9642d4a3860239f3203a2ff12dba5543a26ccf4f
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / xen / enlighten.c
1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34
35 #include <xen/xen.h>
36 #include <xen/interface/xen.h>
37 #include <xen/interface/version.h>
38 #include <xen/interface/physdev.h>
39 #include <xen/interface/vcpu.h>
40 #include <xen/interface/memory.h>
41 #include <xen/interface/xen-mca.h>
42 #include <xen/features.h>
43 #include <xen/page.h>
44 #include <xen/hvm.h>
45 #include <xen/hvc-console.h>
46 #include <xen/acpi.h>
47
48 #include <asm/paravirt.h>
49 #include <asm/apic.h>
50 #include <asm/page.h>
51 #include <asm/xen/pci.h>
52 #include <asm/xen/hypercall.h>
53 #include <asm/xen/hypervisor.h>
54 #include <asm/fixmap.h>
55 #include <asm/processor.h>
56 #include <asm/proto.h>
57 #include <asm/msr-index.h>
58 #include <asm/traps.h>
59 #include <asm/setup.h>
60 #include <asm/desc.h>
61 #include <asm/pgalloc.h>
62 #include <asm/pgtable.h>
63 #include <asm/tlbflush.h>
64 #include <asm/reboot.h>
65 #include <asm/stackprotector.h>
66 #include <asm/hypervisor.h>
67 #include <asm/mwait.h>
68 #include <asm/pci_x86.h>
69
70 #ifdef CONFIG_ACPI
71 #include <linux/acpi.h>
72 #include <asm/acpi.h>
73 #include <acpi/pdc_intel.h>
74 #include <acpi/processor.h>
75 #include <xen/interface/platform.h>
76 #endif
77
78 #include "xen-ops.h"
79 #include "mmu.h"
80 #include "smp.h"
81 #include "multicalls.h"
82
83 EXPORT_SYMBOL_GPL(hypercall_page);
84
85 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
86 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
87
88 enum xen_domain_type xen_domain_type = XEN_NATIVE;
89 EXPORT_SYMBOL_GPL(xen_domain_type);
90
91 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
92 EXPORT_SYMBOL(machine_to_phys_mapping);
93 unsigned long machine_to_phys_nr;
94 EXPORT_SYMBOL(machine_to_phys_nr);
95
96 struct start_info *xen_start_info;
97 EXPORT_SYMBOL_GPL(xen_start_info);
98
99 struct shared_info xen_dummy_shared_info;
100
101 void *xen_initial_gdt;
102
103 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
104 __read_mostly int xen_have_vector_callback;
105 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
106
107 /*
108 * Point at some empty memory to start with. We map the real shared_info
109 * page as soon as fixmap is up and running.
110 */
111 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
112
113 /*
114 * Flag to determine whether vcpu info placement is available on all
115 * VCPUs. We assume it is to start with, and then set it to zero on
116 * the first failure. This is because it can succeed on some VCPUs
117 * and not others, since it can involve hypervisor memory allocation,
118 * or because the guest failed to guarantee all the appropriate
119 * constraints on all VCPUs (ie buffer can't cross a page boundary).
120 *
121 * Note that any particular CPU may be using a placed vcpu structure,
122 * but we can only optimise if the all are.
123 *
124 * 0: not available, 1: available
125 */
126 static int have_vcpu_info_placement = 1;
127
128 struct tls_descs {
129 struct desc_struct desc[3];
130 };
131
132 /*
133 * Updating the 3 TLS descriptors in the GDT on every task switch is
134 * surprisingly expensive so we avoid updating them if they haven't
135 * changed. Since Xen writes different descriptors than the one
136 * passed in the update_descriptor hypercall we keep shadow copies to
137 * compare against.
138 */
139 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
140
141 static void clamp_max_cpus(void)
142 {
143 #ifdef CONFIG_SMP
144 if (setup_max_cpus > MAX_VIRT_CPUS)
145 setup_max_cpus = MAX_VIRT_CPUS;
146 #endif
147 }
148
149 static void xen_vcpu_setup(int cpu)
150 {
151 struct vcpu_register_vcpu_info info;
152 int err;
153 struct vcpu_info *vcpup;
154
155 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
156
157 if (cpu < MAX_VIRT_CPUS)
158 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
159
160 if (!have_vcpu_info_placement) {
161 if (cpu >= MAX_VIRT_CPUS)
162 clamp_max_cpus();
163 return;
164 }
165
166 vcpup = &per_cpu(xen_vcpu_info, cpu);
167 info.mfn = arbitrary_virt_to_mfn(vcpup);
168 info.offset = offset_in_page(vcpup);
169
170 /* Check to see if the hypervisor will put the vcpu_info
171 structure where we want it, which allows direct access via
172 a percpu-variable. */
173 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
174
175 if (err) {
176 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
177 have_vcpu_info_placement = 0;
178 clamp_max_cpus();
179 } else {
180 /* This cpu is using the registered vcpu info, even if
181 later ones fail to. */
182 per_cpu(xen_vcpu, cpu) = vcpup;
183 }
184 }
185
186 /*
187 * On restore, set the vcpu placement up again.
188 * If it fails, then we're in a bad state, since
189 * we can't back out from using it...
190 */
191 void xen_vcpu_restore(void)
192 {
193 int cpu;
194
195 for_each_online_cpu(cpu) {
196 bool other_cpu = (cpu != smp_processor_id());
197
198 if (other_cpu &&
199 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
200 BUG();
201
202 xen_setup_runstate_info(cpu);
203
204 if (have_vcpu_info_placement)
205 xen_vcpu_setup(cpu);
206
207 if (other_cpu &&
208 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
209 BUG();
210 }
211 }
212
213 static void __init xen_banner(void)
214 {
215 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
216 struct xen_extraversion extra;
217 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
218
219 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
220 pv_info.name);
221 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
222 version >> 16, version & 0xffff, extra.extraversion,
223 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
224 }
225
226 #define CPUID_THERM_POWER_LEAF 6
227 #define APERFMPERF_PRESENT 0
228
229 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
230 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
231
232 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
233 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
234 static __read_mostly unsigned int cpuid_leaf5_edx_val;
235
236 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
237 unsigned int *cx, unsigned int *dx)
238 {
239 unsigned maskebx = ~0;
240 unsigned maskecx = ~0;
241 unsigned maskedx = ~0;
242 unsigned setecx = 0;
243 /*
244 * Mask out inconvenient features, to try and disable as many
245 * unsupported kernel subsystems as possible.
246 */
247 switch (*ax) {
248 case 1:
249 maskecx = cpuid_leaf1_ecx_mask;
250 setecx = cpuid_leaf1_ecx_set_mask;
251 maskedx = cpuid_leaf1_edx_mask;
252 break;
253
254 case CPUID_MWAIT_LEAF:
255 /* Synthesize the values.. */
256 *ax = 0;
257 *bx = 0;
258 *cx = cpuid_leaf5_ecx_val;
259 *dx = cpuid_leaf5_edx_val;
260 return;
261
262 case CPUID_THERM_POWER_LEAF:
263 /* Disabling APERFMPERF for kernel usage */
264 maskecx = ~(1 << APERFMPERF_PRESENT);
265 break;
266
267 case 0xb:
268 /* Suppress extended topology stuff */
269 maskebx = 0;
270 break;
271 }
272
273 asm(XEN_EMULATE_PREFIX "cpuid"
274 : "=a" (*ax),
275 "=b" (*bx),
276 "=c" (*cx),
277 "=d" (*dx)
278 : "0" (*ax), "2" (*cx));
279
280 *bx &= maskebx;
281 *cx &= maskecx;
282 *cx |= setecx;
283 *dx &= maskedx;
284
285 }
286
287 static bool __init xen_check_mwait(void)
288 {
289 #if defined(CONFIG_ACPI) && !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR) && \
290 !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR_MODULE)
291 struct xen_platform_op op = {
292 .cmd = XENPF_set_processor_pminfo,
293 .u.set_pminfo.id = -1,
294 .u.set_pminfo.type = XEN_PM_PDC,
295 };
296 uint32_t buf[3];
297 unsigned int ax, bx, cx, dx;
298 unsigned int mwait_mask;
299
300 /* We need to determine whether it is OK to expose the MWAIT
301 * capability to the kernel to harvest deeper than C3 states from ACPI
302 * _CST using the processor_harvest_xen.c module. For this to work, we
303 * need to gather the MWAIT_LEAF values (which the cstate.c code
304 * checks against). The hypervisor won't expose the MWAIT flag because
305 * it would break backwards compatibility; so we will find out directly
306 * from the hardware and hypercall.
307 */
308 if (!xen_initial_domain())
309 return false;
310
311 ax = 1;
312 cx = 0;
313
314 native_cpuid(&ax, &bx, &cx, &dx);
315
316 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
317 (1 << (X86_FEATURE_MWAIT % 32));
318
319 if ((cx & mwait_mask) != mwait_mask)
320 return false;
321
322 /* We need to emulate the MWAIT_LEAF and for that we need both
323 * ecx and edx. The hypercall provides only partial information.
324 */
325
326 ax = CPUID_MWAIT_LEAF;
327 bx = 0;
328 cx = 0;
329 dx = 0;
330
331 native_cpuid(&ax, &bx, &cx, &dx);
332
333 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
334 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
335 */
336 buf[0] = ACPI_PDC_REVISION_ID;
337 buf[1] = 1;
338 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
339
340 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
341
342 if ((HYPERVISOR_dom0_op(&op) == 0) &&
343 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
344 cpuid_leaf5_ecx_val = cx;
345 cpuid_leaf5_edx_val = dx;
346 }
347 return true;
348 #else
349 return false;
350 #endif
351 }
352 static void __init xen_init_cpuid_mask(void)
353 {
354 unsigned int ax, bx, cx, dx;
355 unsigned int xsave_mask;
356
357 cpuid_leaf1_edx_mask =
358 ~((1 << X86_FEATURE_MTRR) | /* disable MTRR */
359 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
360
361 if (!xen_initial_domain())
362 cpuid_leaf1_edx_mask &=
363 ~((1 << X86_FEATURE_APIC) | /* disable local APIC */
364 (1 << X86_FEATURE_ACPI)); /* disable ACPI */
365 ax = 1;
366 cx = 0;
367 xen_cpuid(&ax, &bx, &cx, &dx);
368
369 xsave_mask =
370 (1 << (X86_FEATURE_XSAVE % 32)) |
371 (1 << (X86_FEATURE_OSXSAVE % 32));
372
373 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
374 if ((cx & xsave_mask) != xsave_mask)
375 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
376 if (xen_check_mwait())
377 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
378 }
379
380 static void xen_set_debugreg(int reg, unsigned long val)
381 {
382 HYPERVISOR_set_debugreg(reg, val);
383 }
384
385 static unsigned long xen_get_debugreg(int reg)
386 {
387 return HYPERVISOR_get_debugreg(reg);
388 }
389
390 static void xen_end_context_switch(struct task_struct *next)
391 {
392 xen_mc_flush();
393 paravirt_end_context_switch(next);
394 }
395
396 static unsigned long xen_store_tr(void)
397 {
398 return 0;
399 }
400
401 /*
402 * Set the page permissions for a particular virtual address. If the
403 * address is a vmalloc mapping (or other non-linear mapping), then
404 * find the linear mapping of the page and also set its protections to
405 * match.
406 */
407 static void set_aliased_prot(void *v, pgprot_t prot)
408 {
409 int level;
410 pte_t *ptep;
411 pte_t pte;
412 unsigned long pfn;
413 struct page *page;
414
415 ptep = lookup_address((unsigned long)v, &level);
416 BUG_ON(ptep == NULL);
417
418 pfn = pte_pfn(*ptep);
419 page = pfn_to_page(pfn);
420
421 pte = pfn_pte(pfn, prot);
422
423 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
424 BUG();
425
426 if (!PageHighMem(page)) {
427 void *av = __va(PFN_PHYS(pfn));
428
429 if (av != v)
430 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
431 BUG();
432 } else
433 kmap_flush_unused();
434 }
435
436 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
437 {
438 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
439 int i;
440
441 for(i = 0; i < entries; i += entries_per_page)
442 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
443 }
444
445 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
446 {
447 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
448 int i;
449
450 for(i = 0; i < entries; i += entries_per_page)
451 set_aliased_prot(ldt + i, PAGE_KERNEL);
452 }
453
454 static void xen_set_ldt(const void *addr, unsigned entries)
455 {
456 struct mmuext_op *op;
457 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
458
459 trace_xen_cpu_set_ldt(addr, entries);
460
461 op = mcs.args;
462 op->cmd = MMUEXT_SET_LDT;
463 op->arg1.linear_addr = (unsigned long)addr;
464 op->arg2.nr_ents = entries;
465
466 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
467
468 xen_mc_issue(PARAVIRT_LAZY_CPU);
469 }
470
471 static void xen_load_gdt(const struct desc_ptr *dtr)
472 {
473 unsigned long va = dtr->address;
474 unsigned int size = dtr->size + 1;
475 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
476 unsigned long frames[pages];
477 int f;
478
479 /*
480 * A GDT can be up to 64k in size, which corresponds to 8192
481 * 8-byte entries, or 16 4k pages..
482 */
483
484 BUG_ON(size > 65536);
485 BUG_ON(va & ~PAGE_MASK);
486
487 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
488 int level;
489 pte_t *ptep;
490 unsigned long pfn, mfn;
491 void *virt;
492
493 /*
494 * The GDT is per-cpu and is in the percpu data area.
495 * That can be virtually mapped, so we need to do a
496 * page-walk to get the underlying MFN for the
497 * hypercall. The page can also be in the kernel's
498 * linear range, so we need to RO that mapping too.
499 */
500 ptep = lookup_address(va, &level);
501 BUG_ON(ptep == NULL);
502
503 pfn = pte_pfn(*ptep);
504 mfn = pfn_to_mfn(pfn);
505 virt = __va(PFN_PHYS(pfn));
506
507 frames[f] = mfn;
508
509 make_lowmem_page_readonly((void *)va);
510 make_lowmem_page_readonly(virt);
511 }
512
513 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
514 BUG();
515 }
516
517 /*
518 * load_gdt for early boot, when the gdt is only mapped once
519 */
520 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
521 {
522 unsigned long va = dtr->address;
523 unsigned int size = dtr->size + 1;
524 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
525 unsigned long frames[pages];
526 int f;
527
528 /*
529 * A GDT can be up to 64k in size, which corresponds to 8192
530 * 8-byte entries, or 16 4k pages..
531 */
532
533 BUG_ON(size > 65536);
534 BUG_ON(va & ~PAGE_MASK);
535
536 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
537 pte_t pte;
538 unsigned long pfn, mfn;
539
540 pfn = virt_to_pfn(va);
541 mfn = pfn_to_mfn(pfn);
542
543 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
544
545 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
546 BUG();
547
548 frames[f] = mfn;
549 }
550
551 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
552 BUG();
553 }
554
555 static inline bool desc_equal(const struct desc_struct *d1,
556 const struct desc_struct *d2)
557 {
558 return d1->a == d2->a && d1->b == d2->b;
559 }
560
561 static void load_TLS_descriptor(struct thread_struct *t,
562 unsigned int cpu, unsigned int i)
563 {
564 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
565 struct desc_struct *gdt;
566 xmaddr_t maddr;
567 struct multicall_space mc;
568
569 if (desc_equal(shadow, &t->tls_array[i]))
570 return;
571
572 *shadow = t->tls_array[i];
573
574 gdt = get_cpu_gdt_table(cpu);
575 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
576 mc = __xen_mc_entry(0);
577
578 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
579 }
580
581 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
582 {
583 /*
584 * XXX sleazy hack: If we're being called in a lazy-cpu zone
585 * and lazy gs handling is enabled, it means we're in a
586 * context switch, and %gs has just been saved. This means we
587 * can zero it out to prevent faults on exit from the
588 * hypervisor if the next process has no %gs. Either way, it
589 * has been saved, and the new value will get loaded properly.
590 * This will go away as soon as Xen has been modified to not
591 * save/restore %gs for normal hypercalls.
592 *
593 * On x86_64, this hack is not used for %gs, because gs points
594 * to KERNEL_GS_BASE (and uses it for PDA references), so we
595 * must not zero %gs on x86_64
596 *
597 * For x86_64, we need to zero %fs, otherwise we may get an
598 * exception between the new %fs descriptor being loaded and
599 * %fs being effectively cleared at __switch_to().
600 */
601 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
602 #ifdef CONFIG_X86_32
603 lazy_load_gs(0);
604 #else
605 loadsegment(fs, 0);
606 #endif
607 }
608
609 xen_mc_batch();
610
611 load_TLS_descriptor(t, cpu, 0);
612 load_TLS_descriptor(t, cpu, 1);
613 load_TLS_descriptor(t, cpu, 2);
614
615 xen_mc_issue(PARAVIRT_LAZY_CPU);
616 }
617
618 #ifdef CONFIG_X86_64
619 static void xen_load_gs_index(unsigned int idx)
620 {
621 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
622 BUG();
623 }
624 #endif
625
626 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
627 const void *ptr)
628 {
629 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
630 u64 entry = *(u64 *)ptr;
631
632 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
633
634 preempt_disable();
635
636 xen_mc_flush();
637 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
638 BUG();
639
640 preempt_enable();
641 }
642
643 static int cvt_gate_to_trap(int vector, const gate_desc *val,
644 struct trap_info *info)
645 {
646 unsigned long addr;
647
648 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
649 return 0;
650
651 info->vector = vector;
652
653 addr = gate_offset(*val);
654 #ifdef CONFIG_X86_64
655 /*
656 * Look for known traps using IST, and substitute them
657 * appropriately. The debugger ones are the only ones we care
658 * about. Xen will handle faults like double_fault,
659 * so we should never see them. Warn if
660 * there's an unexpected IST-using fault handler.
661 */
662 if (addr == (unsigned long)debug)
663 addr = (unsigned long)xen_debug;
664 else if (addr == (unsigned long)int3)
665 addr = (unsigned long)xen_int3;
666 else if (addr == (unsigned long)stack_segment)
667 addr = (unsigned long)xen_stack_segment;
668 else if (addr == (unsigned long)double_fault ||
669 addr == (unsigned long)nmi) {
670 /* Don't need to handle these */
671 return 0;
672 #ifdef CONFIG_X86_MCE
673 } else if (addr == (unsigned long)machine_check) {
674 /*
675 * when xen hypervisor inject vMCE to guest,
676 * use native mce handler to handle it
677 */
678 ;
679 #endif
680 } else {
681 /* Some other trap using IST? */
682 if (WARN_ON(val->ist != 0))
683 return 0;
684 }
685 #endif /* CONFIG_X86_64 */
686 info->address = addr;
687
688 info->cs = gate_segment(*val);
689 info->flags = val->dpl;
690 /* interrupt gates clear IF */
691 if (val->type == GATE_INTERRUPT)
692 info->flags |= 1 << 2;
693
694 return 1;
695 }
696
697 /* Locations of each CPU's IDT */
698 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
699
700 /* Set an IDT entry. If the entry is part of the current IDT, then
701 also update Xen. */
702 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
703 {
704 unsigned long p = (unsigned long)&dt[entrynum];
705 unsigned long start, end;
706
707 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
708
709 preempt_disable();
710
711 start = __this_cpu_read(idt_desc.address);
712 end = start + __this_cpu_read(idt_desc.size) + 1;
713
714 xen_mc_flush();
715
716 native_write_idt_entry(dt, entrynum, g);
717
718 if (p >= start && (p + 8) <= end) {
719 struct trap_info info[2];
720
721 info[1].address = 0;
722
723 if (cvt_gate_to_trap(entrynum, g, &info[0]))
724 if (HYPERVISOR_set_trap_table(info))
725 BUG();
726 }
727
728 preempt_enable();
729 }
730
731 static void xen_convert_trap_info(const struct desc_ptr *desc,
732 struct trap_info *traps)
733 {
734 unsigned in, out, count;
735
736 count = (desc->size+1) / sizeof(gate_desc);
737 BUG_ON(count > 256);
738
739 for (in = out = 0; in < count; in++) {
740 gate_desc *entry = (gate_desc*)(desc->address) + in;
741
742 if (cvt_gate_to_trap(in, entry, &traps[out]))
743 out++;
744 }
745 traps[out].address = 0;
746 }
747
748 void xen_copy_trap_info(struct trap_info *traps)
749 {
750 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
751
752 xen_convert_trap_info(desc, traps);
753 }
754
755 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
756 hold a spinlock to protect the static traps[] array (static because
757 it avoids allocation, and saves stack space). */
758 static void xen_load_idt(const struct desc_ptr *desc)
759 {
760 static DEFINE_SPINLOCK(lock);
761 static struct trap_info traps[257];
762
763 trace_xen_cpu_load_idt(desc);
764
765 spin_lock(&lock);
766
767 __get_cpu_var(idt_desc) = *desc;
768
769 xen_convert_trap_info(desc, traps);
770
771 xen_mc_flush();
772 if (HYPERVISOR_set_trap_table(traps))
773 BUG();
774
775 spin_unlock(&lock);
776 }
777
778 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
779 they're handled differently. */
780 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
781 const void *desc, int type)
782 {
783 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
784
785 preempt_disable();
786
787 switch (type) {
788 case DESC_LDT:
789 case DESC_TSS:
790 /* ignore */
791 break;
792
793 default: {
794 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
795
796 xen_mc_flush();
797 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
798 BUG();
799 }
800
801 }
802
803 preempt_enable();
804 }
805
806 /*
807 * Version of write_gdt_entry for use at early boot-time needed to
808 * update an entry as simply as possible.
809 */
810 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
811 const void *desc, int type)
812 {
813 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
814
815 switch (type) {
816 case DESC_LDT:
817 case DESC_TSS:
818 /* ignore */
819 break;
820
821 default: {
822 xmaddr_t maddr = virt_to_machine(&dt[entry]);
823
824 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
825 dt[entry] = *(struct desc_struct *)desc;
826 }
827
828 }
829 }
830
831 static void xen_load_sp0(struct tss_struct *tss,
832 struct thread_struct *thread)
833 {
834 struct multicall_space mcs;
835
836 mcs = xen_mc_entry(0);
837 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
838 xen_mc_issue(PARAVIRT_LAZY_CPU);
839 }
840
841 static void xen_set_iopl_mask(unsigned mask)
842 {
843 struct physdev_set_iopl set_iopl;
844
845 /* Force the change at ring 0. */
846 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
847 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
848 }
849
850 static void xen_io_delay(void)
851 {
852 }
853
854 #ifdef CONFIG_X86_LOCAL_APIC
855 static unsigned long xen_set_apic_id(unsigned int x)
856 {
857 WARN_ON(1);
858 return x;
859 }
860 static unsigned int xen_get_apic_id(unsigned long x)
861 {
862 return ((x)>>24) & 0xFFu;
863 }
864 static u32 xen_apic_read(u32 reg)
865 {
866 struct xen_platform_op op = {
867 .cmd = XENPF_get_cpuinfo,
868 .interface_version = XENPF_INTERFACE_VERSION,
869 .u.pcpu_info.xen_cpuid = 0,
870 };
871 int ret = 0;
872
873 /* Shouldn't need this as APIC is turned off for PV, and we only
874 * get called on the bootup processor. But just in case. */
875 if (!xen_initial_domain() || smp_processor_id())
876 return 0;
877
878 if (reg == APIC_LVR)
879 return 0x10;
880
881 if (reg != APIC_ID)
882 return 0;
883
884 ret = HYPERVISOR_dom0_op(&op);
885 if (ret)
886 return 0;
887
888 return op.u.pcpu_info.apic_id << 24;
889 }
890
891 static void xen_apic_write(u32 reg, u32 val)
892 {
893 /* Warn to see if there's any stray references */
894 WARN_ON(1);
895 }
896
897 static u64 xen_apic_icr_read(void)
898 {
899 return 0;
900 }
901
902 static void xen_apic_icr_write(u32 low, u32 id)
903 {
904 /* Warn to see if there's any stray references */
905 WARN_ON(1);
906 }
907
908 static void xen_apic_wait_icr_idle(void)
909 {
910 return;
911 }
912
913 static u32 xen_safe_apic_wait_icr_idle(void)
914 {
915 return 0;
916 }
917
918 static void set_xen_basic_apic_ops(void)
919 {
920 apic->read = xen_apic_read;
921 apic->write = xen_apic_write;
922 apic->icr_read = xen_apic_icr_read;
923 apic->icr_write = xen_apic_icr_write;
924 apic->wait_icr_idle = xen_apic_wait_icr_idle;
925 apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
926 apic->set_apic_id = xen_set_apic_id;
927 apic->get_apic_id = xen_get_apic_id;
928
929 #ifdef CONFIG_SMP
930 apic->send_IPI_allbutself = xen_send_IPI_allbutself;
931 apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
932 apic->send_IPI_mask = xen_send_IPI_mask;
933 apic->send_IPI_all = xen_send_IPI_all;
934 apic->send_IPI_self = xen_send_IPI_self;
935 #endif
936 }
937
938 #endif
939
940 static void xen_clts(void)
941 {
942 struct multicall_space mcs;
943
944 mcs = xen_mc_entry(0);
945
946 MULTI_fpu_taskswitch(mcs.mc, 0);
947
948 xen_mc_issue(PARAVIRT_LAZY_CPU);
949 }
950
951 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
952
953 static unsigned long xen_read_cr0(void)
954 {
955 unsigned long cr0 = this_cpu_read(xen_cr0_value);
956
957 if (unlikely(cr0 == 0)) {
958 cr0 = native_read_cr0();
959 this_cpu_write(xen_cr0_value, cr0);
960 }
961
962 return cr0;
963 }
964
965 static void xen_write_cr0(unsigned long cr0)
966 {
967 struct multicall_space mcs;
968
969 this_cpu_write(xen_cr0_value, cr0);
970
971 /* Only pay attention to cr0.TS; everything else is
972 ignored. */
973 mcs = xen_mc_entry(0);
974
975 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
976
977 xen_mc_issue(PARAVIRT_LAZY_CPU);
978 }
979
980 static void xen_write_cr4(unsigned long cr4)
981 {
982 cr4 &= ~X86_CR4_PGE;
983 cr4 &= ~X86_CR4_PSE;
984
985 native_write_cr4(cr4);
986 }
987
988 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
989 {
990 int ret;
991
992 ret = 0;
993
994 switch (msr) {
995 #ifdef CONFIG_X86_64
996 unsigned which;
997 u64 base;
998
999 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
1000 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
1001 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
1002
1003 set:
1004 base = ((u64)high << 32) | low;
1005 if (HYPERVISOR_set_segment_base(which, base) != 0)
1006 ret = -EIO;
1007 break;
1008 #endif
1009
1010 case MSR_STAR:
1011 case MSR_CSTAR:
1012 case MSR_LSTAR:
1013 case MSR_SYSCALL_MASK:
1014 case MSR_IA32_SYSENTER_CS:
1015 case MSR_IA32_SYSENTER_ESP:
1016 case MSR_IA32_SYSENTER_EIP:
1017 /* Fast syscall setup is all done in hypercalls, so
1018 these are all ignored. Stub them out here to stop
1019 Xen console noise. */
1020 break;
1021
1022 case MSR_IA32_CR_PAT:
1023 if (smp_processor_id() == 0)
1024 xen_set_pat(((u64)high << 32) | low);
1025 break;
1026
1027 default:
1028 ret = native_write_msr_safe(msr, low, high);
1029 }
1030
1031 return ret;
1032 }
1033
1034 void xen_setup_shared_info(void)
1035 {
1036 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1037 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1038 xen_start_info->shared_info);
1039
1040 HYPERVISOR_shared_info =
1041 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1042 } else
1043 HYPERVISOR_shared_info =
1044 (struct shared_info *)__va(xen_start_info->shared_info);
1045
1046 #ifndef CONFIG_SMP
1047 /* In UP this is as good a place as any to set up shared info */
1048 xen_setup_vcpu_info_placement();
1049 #endif
1050
1051 xen_setup_mfn_list_list();
1052 }
1053
1054 /* This is called once we have the cpu_possible_mask */
1055 void xen_setup_vcpu_info_placement(void)
1056 {
1057 int cpu;
1058
1059 for_each_possible_cpu(cpu)
1060 xen_vcpu_setup(cpu);
1061
1062 /* xen_vcpu_setup managed to place the vcpu_info within the
1063 percpu area for all cpus, so make use of it */
1064 if (have_vcpu_info_placement) {
1065 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1066 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1067 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1068 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1069 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1070 }
1071 }
1072
1073 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1074 unsigned long addr, unsigned len)
1075 {
1076 char *start, *end, *reloc;
1077 unsigned ret;
1078
1079 start = end = reloc = NULL;
1080
1081 #define SITE(op, x) \
1082 case PARAVIRT_PATCH(op.x): \
1083 if (have_vcpu_info_placement) { \
1084 start = (char *)xen_##x##_direct; \
1085 end = xen_##x##_direct_end; \
1086 reloc = xen_##x##_direct_reloc; \
1087 } \
1088 goto patch_site
1089
1090 switch (type) {
1091 SITE(pv_irq_ops, irq_enable);
1092 SITE(pv_irq_ops, irq_disable);
1093 SITE(pv_irq_ops, save_fl);
1094 SITE(pv_irq_ops, restore_fl);
1095 #undef SITE
1096
1097 patch_site:
1098 if (start == NULL || (end-start) > len)
1099 goto default_patch;
1100
1101 ret = paravirt_patch_insns(insnbuf, len, start, end);
1102
1103 /* Note: because reloc is assigned from something that
1104 appears to be an array, gcc assumes it's non-null,
1105 but doesn't know its relationship with start and
1106 end. */
1107 if (reloc > start && reloc < end) {
1108 int reloc_off = reloc - start;
1109 long *relocp = (long *)(insnbuf + reloc_off);
1110 long delta = start - (char *)addr;
1111
1112 *relocp += delta;
1113 }
1114 break;
1115
1116 default_patch:
1117 default:
1118 ret = paravirt_patch_default(type, clobbers, insnbuf,
1119 addr, len);
1120 break;
1121 }
1122
1123 return ret;
1124 }
1125
1126 static const struct pv_info xen_info __initconst = {
1127 .paravirt_enabled = 1,
1128 .shared_kernel_pmd = 0,
1129
1130 #ifdef CONFIG_X86_64
1131 .extra_user_64bit_cs = FLAT_USER_CS64,
1132 #endif
1133
1134 .name = "Xen",
1135 };
1136
1137 static const struct pv_init_ops xen_init_ops __initconst = {
1138 .patch = xen_patch,
1139 };
1140
1141 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1142 .cpuid = xen_cpuid,
1143
1144 .set_debugreg = xen_set_debugreg,
1145 .get_debugreg = xen_get_debugreg,
1146
1147 .clts = xen_clts,
1148
1149 .read_cr0 = xen_read_cr0,
1150 .write_cr0 = xen_write_cr0,
1151
1152 .read_cr4 = native_read_cr4,
1153 .read_cr4_safe = native_read_cr4_safe,
1154 .write_cr4 = xen_write_cr4,
1155
1156 .wbinvd = native_wbinvd,
1157
1158 .read_msr = native_read_msr_safe,
1159 .write_msr = xen_write_msr_safe,
1160
1161 .read_tsc = native_read_tsc,
1162 .read_pmc = native_read_pmc,
1163
1164 .iret = xen_iret,
1165 .irq_enable_sysexit = xen_sysexit,
1166 #ifdef CONFIG_X86_64
1167 .usergs_sysret32 = xen_sysret32,
1168 .usergs_sysret64 = xen_sysret64,
1169 #endif
1170
1171 .load_tr_desc = paravirt_nop,
1172 .set_ldt = xen_set_ldt,
1173 .load_gdt = xen_load_gdt,
1174 .load_idt = xen_load_idt,
1175 .load_tls = xen_load_tls,
1176 #ifdef CONFIG_X86_64
1177 .load_gs_index = xen_load_gs_index,
1178 #endif
1179
1180 .alloc_ldt = xen_alloc_ldt,
1181 .free_ldt = xen_free_ldt,
1182
1183 .store_gdt = native_store_gdt,
1184 .store_idt = native_store_idt,
1185 .store_tr = xen_store_tr,
1186
1187 .write_ldt_entry = xen_write_ldt_entry,
1188 .write_gdt_entry = xen_write_gdt_entry,
1189 .write_idt_entry = xen_write_idt_entry,
1190 .load_sp0 = xen_load_sp0,
1191
1192 .set_iopl_mask = xen_set_iopl_mask,
1193 .io_delay = xen_io_delay,
1194
1195 /* Xen takes care of %gs when switching to usermode for us */
1196 .swapgs = paravirt_nop,
1197
1198 .start_context_switch = paravirt_start_context_switch,
1199 .end_context_switch = xen_end_context_switch,
1200 };
1201
1202 static const struct pv_apic_ops xen_apic_ops __initconst = {
1203 #ifdef CONFIG_X86_LOCAL_APIC
1204 .startup_ipi_hook = paravirt_nop,
1205 #endif
1206 };
1207
1208 static void xen_reboot(int reason)
1209 {
1210 struct sched_shutdown r = { .reason = reason };
1211
1212 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1213 BUG();
1214 }
1215
1216 static void xen_restart(char *msg)
1217 {
1218 xen_reboot(SHUTDOWN_reboot);
1219 }
1220
1221 static void xen_emergency_restart(void)
1222 {
1223 xen_reboot(SHUTDOWN_reboot);
1224 }
1225
1226 static void xen_machine_halt(void)
1227 {
1228 xen_reboot(SHUTDOWN_poweroff);
1229 }
1230
1231 static void xen_machine_power_off(void)
1232 {
1233 if (pm_power_off)
1234 pm_power_off();
1235 xen_reboot(SHUTDOWN_poweroff);
1236 }
1237
1238 static void xen_crash_shutdown(struct pt_regs *regs)
1239 {
1240 xen_reboot(SHUTDOWN_crash);
1241 }
1242
1243 static int
1244 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1245 {
1246 xen_reboot(SHUTDOWN_crash);
1247 return NOTIFY_DONE;
1248 }
1249
1250 static struct notifier_block xen_panic_block = {
1251 .notifier_call= xen_panic_event,
1252 };
1253
1254 int xen_panic_handler_init(void)
1255 {
1256 atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1257 return 0;
1258 }
1259
1260 static const struct machine_ops xen_machine_ops __initconst = {
1261 .restart = xen_restart,
1262 .halt = xen_machine_halt,
1263 .power_off = xen_machine_power_off,
1264 .shutdown = xen_machine_halt,
1265 .crash_shutdown = xen_crash_shutdown,
1266 .emergency_restart = xen_emergency_restart,
1267 };
1268
1269 /*
1270 * Set up the GDT and segment registers for -fstack-protector. Until
1271 * we do this, we have to be careful not to call any stack-protected
1272 * function, which is most of the kernel.
1273 */
1274 static void __init xen_setup_stackprotector(void)
1275 {
1276 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1277 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1278
1279 setup_stack_canary_segment(0);
1280 switch_to_new_gdt(0);
1281
1282 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1283 pv_cpu_ops.load_gdt = xen_load_gdt;
1284 }
1285
1286 /* First C function to be called on Xen boot */
1287 asmlinkage void __init xen_start_kernel(void)
1288 {
1289 struct physdev_set_iopl set_iopl;
1290 int rc;
1291 pgd_t *pgd;
1292
1293 if (!xen_start_info)
1294 return;
1295
1296 xen_domain_type = XEN_PV_DOMAIN;
1297
1298 xen_setup_machphys_mapping();
1299
1300 /* Install Xen paravirt ops */
1301 pv_info = xen_info;
1302 pv_init_ops = xen_init_ops;
1303 pv_cpu_ops = xen_cpu_ops;
1304 pv_apic_ops = xen_apic_ops;
1305
1306 x86_init.resources.memory_setup = xen_memory_setup;
1307 x86_init.oem.arch_setup = xen_arch_setup;
1308 x86_init.oem.banner = xen_banner;
1309
1310 xen_init_time_ops();
1311
1312 /*
1313 * Set up some pagetable state before starting to set any ptes.
1314 */
1315
1316 xen_init_mmu_ops();
1317
1318 /* Prevent unwanted bits from being set in PTEs. */
1319 __supported_pte_mask &= ~_PAGE_GLOBAL;
1320 #if 0
1321 if (!xen_initial_domain())
1322 #endif
1323 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1324
1325 __supported_pte_mask |= _PAGE_IOMAP;
1326
1327 /*
1328 * Prevent page tables from being allocated in highmem, even
1329 * if CONFIG_HIGHPTE is enabled.
1330 */
1331 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1332
1333 /* Work out if we support NX */
1334 x86_configure_nx();
1335
1336 xen_setup_features();
1337
1338 /* Get mfn list */
1339 if (!xen_feature(XENFEAT_auto_translated_physmap))
1340 xen_build_dynamic_phys_to_machine();
1341
1342 /*
1343 * Set up kernel GDT and segment registers, mainly so that
1344 * -fstack-protector code can be executed.
1345 */
1346 xen_setup_stackprotector();
1347
1348 xen_init_irq_ops();
1349 xen_init_cpuid_mask();
1350
1351 #ifdef CONFIG_X86_LOCAL_APIC
1352 /*
1353 * set up the basic apic ops.
1354 */
1355 set_xen_basic_apic_ops();
1356 #endif
1357
1358 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1359 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1360 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1361 }
1362
1363 machine_ops = xen_machine_ops;
1364
1365 /*
1366 * The only reliable way to retain the initial address of the
1367 * percpu gdt_page is to remember it here, so we can go and
1368 * mark it RW later, when the initial percpu area is freed.
1369 */
1370 xen_initial_gdt = &per_cpu(gdt_page, 0);
1371
1372 xen_smp_init();
1373
1374 #ifdef CONFIG_ACPI_NUMA
1375 /*
1376 * The pages we from Xen are not related to machine pages, so
1377 * any NUMA information the kernel tries to get from ACPI will
1378 * be meaningless. Prevent it from trying.
1379 */
1380 acpi_numa = -1;
1381 #endif
1382
1383 pgd = (pgd_t *)xen_start_info->pt_base;
1384
1385 /* Don't do the full vcpu_info placement stuff until we have a
1386 possible map and a non-dummy shared_info. */
1387 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1388
1389 local_irq_disable();
1390 early_boot_irqs_disabled = true;
1391
1392 xen_raw_console_write("mapping kernel into physical memory\n");
1393 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1394
1395 /* Allocate and initialize top and mid mfn levels for p2m structure */
1396 xen_build_mfn_list_list();
1397
1398 /* keep using Xen gdt for now; no urgent need to change it */
1399
1400 #ifdef CONFIG_X86_32
1401 pv_info.kernel_rpl = 1;
1402 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1403 pv_info.kernel_rpl = 0;
1404 #else
1405 pv_info.kernel_rpl = 0;
1406 #endif
1407 /* set the limit of our address space */
1408 xen_reserve_top();
1409
1410 /* We used to do this in xen_arch_setup, but that is too late on AMD
1411 * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1412 * which pokes 0xcf8 port.
1413 */
1414 set_iopl.iopl = 1;
1415 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1416 if (rc != 0)
1417 xen_raw_printk("physdev_op failed %d\n", rc);
1418
1419 #ifdef CONFIG_X86_32
1420 /* set up basic CPUID stuff */
1421 cpu_detect(&new_cpu_data);
1422 new_cpu_data.hard_math = 1;
1423 new_cpu_data.wp_works_ok = 1;
1424 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1425 #endif
1426
1427 /* Poke various useful things into boot_params */
1428 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1429 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1430 ? __pa(xen_start_info->mod_start) : 0;
1431 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1432 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1433
1434 if (!xen_initial_domain()) {
1435 add_preferred_console("xenboot", 0, NULL);
1436 add_preferred_console("tty", 0, NULL);
1437 add_preferred_console("hvc", 0, NULL);
1438 if (pci_xen)
1439 x86_init.pci.arch_init = pci_xen_init;
1440 } else {
1441 const struct dom0_vga_console_info *info =
1442 (void *)((char *)xen_start_info +
1443 xen_start_info->console.dom0.info_off);
1444
1445 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1446 xen_start_info->console.domU.mfn = 0;
1447 xen_start_info->console.domU.evtchn = 0;
1448
1449 xen_init_apic();
1450
1451 /* Make sure ACS will be enabled */
1452 pci_request_acs();
1453
1454 xen_acpi_sleep_register();
1455 }
1456 #ifdef CONFIG_PCI
1457 /* PCI BIOS service won't work from a PV guest. */
1458 pci_probe &= ~PCI_PROBE_BIOS;
1459 #endif
1460 xen_raw_console_write("about to get started...\n");
1461
1462 xen_setup_runstate_info(0);
1463
1464 /* Start the world */
1465 #ifdef CONFIG_X86_32
1466 i386_start_kernel();
1467 #else
1468 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1469 #endif
1470 }
1471
1472 void __ref xen_hvm_init_shared_info(void)
1473 {
1474 int cpu;
1475 struct xen_add_to_physmap xatp;
1476 static struct shared_info *shared_info_page = 0;
1477
1478 if (!shared_info_page)
1479 shared_info_page = (struct shared_info *)
1480 extend_brk(PAGE_SIZE, PAGE_SIZE);
1481 xatp.domid = DOMID_SELF;
1482 xatp.idx = 0;
1483 xatp.space = XENMAPSPACE_shared_info;
1484 xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1485 if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1486 BUG();
1487
1488 HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1489
1490 /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1491 * page, we use it in the event channel upcall and in some pvclock
1492 * related functions. We don't need the vcpu_info placement
1493 * optimizations because we don't use any pv_mmu or pv_irq op on
1494 * HVM.
1495 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1496 * online but xen_hvm_init_shared_info is run at resume time too and
1497 * in that case multiple vcpus might be online. */
1498 for_each_online_cpu(cpu) {
1499 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1500 }
1501 }
1502
1503 #ifdef CONFIG_XEN_PVHVM
1504 static void __init init_hvm_pv_info(void)
1505 {
1506 int major, minor;
1507 uint32_t eax, ebx, ecx, edx, pages, msr, base;
1508 u64 pfn;
1509
1510 base = xen_cpuid_base();
1511 cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1512
1513 major = eax >> 16;
1514 minor = eax & 0xffff;
1515 printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1516
1517 cpuid(base + 2, &pages, &msr, &ecx, &edx);
1518
1519 pfn = __pa(hypercall_page);
1520 wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1521
1522 xen_setup_features();
1523
1524 pv_info.name = "Xen HVM";
1525
1526 xen_domain_type = XEN_HVM_DOMAIN;
1527 }
1528
1529 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1530 unsigned long action, void *hcpu)
1531 {
1532 int cpu = (long)hcpu;
1533 switch (action) {
1534 case CPU_UP_PREPARE:
1535 xen_vcpu_setup(cpu);
1536 if (xen_have_vector_callback)
1537 xen_init_lock_cpu(cpu);
1538 break;
1539 default:
1540 break;
1541 }
1542 return NOTIFY_OK;
1543 }
1544
1545 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1546 .notifier_call = xen_hvm_cpu_notify,
1547 };
1548
1549 static void __init xen_hvm_guest_init(void)
1550 {
1551 init_hvm_pv_info();
1552
1553 xen_hvm_init_shared_info();
1554
1555 if (xen_feature(XENFEAT_hvm_callback_vector))
1556 xen_have_vector_callback = 1;
1557 xen_hvm_smp_init();
1558 register_cpu_notifier(&xen_hvm_cpu_notifier);
1559 xen_unplug_emulated_devices();
1560 x86_init.irqs.intr_init = xen_init_IRQ;
1561 xen_hvm_init_time_ops();
1562 xen_hvm_init_mmu_ops();
1563 }
1564
1565 static bool __init xen_hvm_platform(void)
1566 {
1567 if (xen_pv_domain())
1568 return false;
1569
1570 if (!xen_cpuid_base())
1571 return false;
1572
1573 return true;
1574 }
1575
1576 bool xen_hvm_need_lapic(void)
1577 {
1578 if (xen_pv_domain())
1579 return false;
1580 if (!xen_hvm_domain())
1581 return false;
1582 if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1583 return false;
1584 return true;
1585 }
1586 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1587
1588 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1589 .name = "Xen HVM",
1590 .detect = xen_hvm_platform,
1591 .init_platform = xen_hvm_guest_init,
1592 };
1593 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1594 #endif