2313 req->errors = 0;
2314
2315 if (error && req->cmd_type == REQ_TYPE_FS &&
2316 !(req->cmd_flags & REQ_QUIET)) {
2317 char *error_type;
2318
2319 switch (error) {
2320 case -ENOLINK:
2321 error_type = "recoverable transport";
2322 break;
2323 case -EREMOTEIO:
2324 error_type = "critical target";
2325 break;
2326 case -EBADE:
2327 error_type = "critical nexus";
2328 break;
2329 case -EIO:
2330 default:
2331 error_type = "I/O";
2332 break;
2333 }
2334 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2335 error_type, req->rq_disk ?
2336 req->rq_disk->disk_name : "?",
2337 (unsigned long long)blk_rq_pos(req));
2338
2339 }
2340
2341 blk_account_io_completion(req, nr_bytes);
2342
2343 total_bytes = 0;
2344 while (req->bio) {
2345 struct bio *bio = req->bio;
2346 unsigned bio_bytes = min(bio->bi_size, nr_bytes);
2347
2348 if (bio_bytes == bio->bi_size)
2349 req->bio = bio->bi_next;
2350
2351 req_bio_endio(req, bio, bio_bytes, error);
2352
2353 total_bytes += bio_bytes;
2354 nr_bytes -= bio_bytes;
2355
2356 if (!nr_bytes)
2357 break;
2358 }
2359
2360 /*
2361 * completely done
2362 */
2363 if (!req->bio) {
2364 /*
2365 * Reset counters so that the request stacking driver
2366 * can find how many bytes remain in the request
2367 * later.
2368 */
2369 req->__data_len = 0;
2370 return false;
2371 }
2372
2373 req->__data_len -= total_bytes;
2374 req->buffer = bio_data(req->bio);
2375
2376 /* update sector only for requests with clear definition of sector */
2377 if (req->cmd_type == REQ_TYPE_FS)
2378 req->__sector += total_bytes >> 9;
2379
2380 /* mixed attributes always follow the first bio */
2381 if (req->cmd_flags & REQ_MIXED_MERGE) {
2382 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2383 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2384 }
2385
2386 /*
2387 * If total number of sectors is less than the first segment
2388 * size, something has gone terribly wrong.
2389 */
2390 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2391 blk_dump_rq_flags(req, "request botched");
2392 req->__data_len = blk_rq_cur_bytes(req);
2393 }
2394
2395 /* recalculate the number of segments */
2396 blk_recalc_rq_segments(req);
2397
2398 return true;
2399 }
2400 EXPORT_SYMBOL_GPL(blk_update_request);
2401
2402 static bool blk_update_bidi_request(struct request *rq, int error,
2403 unsigned int nr_bytes,
2404 unsigned int bidi_bytes)
2405 {
2406 if (blk_update_request(rq, error, nr_bytes))
2407 return true;
2408
2409 /* Bidi request must be completed as a whole */
2410 if (unlikely(blk_bidi_rq(rq)) &&
2411 blk_update_request(rq->next_rq, error, bidi_bytes))
2412 return true;
2413
2414 if (blk_queue_add_random(rq->q))
2415 add_disk_randomness(rq->rq_disk);
2416
2417 return false;
2418 }
2419
2420 /**
2421 * blk_unprep_request - unprepare a request
2422 * @req: the request
2423 *
2424 * This function makes a request ready for complete resubmission (or
2425 * completion). It happens only after all error handling is complete,
2426 * so represents the appropriate moment to deallocate any resources
2427 * that were allocated to the request in the prep_rq_fn. The queue
2428 * lock is held when calling this.
2429 */
2430 void blk_unprep_request(struct request *req)
2431 {
2432 struct request_queue *q = req->q;
2433
2434 req->cmd_flags &= ~REQ_DONTPREP;
2435 if (q->unprep_rq_fn)
2436 q->unprep_rq_fn(q, req);
2437 }
2438 EXPORT_SYMBOL_GPL(blk_unprep_request);
2439
2440 /*
2441 * queue lock must be held
2442 */
2443 static void blk_finish_request(struct request *req, int error)
2444 {
2445 if (blk_rq_tagged(req))
2446 blk_queue_end_tag(req->q, req);
2447
2448 BUG_ON(blk_queued_rq(req));
2449
2450 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2451 laptop_io_completion(&req->q->backing_dev_info);
2452
2453 blk_delete_timer(req);
2454
2455 if (req->cmd_flags & REQ_DONTPREP)
2456 blk_unprep_request(req);
2457
2458
2459 blk_account_io_done(req);
2460
2461 if (req->end_io)
2462 req->end_io(req, error);
2463 else {
2464 if (blk_bidi_rq(req))
2465 __blk_put_request(req->next_rq->q, req->next_rq);
2466
2467 __blk_put_request(req->q, req);
2468 }
2469 }
2470
2471 /**
2472 * blk_end_bidi_request - Complete a bidi request
2473 * @rq: the request to complete
2474 * @error: %0 for success, < %0 for error
2475 * @nr_bytes: number of bytes to complete @rq
2476 * @bidi_bytes: number of bytes to complete @rq->next_rq
2477 *
2478 * Description:
2479 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2480 * Drivers that supports bidi can safely call this member for any
2481 * type of request, bidi or uni. In the later case @bidi_bytes is
2482 * just ignored.
2483 *
2484 * Return:
2485 * %false - we are done with this request
2486 * %true - still buffers pending for this request
2487 **/
2488 static bool blk_end_bidi_request(struct request *rq, int error,
2489 unsigned int nr_bytes, unsigned int bidi_bytes)
2490 {
2491 struct request_queue *q = rq->q;
2492 unsigned long flags;
2493
2494 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2495 return true;
2496
2497 spin_lock_irqsave(q->queue_lock, flags);
2498 blk_finish_request(rq, error);
2499 spin_unlock_irqrestore(q->queue_lock, flags);
2500
2501 return false;
2502 }
2503
2504 /**
2505 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2506 * @rq: the request to complete
2507 * @error: %0 for success, < %0 for error
2508 * @nr_bytes: number of bytes to complete @rq
2509 * @bidi_bytes: number of bytes to complete @rq->next_rq
2510 *
2511 * Description:
2512 * Identical to blk_end_bidi_request() except that queue lock is
2513 * assumed to be locked on entry and remains so on return.
2514 *
2515 * Return:
2516 * %false - we are done with this request
2517 * %true - still buffers pending for this request
2518 **/
2519 bool __blk_end_bidi_request(struct request *rq, int error,
2520 unsigned int nr_bytes, unsigned int bidi_bytes)
2521 {
2522 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2523 return true;
2524
2525 blk_finish_request(rq, error);
2526
2527 return false;
2528 }
2529
2530 /**
2531 * blk_end_request - Helper function for drivers to complete the request.
2532 * @rq: the request being processed
2533 * @error: %0 for success, < %0 for error
2534 * @nr_bytes: number of bytes to complete
2535 *
2536 * Description:
2537 * Ends I/O on a number of bytes attached to @rq.
2538 * If @rq has leftover, sets it up for the next range of segments.
2539 *
2540 * Return:
2541 * %false - we are done with this request
2542 * %true - still buffers pending for this request
2543 **/
2544 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2545 {
2546 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2547 }
2548 EXPORT_SYMBOL(blk_end_request);
2549
2550 /**
2551 * blk_end_request_all - Helper function for drives to finish the request.
2552 * @rq: the request to finish
2553 * @error: %0 for success, < %0 for error
2554 *
2555 * Description:
2556 * Completely finish @rq.
2557 */
2558 void blk_end_request_all(struct request *rq, int error)
2559 {
2560 bool pending;
2561 unsigned int bidi_bytes = 0;
2562
2563 if (unlikely(blk_bidi_rq(rq)))
2564 bidi_bytes = blk_rq_bytes(rq->next_rq);
2565
2566 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2567 BUG_ON(pending);
2568 }
2569 EXPORT_SYMBOL(blk_end_request_all);
2570
2571 /**
2572 * blk_end_request_cur - Helper function to finish the current request chunk.
2573 * @rq: the request to finish the current chunk for
2574 * @error: %0 for success, < %0 for error
2575 *
2576 * Description:
2577 * Complete the current consecutively mapped chunk from @rq.
2578 *
2579 * Return:
2580 * %false - we are done with this request
2581 * %true - still buffers pending for this request
2582 */
2583 bool blk_end_request_cur(struct request *rq, int error)
2584 {
2585 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2586 }
2587 EXPORT_SYMBOL(blk_end_request_cur);
2588
2589 /**
2590 * blk_end_request_err - Finish a request till the next failure boundary.
2591 * @rq: the request to finish till the next failure boundary for
2592 * @error: must be negative errno
2593 *
2594 * Description:
2595 * Complete @rq till the next failure boundary.
2596 *
2597 * Return:
2598 * %false - we are done with this request
2599 * %true - still buffers pending for this request
2600 */
2601 bool blk_end_request_err(struct request *rq, int error)
2602 {
2603 WARN_ON(error >= 0);
2604 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2605 }
2606 EXPORT_SYMBOL_GPL(blk_end_request_err);
2607
2608 /**
2609 * __blk_end_request - Helper function for drivers to complete the request.
2610 * @rq: the request being processed
2611 * @error: %0 for success, < %0 for error
2612 * @nr_bytes: number of bytes to complete
2613 *
2614 * Description:
2615 * Must be called with queue lock held unlike blk_end_request().
2616 *
2617 * Return:
2618 * %false - we are done with this request
2619 * %true - still buffers pending for this request
2620 **/
2621 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2622 {
2623 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2624 }
2625 EXPORT_SYMBOL(__blk_end_request);
2626
2627 /**
2628 * __blk_end_request_all - Helper function for drives to finish the request.
2629 * @rq: the request to finish
2630 * @error: %0 for success, < %0 for error
2631 *
2632 * Description:
2633 * Completely finish @rq. Must be called with queue lock held.
2634 */
2635 void __blk_end_request_all(struct request *rq, int error)
2636 {
2637 bool pending;
2638 unsigned int bidi_bytes = 0;
2639
2640 if (unlikely(blk_bidi_rq(rq)))
2641 bidi_bytes = blk_rq_bytes(rq->next_rq);
2642
2643 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2644 BUG_ON(pending);
2645 }
2646 EXPORT_SYMBOL(__blk_end_request_all);
2647
2648 /**
2649 * __blk_end_request_cur - Helper function to finish the current request chunk.
2650 * @rq: the request to finish the current chunk for
2651 * @error: %0 for success, < %0 for error
2652 *
2653 * Description:
2654 * Complete the current consecutively mapped chunk from @rq. Must
2655 * be called with queue lock held.
2656 *
2657 * Return:
2658 * %false - we are done with this request
2659 * %true - still buffers pending for this request
2660 */
2661 bool __blk_end_request_cur(struct request *rq, int error)
2662 {
2663 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2664 }
2665 EXPORT_SYMBOL(__blk_end_request_cur);
2666
2667 /**
2668 * __blk_end_request_err - Finish a request till the next failure boundary.
2669 * @rq: the request to finish till the next failure boundary for
2670 * @error: must be negative errno
2671 *
2672 * Description:
2673 * Complete @rq till the next failure boundary. Must be called
2674 * with queue lock held.
2675 *
2676 * Return:
2677 * %false - we are done with this request
2678 * %true - still buffers pending for this request
2679 */
2680 bool __blk_end_request_err(struct request *rq, int error)
2681 {
2682 WARN_ON(error >= 0);
2683 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2684 }
2685 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2686
2687 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2688 struct bio *bio)
2689 {
2690 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2691 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2692
2693 if (bio_has_data(bio)) {
2694 rq->nr_phys_segments = bio_phys_segments(q, bio);
2695 rq->buffer = bio_data(bio);
2696 }
2697 rq->__data_len = bio->bi_size;
2698 rq->bio = rq->biotail = bio;
2699
2700 if (bio->bi_bdev)
2701 rq->rq_disk = bio->bi_bdev->bd_disk;
2702 }
2703
2704 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2705 /**
2706 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2707 * @rq: the request to be flushed
2708 *
2709 * Description:
2710 * Flush all pages in @rq.
2711 */
2712 void rq_flush_dcache_pages(struct request *rq)
2713 {
2714 struct req_iterator iter;
2715 struct bio_vec *bvec;
2716
2717 rq_for_each_segment(bvec, rq, iter)
2718 flush_dcache_page(bvec->bv_page);
2719 }
2720 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2721 #endif
2722
2723 /**
2724 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2725 * @q : the queue of the device being checked
2726 *
2727 * Description:
2728 * Check if underlying low-level drivers of a device are busy.
2729 * If the drivers want to export their busy state, they must set own
2730 * exporting function using blk_queue_lld_busy() first.
2731 *
2732 * Basically, this function is used only by request stacking drivers
2733 * to stop dispatching requests to underlying devices when underlying
2734 * devices are busy. This behavior helps more I/O merging on the queue
2735 * of the request stacking driver and prevents I/O throughput regression
2736 * on burst I/O load.
2737 *
2738 * Return:
2739 * 0 - Not busy (The request stacking driver should dispatch request)
2740 * 1 - Busy (The request stacking driver should stop dispatching request)
2741 */
2742 int blk_lld_busy(struct request_queue *q)
2743 {
2744 if (q->lld_busy_fn)
2745 return q->lld_busy_fn(q);
2746
2747 return 0;
2748 }
2749 EXPORT_SYMBOL_GPL(blk_lld_busy);
2750
2751 /**
2752 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2753 * @rq: the clone request to be cleaned up
2754 *
2755 * Description:
2756 * Free all bios in @rq for a cloned request.
2757 */
2758 void blk_rq_unprep_clone(struct request *rq)
2759 {
2760 struct bio *bio;
2761
2762 while ((bio = rq->bio) != NULL) {
2763 rq->bio = bio->bi_next;
2764
2765 bio_put(bio);
2766 }
2767 }
2768 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2769
2770 /*
2771 * Copy attributes of the original request to the clone request.
2772 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2773 */
2774 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2775 {
2776 dst->cpu = src->cpu;
2777 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2778 dst->cmd_type = src->cmd_type;
2779 dst->__sector = blk_rq_pos(src);
2780 dst->__data_len = blk_rq_bytes(src);
2781 dst->nr_phys_segments = src->nr_phys_segments;
2782 dst->ioprio = src->ioprio;
2783 dst->extra_len = src->extra_len;
2784 }
2785
2786 /**
2787 * blk_rq_prep_clone - Helper function to setup clone request
2788 * @rq: the request to be setup
2789 * @rq_src: original request to be cloned
2790 * @bs: bio_set that bios for clone are allocated from
2791 * @gfp_mask: memory allocation mask for bio
2792 * @bio_ctr: setup function to be called for each clone bio.
2793 * Returns %0 for success, non %0 for failure.
2794 * @data: private data to be passed to @bio_ctr
2795 *
2796 * Description:
2797 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2798 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2799 * are not copied, and copying such parts is the caller's responsibility.
2800 * Also, pages which the original bios are pointing to are not copied
2801 * and the cloned bios just point same pages.
2802 * So cloned bios must be completed before original bios, which means
2803 * the caller must complete @rq before @rq_src.
2804 */
2805 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2806 struct bio_set *bs, gfp_t gfp_mask,
2807 int (*bio_ctr)(struct bio *, struct bio *, void *),
2808 void *data)
2809 {
2810 struct bio *bio, *bio_src;
2811
2812 if (!bs)
2813 bs = fs_bio_set;
2814
2815 blk_rq_init(NULL, rq);
2816
2817 __rq_for_each_bio(bio_src, rq_src) {
2818 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2819 if (!bio)
2820 goto free_and_out;
2821
2822 if (bio_ctr && bio_ctr(bio, bio_src, data))
2823 goto free_and_out;
2824
2825 if (rq->bio) {
2826 rq->biotail->bi_next = bio;
2827 rq->biotail = bio;
2828 } else
2829 rq->bio = rq->biotail = bio;
2830 }
2831
2832 __blk_rq_prep_clone(rq, rq_src);
2833
2834 return 0;
2835
2836 free_and_out:
2837 if (bio)
2838 bio_put(bio);
2839 blk_rq_unprep_clone(rq);
2840
2841 return -ENOMEM;
2842 }
2843 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2844
2845 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2846 {
2847 return queue_work(kblockd_workqueue, work);
2848 }
2849 EXPORT_SYMBOL(kblockd_schedule_work);
2850
2851 int kblockd_schedule_delayed_work(struct request_queue *q,
2852 struct delayed_work *dwork, unsigned long delay)
2853 {
2854 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2855 }
2856 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2857
2858 #define PLUG_MAGIC 0x91827364
2859
2860 /**
2861 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2862 * @plug: The &struct blk_plug that needs to be initialized
2863 *
2864 * Description:
2865 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2866 * pending I/O should the task end up blocking between blk_start_plug() and
2867 * blk_finish_plug(). This is important from a performance perspective, but
2868 * also ensures that we don't deadlock. For instance, if the task is blocking
2869 * for a memory allocation, memory reclaim could end up wanting to free a
2870 * page belonging to that request that is currently residing in our private
2871 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2872 * this kind of deadlock.
2873 */
2874 void blk_start_plug(struct blk_plug *plug)
2875 {
2876 struct task_struct *tsk = current;
2877
2878 plug->magic = PLUG_MAGIC;
2879 INIT_LIST_HEAD(&plug->list);
2880 INIT_LIST_HEAD(&plug->cb_list);
2881
2882 /*
2883 * If this is a nested plug, don't actually assign it. It will be
2884 * flushed on its own.
2885 */
2886 if (!tsk->plug) {
2887 /*
2888 * Store ordering should not be needed here, since a potential
2889 * preempt will imply a full memory barrier
2890 */
2891 tsk->plug = plug;
2892 }
2893 }
2894 EXPORT_SYMBOL(blk_start_plug);
2895
2896 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2897 {
2898 struct request *rqa = container_of(a, struct request, queuelist);
2899 struct request *rqb = container_of(b, struct request, queuelist);
2900
2901 return !(rqa->q < rqb->q ||
2902 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2903 }
2904
2905 /*
2906 * If 'from_schedule' is true, then postpone the dispatch of requests
2907 * until a safe kblockd context. We due this to avoid accidental big
2908 * additional stack usage in driver dispatch, in places where the originally
2909 * plugger did not intend it.
2910 */
2911 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2912 bool from_schedule)
2913 __releases(q->queue_lock)
2914 {
2915 trace_block_unplug(q, depth, !from_schedule);
2916
2917 if (from_schedule)
2918 blk_run_queue_async(q);
2919 else
2920 __blk_run_queue(q);
2921 spin_unlock(q->queue_lock);
2922 }
2923
2924 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2925 {
2926 LIST_HEAD(callbacks);
2927
2928 while (!list_empty(&plug->cb_list)) {
2929 list_splice_init(&plug->cb_list, &callbacks);
2930
2931 while (!list_empty(&callbacks)) {
2932 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2933 struct blk_plug_cb,
2934 list);
2935 list_del(&cb->list);
2936 cb->callback(cb, from_schedule);
2937 }
2938 }
2939 }
2940
2941 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2942 int size)
2943 {
2944 struct blk_plug *plug = current->plug;
2945 struct blk_plug_cb *cb;
2946
2947 if (!plug)
2948 return NULL;
2949
2950 list_for_each_entry(cb, &plug->cb_list, list)
2951 if (cb->callback == unplug && cb->data == data)
2952 return cb;
2953
2954 /* Not currently on the callback list */
2955 BUG_ON(size < sizeof(*cb));
2956 cb = kzalloc(size, GFP_ATOMIC);
2957 if (cb) {
2958 cb->data = data;
2959 cb->callback = unplug;
2960 list_add(&cb->list, &plug->cb_list);
2961 }
2962 return cb;
2963 }
2964 EXPORT_SYMBOL(blk_check_plugged);
2965
2966 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2967 {
2968 struct request_queue *q;
2969 unsigned long flags;
2970 struct request *rq;
2971 LIST_HEAD(list);
2972 unsigned int depth;
2973
2974 BUG_ON(plug->magic != PLUG_MAGIC);
2975
2976 flush_plug_callbacks(plug, from_schedule);
2977 if (list_empty(&plug->list))
2978 return;
2979
2980 list_splice_init(&plug->list, &list);
2981
2982 list_sort(NULL, &list, plug_rq_cmp);
2983
2984 q = NULL;
2985 depth = 0;
2986
2987 /*
2988 * Save and disable interrupts here, to avoid doing it for every
2989 * queue lock we have to take.
2990 */
2991 local_irq_save(flags);
2992 while (!list_empty(&list)) {
2993 rq = list_entry_rq(list.next);
2994 list_del_init(&rq->queuelist);
2995 BUG_ON(!rq->q);
2996 if (rq->q != q) {
2997 /*
2998 * This drops the queue lock
2999 */
3000 if (q)
3001 queue_unplugged(q, depth, from_schedule);
3002 q = rq->q;
3003 depth = 0;
3004 spin_lock(q->queue_lock);
3005 }
3006
3007 /*
3008 * Short-circuit if @q is dead
3009 */
3010 if (unlikely(blk_queue_dying(q))) {
3011 __blk_end_request_all(rq, -ENODEV);
3012 continue;
3013 }
3014
3015 /*
3016 * rq is already accounted, so use raw insert
3017 */
3018 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3019 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3020 else
3021 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3022
3023 depth++;
3024 }
3025
3026 /*
3027 * This drops the queue lock
3028 */
3029 if (q)
3030 queue_unplugged(q, depth, from_schedule);
3031
3032 local_irq_restore(flags);
3033 }
3034
3035 void blk_finish_plug(struct blk_plug *plug)
3036 {
3037 blk_flush_plug_list(plug, false);
3038
3039 if (plug == current->plug)
3040 current->plug = NULL;
3041 }
3042 EXPORT_SYMBOL(blk_finish_plug);
3043
3044 #ifdef CONFIG_PM_RUNTIME
3045 /**
3046 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3047 * @q: the queue of the device
3048 * @dev: the device the queue belongs to
3049 *
3050 * Description:
3051 * Initialize runtime-PM-related fields for @q and start auto suspend for
3052 * @dev. Drivers that want to take advantage of request-based runtime PM
3053 * should call this function after @dev has been initialized, and its
3054 * request queue @q has been allocated, and runtime PM for it can not happen
3055 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3056 * cases, driver should call this function before any I/O has taken place.
3057 *
3058 * This function takes care of setting up using auto suspend for the device,
3059 * the autosuspend delay is set to -1 to make runtime suspend impossible
3060 * until an updated value is either set by user or by driver. Drivers do
3061 * not need to touch other autosuspend settings.
3062 *
3063 * The block layer runtime PM is request based, so only works for drivers
3064 * that use request as their IO unit instead of those directly use bio's.
3065 */
3066 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3067 {
3068 q->dev = dev;
3069 q->rpm_status = RPM_ACTIVE;
3070 pm_runtime_set_autosuspend_delay(q->dev, -1);
3071 pm_runtime_use_autosuspend(q->dev);
3072 }
3073 EXPORT_SYMBOL(blk_pm_runtime_init);
3074
3075 /**
3076 * blk_pre_runtime_suspend - Pre runtime suspend check
3077 * @q: the queue of the device
3078 *
3079 * Description:
3080 * This function will check if runtime suspend is allowed for the device
3081 * by examining if there are any requests pending in the queue. If there
3082 * are requests pending, the device can not be runtime suspended; otherwise,
3083 * the queue's status will be updated to SUSPENDING and the driver can
3084 * proceed to suspend the device.
3085 *
3086 * For the not allowed case, we mark last busy for the device so that
3087 * runtime PM core will try to autosuspend it some time later.
3088 *
3089 * This function should be called near the start of the device's
3090 * runtime_suspend callback.
3091 *
3092 * Return:
3093 * 0 - OK to runtime suspend the device
3094 * -EBUSY - Device should not be runtime suspended
3095 */
3096 int blk_pre_runtime_suspend(struct request_queue *q)
3097 {
3098 int ret = 0;
3099
3100 spin_lock_irq(q->queue_lock);
3101 if (q->nr_pending) {
3102 ret = -EBUSY;
3103 pm_runtime_mark_last_busy(q->dev);
3104 } else {
3105 q->rpm_status = RPM_SUSPENDING;
3106 }
3107 spin_unlock_irq(q->queue_lock);
3108 return ret;
3109 }
3110 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3111
3112 /**
3113 * blk_post_runtime_suspend - Post runtime suspend processing
3114 * @q: the queue of the device
3115 * @err: return value of the device's runtime_suspend function
3116 *
3117 * Description:
3118 * Update the queue's runtime status according to the return value of the
3119 * device's runtime suspend function and mark last busy for the device so
3120 * that PM core will try to auto suspend the device at a later time.
3121 *
3122 * This function should be called near the end of the device's
3123 * runtime_suspend callback.
3124 */
3125 void blk_post_runtime_suspend(struct request_queue *q, int err)
3126 {
3127 spin_lock_irq(q->queue_lock);
3128 if (!err) {
3129 q->rpm_status = RPM_SUSPENDED;
3130 } else {
3131 q->rpm_status = RPM_ACTIVE;
3132 pm_runtime_mark_last_busy(q->dev);
3133 }
3134 spin_unlock_irq(q->queue_lock);
3135 }
3136 EXPORT_SYMBOL(blk_post_runtime_suspend);
3137
3138 /**
3139 * blk_pre_runtime_resume - Pre runtime resume processing
3140 * @q: the queue of the device
3141 *
3142 * Description:
3143 * Update the queue's runtime status to RESUMING in preparation for the
3144 * runtime resume of the device.
3145 *
3146 * This function should be called near the start of the device's
3147 * runtime_resume callback.
3148 */
3149 void blk_pre_runtime_resume(struct request_queue *q)
3150 {
3151 spin_lock_irq(q->queue_lock);
3152 q->rpm_status = RPM_RESUMING;
3153 spin_unlock_irq(q->queue_lock);
3154 }
3155 EXPORT_SYMBOL(blk_pre_runtime_resume);
3156
3157 /**
3158 * blk_post_runtime_resume - Post runtime resume processing
3159 * @q: the queue of the device
3160 * @err: return value of the device's runtime_resume function
3161 *
3162 * Description:
3163 * Update the queue's runtime status according to the return value of the
3164 * device's runtime_resume function. If it is successfully resumed, process
3165 * the requests that are queued into the device's queue when it is resuming
3166 * and then mark last busy and initiate autosuspend for it.
3167 *
3168 * This function should be called near the end of the device's
3169 * runtime_resume callback.
3170 */
3171 void blk_post_runtime_resume(struct request_queue *q, int err)
3172 {
3173 spin_lock_irq(q->queue_lock);
3174 if (!err) {
3175 q->rpm_status = RPM_ACTIVE;
3176 __blk_run_queue(q);
3177 pm_runtime_mark_last_busy(q->dev);
3178 pm_request_autosuspend(q->dev);
3179 } else {
3180 q->rpm_status = RPM_SUSPENDED;
3181 }
3182 spin_unlock_irq(q->queue_lock);
3183 }
3184 EXPORT_SYMBOL(blk_post_runtime_resume);
3185 #endif
3186
3187 int __init blk_dev_init(void)
3188 {
3189 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3190 sizeof(((struct request *)0)->cmd_flags));
3191
3192 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3193 kblockd_workqueue = alloc_workqueue("kblockd",
3194 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3195 if (!kblockd_workqueue)
3196 panic("Failed to create kblockd\n");
3197
3198 request_cachep = kmem_cache_create("blkdev_requests",
3199 sizeof(struct request), 0, SLAB_PANIC, NULL);
3200
3201 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3202 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3203
3204 return 0;
3205 }