1cf5b300305efd5aab9f19a430ded8b9ddf24f08
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / power / cpu.c
1 /*
2 * Suspend support specific for i386/x86-64.
3 *
4 * Distribute under GPLv2
5 *
6 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
7 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
8 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
9 */
10
11 #include <linux/suspend.h>
12 #include <linux/export.h>
13 #include <linux/smp.h>
14 #include <linux/perf_event.h>
15
16 #include <asm/pgtable.h>
17 #include <asm/proto.h>
18 #include <asm/mtrr.h>
19 #include <asm/page.h>
20 #include <asm/mce.h>
21 #include <asm/xcr.h>
22 #include <asm/suspend.h>
23 #include <asm/debugreg.h>
24 #include <asm/fpu-internal.h> /* pcntxt_mask */
25 #include <asm/cpu.h>
26
27 #ifdef CONFIG_X86_32
28 unsigned long saved_context_ebx;
29 unsigned long saved_context_esp, saved_context_ebp;
30 unsigned long saved_context_esi, saved_context_edi;
31 unsigned long saved_context_eflags;
32 #endif
33 struct saved_context saved_context;
34
35 /**
36 * __save_processor_state - save CPU registers before creating a
37 * hibernation image and before restoring the memory state from it
38 * @ctxt - structure to store the registers contents in
39 *
40 * NOTE: If there is a CPU register the modification of which by the
41 * boot kernel (ie. the kernel used for loading the hibernation image)
42 * might affect the operations of the restored target kernel (ie. the one
43 * saved in the hibernation image), then its contents must be saved by this
44 * function. In other words, if kernel A is hibernated and different
45 * kernel B is used for loading the hibernation image into memory, the
46 * kernel A's __save_processor_state() function must save all registers
47 * needed by kernel A, so that it can operate correctly after the resume
48 * regardless of what kernel B does in the meantime.
49 */
50 static void __save_processor_state(struct saved_context *ctxt)
51 {
52 #ifdef CONFIG_X86_32
53 mtrr_save_fixed_ranges(NULL);
54 #endif
55 kernel_fpu_begin();
56
57 /*
58 * descriptor tables
59 */
60 #ifdef CONFIG_X86_32
61 store_idt(&ctxt->idt);
62 #else
63 /* CONFIG_X86_64 */
64 store_idt((struct desc_ptr *)&ctxt->idt_limit);
65 #endif
66 /*
67 * We save it here, but restore it only in the hibernate case.
68 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
69 * mode in "secondary_startup_64". In 32-bit mode it is done via
70 * 'pmode_gdt' in wakeup_start.
71 */
72 ctxt->gdt_desc.size = GDT_SIZE - 1;
73 ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_table(smp_processor_id());
74
75 store_tr(ctxt->tr);
76
77 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
78 /*
79 * segment registers
80 */
81 #ifdef CONFIG_X86_32
82 savesegment(es, ctxt->es);
83 savesegment(fs, ctxt->fs);
84 savesegment(gs, ctxt->gs);
85 savesegment(ss, ctxt->ss);
86 #else
87 /* CONFIG_X86_64 */
88 asm volatile ("movw %%ds, %0" : "=m" (ctxt->ds));
89 asm volatile ("movw %%es, %0" : "=m" (ctxt->es));
90 asm volatile ("movw %%fs, %0" : "=m" (ctxt->fs));
91 asm volatile ("movw %%gs, %0" : "=m" (ctxt->gs));
92 asm volatile ("movw %%ss, %0" : "=m" (ctxt->ss));
93
94 rdmsrl(MSR_FS_BASE, ctxt->fs_base);
95 rdmsrl(MSR_GS_BASE, ctxt->gs_base);
96 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
97 mtrr_save_fixed_ranges(NULL);
98
99 rdmsrl(MSR_EFER, ctxt->efer);
100 #endif
101
102 /*
103 * control registers
104 */
105 ctxt->cr0 = read_cr0();
106 ctxt->cr2 = read_cr2();
107 ctxt->cr3 = read_cr3();
108 #ifdef CONFIG_X86_32
109 ctxt->cr4 = read_cr4_safe();
110 #else
111 /* CONFIG_X86_64 */
112 ctxt->cr4 = read_cr4();
113 ctxt->cr8 = read_cr8();
114 #endif
115 ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
116 &ctxt->misc_enable);
117 }
118
119 /* Needed by apm.c */
120 void save_processor_state(void)
121 {
122 __save_processor_state(&saved_context);
123 x86_platform.save_sched_clock_state();
124 }
125 #ifdef CONFIG_X86_32
126 EXPORT_SYMBOL(save_processor_state);
127 #endif
128
129 static void do_fpu_end(void)
130 {
131 /*
132 * Restore FPU regs if necessary.
133 */
134 kernel_fpu_end();
135 }
136
137 static void fix_processor_context(void)
138 {
139 int cpu = smp_processor_id();
140 struct tss_struct *t = &per_cpu(init_tss, cpu);
141 #ifdef CONFIG_X86_64
142 struct desc_struct *desc = get_cpu_gdt_table(cpu);
143 tss_desc tss;
144 #endif
145 set_tss_desc(cpu, t); /*
146 * This just modifies memory; should not be
147 * necessary. But... This is necessary, because
148 * 386 hardware has concept of busy TSS or some
149 * similar stupidity.
150 */
151
152 #ifdef CONFIG_X86_64
153 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
154 tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
155 write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
156
157 syscall_init(); /* This sets MSR_*STAR and related */
158 #endif
159 load_TR_desc(); /* This does ltr */
160 load_LDT(&current->active_mm->context); /* This does lldt */
161 }
162
163 /**
164 * __restore_processor_state - restore the contents of CPU registers saved
165 * by __save_processor_state()
166 * @ctxt - structure to load the registers contents from
167 */
168 static void __restore_processor_state(struct saved_context *ctxt)
169 {
170 if (ctxt->misc_enable_saved)
171 wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
172 /*
173 * control registers
174 */
175 /* cr4 was introduced in the Pentium CPU */
176 #ifdef CONFIG_X86_32
177 if (ctxt->cr4)
178 write_cr4(ctxt->cr4);
179 #else
180 /* CONFIG X86_64 */
181 wrmsrl(MSR_EFER, ctxt->efer);
182 write_cr8(ctxt->cr8);
183 write_cr4(ctxt->cr4);
184 #endif
185 write_cr3(ctxt->cr3);
186 write_cr2(ctxt->cr2);
187 write_cr0(ctxt->cr0);
188
189 /*
190 * now restore the descriptor tables to their proper values
191 * ltr is done i fix_processor_context().
192 */
193 #ifdef CONFIG_X86_32
194 load_idt(&ctxt->idt);
195 #else
196 /* CONFIG_X86_64 */
197 load_idt((const struct desc_ptr *)&ctxt->idt_limit);
198 #endif
199
200 /*
201 * segment registers
202 */
203 #ifdef CONFIG_X86_32
204 loadsegment(es, ctxt->es);
205 loadsegment(fs, ctxt->fs);
206 loadsegment(gs, ctxt->gs);
207 loadsegment(ss, ctxt->ss);
208
209 /*
210 * sysenter MSRs
211 */
212 if (boot_cpu_has(X86_FEATURE_SEP))
213 enable_sep_cpu();
214 #else
215 /* CONFIG_X86_64 */
216 asm volatile ("movw %0, %%ds" :: "r" (ctxt->ds));
217 asm volatile ("movw %0, %%es" :: "r" (ctxt->es));
218 asm volatile ("movw %0, %%fs" :: "r" (ctxt->fs));
219 load_gs_index(ctxt->gs);
220 asm volatile ("movw %0, %%ss" :: "r" (ctxt->ss));
221
222 wrmsrl(MSR_FS_BASE, ctxt->fs_base);
223 wrmsrl(MSR_GS_BASE, ctxt->gs_base);
224 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
225 #endif
226
227 /*
228 * restore XCR0 for xsave capable cpu's.
229 */
230 if (cpu_has_xsave)
231 xsetbv(XCR_XFEATURE_ENABLED_MASK, pcntxt_mask);
232
233 fix_processor_context();
234
235 do_fpu_end();
236 x86_platform.restore_sched_clock_state();
237 mtrr_bp_restore();
238 perf_restore_debug_store();
239 }
240
241 /* Needed by apm.c */
242 void restore_processor_state(void)
243 {
244 __restore_processor_state(&saved_context);
245 }
246 #ifdef CONFIG_X86_32
247 EXPORT_SYMBOL(restore_processor_state);
248 #endif
249
250 /*
251 * When bsp_check() is called in hibernate and suspend, cpu hotplug
252 * is disabled already. So it's unnessary to handle race condition between
253 * cpumask query and cpu hotplug.
254 */
255 static int bsp_check(void)
256 {
257 if (cpumask_first(cpu_online_mask) != 0) {
258 pr_warn("CPU0 is offline.\n");
259 return -ENODEV;
260 }
261
262 return 0;
263 }
264
265 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
266 void *ptr)
267 {
268 int ret = 0;
269
270 switch (action) {
271 case PM_SUSPEND_PREPARE:
272 case PM_HIBERNATION_PREPARE:
273 ret = bsp_check();
274 break;
275 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0
276 case PM_RESTORE_PREPARE:
277 /*
278 * When system resumes from hibernation, online CPU0 because
279 * 1. it's required for resume and
280 * 2. the CPU was online before hibernation
281 */
282 if (!cpu_online(0))
283 _debug_hotplug_cpu(0, 1);
284 break;
285 case PM_POST_RESTORE:
286 /*
287 * When a resume really happens, this code won't be called.
288 *
289 * This code is called only when user space hibernation software
290 * prepares for snapshot device during boot time. So we just
291 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
292 * preparing the snapshot device.
293 *
294 * This works for normal boot case in our CPU0 hotplug debug
295 * mode, i.e. CPU0 is offline and user mode hibernation
296 * software initializes during boot time.
297 *
298 * If CPU0 is online and user application accesses snapshot
299 * device after boot time, this will offline CPU0 and user may
300 * see different CPU0 state before and after accessing
301 * the snapshot device. But hopefully this is not a case when
302 * user debugging CPU0 hotplug. Even if users hit this case,
303 * they can easily online CPU0 back.
304 *
305 * To simplify this debug code, we only consider normal boot
306 * case. Otherwise we need to remember CPU0's state and restore
307 * to that state and resolve racy conditions etc.
308 */
309 _debug_hotplug_cpu(0, 0);
310 break;
311 #endif
312 default:
313 break;
314 }
315 return notifier_from_errno(ret);
316 }
317
318 static int __init bsp_pm_check_init(void)
319 {
320 /*
321 * Set this bsp_pm_callback as lower priority than
322 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
323 * earlier to disable cpu hotplug before bsp online check.
324 */
325 pm_notifier(bsp_pm_callback, -INT_MAX);
326 return 0;
327 }
328
329 core_initcall(bsp_pm_check_init);