Merge branch 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / platform / uv / tlb_uv.c
1 /*
2 * SGI UltraViolet TLB flush routines.
3 *
4 * (c) 2008-2012 Cliff Wickman <cpw@sgi.com>, SGI.
5 *
6 * This code is released under the GNU General Public License version 2 or
7 * later.
8 */
9 #include <linux/seq_file.h>
10 #include <linux/proc_fs.h>
11 #include <linux/debugfs.h>
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15
16 #include <asm/mmu_context.h>
17 #include <asm/uv/uv.h>
18 #include <asm/uv/uv_mmrs.h>
19 #include <asm/uv/uv_hub.h>
20 #include <asm/uv/uv_bau.h>
21 #include <asm/apic.h>
22 #include <asm/idle.h>
23 #include <asm/tsc.h>
24 #include <asm/irq_vectors.h>
25 #include <asm/timer.h>
26
27 /* timeouts in nanoseconds (indexed by UVH_AGING_PRESCALE_SEL urgency7 30:28) */
28 static int timeout_base_ns[] = {
29 20,
30 160,
31 1280,
32 10240,
33 81920,
34 655360,
35 5242880,
36 167772160
37 };
38
39 static int timeout_us;
40 static int nobau;
41 static int nobau_perm;
42 static cycles_t congested_cycles;
43
44 /* tunables: */
45 static int max_concurr = MAX_BAU_CONCURRENT;
46 static int max_concurr_const = MAX_BAU_CONCURRENT;
47 static int plugged_delay = PLUGGED_DELAY;
48 static int plugsb4reset = PLUGSB4RESET;
49 static int giveup_limit = GIVEUP_LIMIT;
50 static int timeoutsb4reset = TIMEOUTSB4RESET;
51 static int ipi_reset_limit = IPI_RESET_LIMIT;
52 static int complete_threshold = COMPLETE_THRESHOLD;
53 static int congested_respns_us = CONGESTED_RESPONSE_US;
54 static int congested_reps = CONGESTED_REPS;
55 static int disabled_period = DISABLED_PERIOD;
56
57 static struct tunables tunables[] = {
58 {&max_concurr, MAX_BAU_CONCURRENT}, /* must be [0] */
59 {&plugged_delay, PLUGGED_DELAY},
60 {&plugsb4reset, PLUGSB4RESET},
61 {&timeoutsb4reset, TIMEOUTSB4RESET},
62 {&ipi_reset_limit, IPI_RESET_LIMIT},
63 {&complete_threshold, COMPLETE_THRESHOLD},
64 {&congested_respns_us, CONGESTED_RESPONSE_US},
65 {&congested_reps, CONGESTED_REPS},
66 {&disabled_period, DISABLED_PERIOD},
67 {&giveup_limit, GIVEUP_LIMIT}
68 };
69
70 static struct dentry *tunables_dir;
71 static struct dentry *tunables_file;
72
73 /* these correspond to the statistics printed by ptc_seq_show() */
74 static char *stat_description[] = {
75 "sent: number of shootdown messages sent",
76 "stime: time spent sending messages",
77 "numuvhubs: number of hubs targeted with shootdown",
78 "numuvhubs16: number times 16 or more hubs targeted",
79 "numuvhubs8: number times 8 or more hubs targeted",
80 "numuvhubs4: number times 4 or more hubs targeted",
81 "numuvhubs2: number times 2 or more hubs targeted",
82 "numuvhubs1: number times 1 hub targeted",
83 "numcpus: number of cpus targeted with shootdown",
84 "dto: number of destination timeouts",
85 "retries: destination timeout retries sent",
86 "rok: : destination timeouts successfully retried",
87 "resetp: ipi-style resource resets for plugs",
88 "resett: ipi-style resource resets for timeouts",
89 "giveup: fall-backs to ipi-style shootdowns",
90 "sto: number of source timeouts",
91 "bz: number of stay-busy's",
92 "throt: number times spun in throttle",
93 "swack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE",
94 "recv: shootdown messages received",
95 "rtime: time spent processing messages",
96 "all: shootdown all-tlb messages",
97 "one: shootdown one-tlb messages",
98 "mult: interrupts that found multiple messages",
99 "none: interrupts that found no messages",
100 "retry: number of retry messages processed",
101 "canc: number messages canceled by retries",
102 "nocan: number retries that found nothing to cancel",
103 "reset: number of ipi-style reset requests processed",
104 "rcan: number messages canceled by reset requests",
105 "disable: number times use of the BAU was disabled",
106 "enable: number times use of the BAU was re-enabled"
107 };
108
109 static int __init
110 setup_nobau(char *arg)
111 {
112 nobau = 1;
113 return 0;
114 }
115 early_param("nobau", setup_nobau);
116
117 /* base pnode in this partition */
118 static int uv_base_pnode __read_mostly;
119
120 static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
121 static DEFINE_PER_CPU(struct bau_control, bau_control);
122 static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
123
124 static void
125 set_bau_on(void)
126 {
127 int cpu;
128 struct bau_control *bcp;
129
130 if (nobau_perm) {
131 pr_info("BAU not initialized; cannot be turned on\n");
132 return;
133 }
134 nobau = 0;
135 for_each_present_cpu(cpu) {
136 bcp = &per_cpu(bau_control, cpu);
137 bcp->nobau = 0;
138 }
139 pr_info("BAU turned on\n");
140 return;
141 }
142
143 static void
144 set_bau_off(void)
145 {
146 int cpu;
147 struct bau_control *bcp;
148
149 nobau = 1;
150 for_each_present_cpu(cpu) {
151 bcp = &per_cpu(bau_control, cpu);
152 bcp->nobau = 1;
153 }
154 pr_info("BAU turned off\n");
155 return;
156 }
157
158 /*
159 * Determine the first node on a uvhub. 'Nodes' are used for kernel
160 * memory allocation.
161 */
162 static int __init uvhub_to_first_node(int uvhub)
163 {
164 int node, b;
165
166 for_each_online_node(node) {
167 b = uv_node_to_blade_id(node);
168 if (uvhub == b)
169 return node;
170 }
171 return -1;
172 }
173
174 /*
175 * Determine the apicid of the first cpu on a uvhub.
176 */
177 static int __init uvhub_to_first_apicid(int uvhub)
178 {
179 int cpu;
180
181 for_each_present_cpu(cpu)
182 if (uvhub == uv_cpu_to_blade_id(cpu))
183 return per_cpu(x86_cpu_to_apicid, cpu);
184 return -1;
185 }
186
187 /*
188 * Free a software acknowledge hardware resource by clearing its Pending
189 * bit. This will return a reply to the sender.
190 * If the message has timed out, a reply has already been sent by the
191 * hardware but the resource has not been released. In that case our
192 * clear of the Timeout bit (as well) will free the resource. No reply will
193 * be sent (the hardware will only do one reply per message).
194 */
195 static void reply_to_message(struct msg_desc *mdp, struct bau_control *bcp,
196 int do_acknowledge)
197 {
198 unsigned long dw;
199 struct bau_pq_entry *msg;
200
201 msg = mdp->msg;
202 if (!msg->canceled && do_acknowledge) {
203 dw = (msg->swack_vec << UV_SW_ACK_NPENDING) | msg->swack_vec;
204 write_mmr_sw_ack(dw);
205 }
206 msg->replied_to = 1;
207 msg->swack_vec = 0;
208 }
209
210 /*
211 * Process the receipt of a RETRY message
212 */
213 static void bau_process_retry_msg(struct msg_desc *mdp,
214 struct bau_control *bcp)
215 {
216 int i;
217 int cancel_count = 0;
218 unsigned long msg_res;
219 unsigned long mmr = 0;
220 struct bau_pq_entry *msg = mdp->msg;
221 struct bau_pq_entry *msg2;
222 struct ptc_stats *stat = bcp->statp;
223
224 stat->d_retries++;
225 /*
226 * cancel any message from msg+1 to the retry itself
227 */
228 for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) {
229 if (msg2 > mdp->queue_last)
230 msg2 = mdp->queue_first;
231 if (msg2 == msg)
232 break;
233
234 /* same conditions for cancellation as do_reset */
235 if ((msg2->replied_to == 0) && (msg2->canceled == 0) &&
236 (msg2->swack_vec) && ((msg2->swack_vec &
237 msg->swack_vec) == 0) &&
238 (msg2->sending_cpu == msg->sending_cpu) &&
239 (msg2->msg_type != MSG_NOOP)) {
240 mmr = read_mmr_sw_ack();
241 msg_res = msg2->swack_vec;
242 /*
243 * This is a message retry; clear the resources held
244 * by the previous message only if they timed out.
245 * If it has not timed out we have an unexpected
246 * situation to report.
247 */
248 if (mmr & (msg_res << UV_SW_ACK_NPENDING)) {
249 unsigned long mr;
250 /*
251 * Is the resource timed out?
252 * Make everyone ignore the cancelled message.
253 */
254 msg2->canceled = 1;
255 stat->d_canceled++;
256 cancel_count++;
257 mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
258 write_mmr_sw_ack(mr);
259 }
260 }
261 }
262 if (!cancel_count)
263 stat->d_nocanceled++;
264 }
265
266 /*
267 * Do all the things a cpu should do for a TLB shootdown message.
268 * Other cpu's may come here at the same time for this message.
269 */
270 static void bau_process_message(struct msg_desc *mdp, struct bau_control *bcp,
271 int do_acknowledge)
272 {
273 short socket_ack_count = 0;
274 short *sp;
275 struct atomic_short *asp;
276 struct ptc_stats *stat = bcp->statp;
277 struct bau_pq_entry *msg = mdp->msg;
278 struct bau_control *smaster = bcp->socket_master;
279
280 /*
281 * This must be a normal message, or retry of a normal message
282 */
283 if (msg->address == TLB_FLUSH_ALL) {
284 local_flush_tlb();
285 stat->d_alltlb++;
286 } else {
287 __flush_tlb_one(msg->address);
288 stat->d_onetlb++;
289 }
290 stat->d_requestee++;
291
292 /*
293 * One cpu on each uvhub has the additional job on a RETRY
294 * of releasing the resource held by the message that is
295 * being retried. That message is identified by sending
296 * cpu number.
297 */
298 if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master)
299 bau_process_retry_msg(mdp, bcp);
300
301 /*
302 * This is a swack message, so we have to reply to it.
303 * Count each responding cpu on the socket. This avoids
304 * pinging the count's cache line back and forth between
305 * the sockets.
306 */
307 sp = &smaster->socket_acknowledge_count[mdp->msg_slot];
308 asp = (struct atomic_short *)sp;
309 socket_ack_count = atom_asr(1, asp);
310 if (socket_ack_count == bcp->cpus_in_socket) {
311 int msg_ack_count;
312 /*
313 * Both sockets dump their completed count total into
314 * the message's count.
315 */
316 *sp = 0;
317 asp = (struct atomic_short *)&msg->acknowledge_count;
318 msg_ack_count = atom_asr(socket_ack_count, asp);
319
320 if (msg_ack_count == bcp->cpus_in_uvhub) {
321 /*
322 * All cpus in uvhub saw it; reply
323 * (unless we are in the UV2 workaround)
324 */
325 reply_to_message(mdp, bcp, do_acknowledge);
326 }
327 }
328
329 return;
330 }
331
332 /*
333 * Determine the first cpu on a pnode.
334 */
335 static int pnode_to_first_cpu(int pnode, struct bau_control *smaster)
336 {
337 int cpu;
338 struct hub_and_pnode *hpp;
339
340 for_each_present_cpu(cpu) {
341 hpp = &smaster->thp[cpu];
342 if (pnode == hpp->pnode)
343 return cpu;
344 }
345 return -1;
346 }
347
348 /*
349 * Last resort when we get a large number of destination timeouts is
350 * to clear resources held by a given cpu.
351 * Do this with IPI so that all messages in the BAU message queue
352 * can be identified by their nonzero swack_vec field.
353 *
354 * This is entered for a single cpu on the uvhub.
355 * The sender want's this uvhub to free a specific message's
356 * swack resources.
357 */
358 static void do_reset(void *ptr)
359 {
360 int i;
361 struct bau_control *bcp = &per_cpu(bau_control, smp_processor_id());
362 struct reset_args *rap = (struct reset_args *)ptr;
363 struct bau_pq_entry *msg;
364 struct ptc_stats *stat = bcp->statp;
365
366 stat->d_resets++;
367 /*
368 * We're looking for the given sender, and
369 * will free its swack resource.
370 * If all cpu's finally responded after the timeout, its
371 * message 'replied_to' was set.
372 */
373 for (msg = bcp->queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) {
374 unsigned long msg_res;
375 /* do_reset: same conditions for cancellation as
376 bau_process_retry_msg() */
377 if ((msg->replied_to == 0) &&
378 (msg->canceled == 0) &&
379 (msg->sending_cpu == rap->sender) &&
380 (msg->swack_vec) &&
381 (msg->msg_type != MSG_NOOP)) {
382 unsigned long mmr;
383 unsigned long mr;
384 /*
385 * make everyone else ignore this message
386 */
387 msg->canceled = 1;
388 /*
389 * only reset the resource if it is still pending
390 */
391 mmr = read_mmr_sw_ack();
392 msg_res = msg->swack_vec;
393 mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
394 if (mmr & msg_res) {
395 stat->d_rcanceled++;
396 write_mmr_sw_ack(mr);
397 }
398 }
399 }
400 return;
401 }
402
403 /*
404 * Use IPI to get all target uvhubs to release resources held by
405 * a given sending cpu number.
406 */
407 static void reset_with_ipi(struct pnmask *distribution, struct bau_control *bcp)
408 {
409 int pnode;
410 int apnode;
411 int maskbits;
412 int sender = bcp->cpu;
413 cpumask_t *mask = bcp->uvhub_master->cpumask;
414 struct bau_control *smaster = bcp->socket_master;
415 struct reset_args reset_args;
416
417 reset_args.sender = sender;
418 cpus_clear(*mask);
419 /* find a single cpu for each uvhub in this distribution mask */
420 maskbits = sizeof(struct pnmask) * BITSPERBYTE;
421 /* each bit is a pnode relative to the partition base pnode */
422 for (pnode = 0; pnode < maskbits; pnode++) {
423 int cpu;
424 if (!bau_uvhub_isset(pnode, distribution))
425 continue;
426 apnode = pnode + bcp->partition_base_pnode;
427 cpu = pnode_to_first_cpu(apnode, smaster);
428 cpu_set(cpu, *mask);
429 }
430
431 /* IPI all cpus; preemption is already disabled */
432 smp_call_function_many(mask, do_reset, (void *)&reset_args, 1);
433 return;
434 }
435
436 static inline unsigned long cycles_2_us(unsigned long long cyc)
437 {
438 unsigned long long ns;
439 unsigned long us;
440 int cpu = smp_processor_id();
441
442 ns = (cyc * per_cpu(cyc2ns, cpu)) >> CYC2NS_SCALE_FACTOR;
443 us = ns / 1000;
444 return us;
445 }
446
447 /*
448 * wait for all cpus on this hub to finish their sends and go quiet
449 * leaves uvhub_quiesce set so that no new broadcasts are started by
450 * bau_flush_send_and_wait()
451 */
452 static inline void quiesce_local_uvhub(struct bau_control *hmaster)
453 {
454 atom_asr(1, (struct atomic_short *)&hmaster->uvhub_quiesce);
455 }
456
457 /*
458 * mark this quiet-requestor as done
459 */
460 static inline void end_uvhub_quiesce(struct bau_control *hmaster)
461 {
462 atom_asr(-1, (struct atomic_short *)&hmaster->uvhub_quiesce);
463 }
464
465 static unsigned long uv1_read_status(unsigned long mmr_offset, int right_shift)
466 {
467 unsigned long descriptor_status;
468
469 descriptor_status = uv_read_local_mmr(mmr_offset);
470 descriptor_status >>= right_shift;
471 descriptor_status &= UV_ACT_STATUS_MASK;
472 return descriptor_status;
473 }
474
475 /*
476 * Wait for completion of a broadcast software ack message
477 * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP
478 */
479 static int uv1_wait_completion(struct bau_desc *bau_desc,
480 unsigned long mmr_offset, int right_shift,
481 struct bau_control *bcp, long try)
482 {
483 unsigned long descriptor_status;
484 cycles_t ttm;
485 struct ptc_stats *stat = bcp->statp;
486
487 descriptor_status = uv1_read_status(mmr_offset, right_shift);
488 /* spin on the status MMR, waiting for it to go idle */
489 while ((descriptor_status != DS_IDLE)) {
490 /*
491 * Our software ack messages may be blocked because
492 * there are no swack resources available. As long
493 * as none of them has timed out hardware will NACK
494 * our message and its state will stay IDLE.
495 */
496 if (descriptor_status == DS_SOURCE_TIMEOUT) {
497 stat->s_stimeout++;
498 return FLUSH_GIVEUP;
499 } else if (descriptor_status == DS_DESTINATION_TIMEOUT) {
500 stat->s_dtimeout++;
501 ttm = get_cycles();
502
503 /*
504 * Our retries may be blocked by all destination
505 * swack resources being consumed, and a timeout
506 * pending. In that case hardware returns the
507 * ERROR that looks like a destination timeout.
508 */
509 if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
510 bcp->conseccompletes = 0;
511 return FLUSH_RETRY_PLUGGED;
512 }
513
514 bcp->conseccompletes = 0;
515 return FLUSH_RETRY_TIMEOUT;
516 } else {
517 /*
518 * descriptor_status is still BUSY
519 */
520 cpu_relax();
521 }
522 descriptor_status = uv1_read_status(mmr_offset, right_shift);
523 }
524 bcp->conseccompletes++;
525 return FLUSH_COMPLETE;
526 }
527
528 /*
529 * UV2 could have an extra bit of status in the ACTIVATION_STATUS_2 register.
530 * But not currently used.
531 */
532 static unsigned long uv2_read_status(unsigned long offset, int rshft, int desc)
533 {
534 unsigned long descriptor_status;
535
536 descriptor_status =
537 ((read_lmmr(offset) >> rshft) & UV_ACT_STATUS_MASK) << 1;
538 return descriptor_status;
539 }
540
541 /*
542 * Return whether the status of the descriptor that is normally used for this
543 * cpu (the one indexed by its hub-relative cpu number) is busy.
544 * The status of the original 32 descriptors is always reflected in the 64
545 * bits of UVH_LB_BAU_SB_ACTIVATION_STATUS_0.
546 * The bit provided by the activation_status_2 register is irrelevant to
547 * the status if it is only being tested for busy or not busy.
548 */
549 int normal_busy(struct bau_control *bcp)
550 {
551 int cpu = bcp->uvhub_cpu;
552 int mmr_offset;
553 int right_shift;
554
555 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
556 right_shift = cpu * UV_ACT_STATUS_SIZE;
557 return (((((read_lmmr(mmr_offset) >> right_shift) &
558 UV_ACT_STATUS_MASK)) << 1) == UV2H_DESC_BUSY);
559 }
560
561 /*
562 * Entered when a bau descriptor has gone into a permanent busy wait because
563 * of a hardware bug.
564 * Workaround the bug.
565 */
566 int handle_uv2_busy(struct bau_control *bcp)
567 {
568 struct ptc_stats *stat = bcp->statp;
569
570 stat->s_uv2_wars++;
571 bcp->busy = 1;
572 return FLUSH_GIVEUP;
573 }
574
575 static int uv2_wait_completion(struct bau_desc *bau_desc,
576 unsigned long mmr_offset, int right_shift,
577 struct bau_control *bcp, long try)
578 {
579 unsigned long descriptor_stat;
580 cycles_t ttm;
581 int desc = bcp->uvhub_cpu;
582 long busy_reps = 0;
583 struct ptc_stats *stat = bcp->statp;
584
585 descriptor_stat = uv2_read_status(mmr_offset, right_shift, desc);
586
587 /* spin on the status MMR, waiting for it to go idle */
588 while (descriptor_stat != UV2H_DESC_IDLE) {
589 if ((descriptor_stat == UV2H_DESC_SOURCE_TIMEOUT)) {
590 /*
591 * A h/w bug on the destination side may
592 * have prevented the message being marked
593 * pending, thus it doesn't get replied to
594 * and gets continually nacked until it times
595 * out with a SOURCE_TIMEOUT.
596 */
597 stat->s_stimeout++;
598 return FLUSH_GIVEUP;
599 } else if (descriptor_stat == UV2H_DESC_DEST_TIMEOUT) {
600 ttm = get_cycles();
601
602 /*
603 * Our retries may be blocked by all destination
604 * swack resources being consumed, and a timeout
605 * pending. In that case hardware returns the
606 * ERROR that looks like a destination timeout.
607 * Without using the extended status we have to
608 * deduce from the short time that this was a
609 * strong nack.
610 */
611 if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
612 bcp->conseccompletes = 0;
613 stat->s_plugged++;
614 /* FLUSH_RETRY_PLUGGED causes hang on boot */
615 return FLUSH_GIVEUP;
616 }
617 stat->s_dtimeout++;
618 bcp->conseccompletes = 0;
619 /* FLUSH_RETRY_TIMEOUT causes hang on boot */
620 return FLUSH_GIVEUP;
621 } else {
622 busy_reps++;
623 if (busy_reps > 1000000) {
624 /* not to hammer on the clock */
625 busy_reps = 0;
626 ttm = get_cycles();
627 if ((ttm - bcp->send_message) >
628 bcp->timeout_interval)
629 return handle_uv2_busy(bcp);
630 }
631 /*
632 * descriptor_stat is still BUSY
633 */
634 cpu_relax();
635 }
636 descriptor_stat = uv2_read_status(mmr_offset, right_shift,
637 desc);
638 }
639 bcp->conseccompletes++;
640 return FLUSH_COMPLETE;
641 }
642
643 /*
644 * There are 2 status registers; each and array[32] of 2 bits. Set up for
645 * which register to read and position in that register based on cpu in
646 * current hub.
647 */
648 static int wait_completion(struct bau_desc *bau_desc,
649 struct bau_control *bcp, long try)
650 {
651 int right_shift;
652 unsigned long mmr_offset;
653 int desc = bcp->uvhub_cpu;
654
655 if (desc < UV_CPUS_PER_AS) {
656 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
657 right_shift = desc * UV_ACT_STATUS_SIZE;
658 } else {
659 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
660 right_shift = ((desc - UV_CPUS_PER_AS) * UV_ACT_STATUS_SIZE);
661 }
662
663 if (bcp->uvhub_version == 1)
664 return uv1_wait_completion(bau_desc, mmr_offset, right_shift,
665 bcp, try);
666 else
667 return uv2_wait_completion(bau_desc, mmr_offset, right_shift,
668 bcp, try);
669 }
670
671 static inline cycles_t sec_2_cycles(unsigned long sec)
672 {
673 unsigned long ns;
674 cycles_t cyc;
675
676 ns = sec * 1000000000;
677 cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
678 return cyc;
679 }
680
681 /*
682 * Our retries are blocked by all destination sw ack resources being
683 * in use, and a timeout is pending. In that case hardware immediately
684 * returns the ERROR that looks like a destination timeout.
685 */
686 static void destination_plugged(struct bau_desc *bau_desc,
687 struct bau_control *bcp,
688 struct bau_control *hmaster, struct ptc_stats *stat)
689 {
690 udelay(bcp->plugged_delay);
691 bcp->plugged_tries++;
692
693 if (bcp->plugged_tries >= bcp->plugsb4reset) {
694 bcp->plugged_tries = 0;
695
696 quiesce_local_uvhub(hmaster);
697
698 spin_lock(&hmaster->queue_lock);
699 reset_with_ipi(&bau_desc->distribution, bcp);
700 spin_unlock(&hmaster->queue_lock);
701
702 end_uvhub_quiesce(hmaster);
703
704 bcp->ipi_attempts++;
705 stat->s_resets_plug++;
706 }
707 }
708
709 static void destination_timeout(struct bau_desc *bau_desc,
710 struct bau_control *bcp, struct bau_control *hmaster,
711 struct ptc_stats *stat)
712 {
713 hmaster->max_concurr = 1;
714 bcp->timeout_tries++;
715 if (bcp->timeout_tries >= bcp->timeoutsb4reset) {
716 bcp->timeout_tries = 0;
717
718 quiesce_local_uvhub(hmaster);
719
720 spin_lock(&hmaster->queue_lock);
721 reset_with_ipi(&bau_desc->distribution, bcp);
722 spin_unlock(&hmaster->queue_lock);
723
724 end_uvhub_quiesce(hmaster);
725
726 bcp->ipi_attempts++;
727 stat->s_resets_timeout++;
728 }
729 }
730
731 /*
732 * Stop all cpus on a uvhub from using the BAU for a period of time.
733 * This is reversed by check_enable.
734 */
735 static void disable_for_period(struct bau_control *bcp, struct ptc_stats *stat)
736 {
737 int tcpu;
738 struct bau_control *tbcp;
739 struct bau_control *hmaster;
740 cycles_t tm1;
741
742 hmaster = bcp->uvhub_master;
743 spin_lock(&hmaster->disable_lock);
744 if (!bcp->baudisabled) {
745 stat->s_bau_disabled++;
746 tm1 = get_cycles();
747 for_each_present_cpu(tcpu) {
748 tbcp = &per_cpu(bau_control, tcpu);
749 if (tbcp->uvhub_master == hmaster) {
750 tbcp->baudisabled = 1;
751 tbcp->set_bau_on_time =
752 tm1 + bcp->disabled_period;
753 }
754 }
755 }
756 spin_unlock(&hmaster->disable_lock);
757 }
758
759 static void count_max_concurr(int stat, struct bau_control *bcp,
760 struct bau_control *hmaster)
761 {
762 bcp->plugged_tries = 0;
763 bcp->timeout_tries = 0;
764 if (stat != FLUSH_COMPLETE)
765 return;
766 if (bcp->conseccompletes <= bcp->complete_threshold)
767 return;
768 if (hmaster->max_concurr >= hmaster->max_concurr_const)
769 return;
770 hmaster->max_concurr++;
771 }
772
773 static void record_send_stats(cycles_t time1, cycles_t time2,
774 struct bau_control *bcp, struct ptc_stats *stat,
775 int completion_status, int try)
776 {
777 cycles_t elapsed;
778
779 if (time2 > time1) {
780 elapsed = time2 - time1;
781 stat->s_time += elapsed;
782
783 if ((completion_status == FLUSH_COMPLETE) && (try == 1)) {
784 bcp->period_requests++;
785 bcp->period_time += elapsed;
786 if ((elapsed > congested_cycles) &&
787 (bcp->period_requests > bcp->cong_reps) &&
788 ((bcp->period_time / bcp->period_requests) >
789 congested_cycles)) {
790 stat->s_congested++;
791 disable_for_period(bcp, stat);
792 }
793 }
794 } else
795 stat->s_requestor--;
796
797 if (completion_status == FLUSH_COMPLETE && try > 1)
798 stat->s_retriesok++;
799 else if (completion_status == FLUSH_GIVEUP) {
800 stat->s_giveup++;
801 if (get_cycles() > bcp->period_end)
802 bcp->period_giveups = 0;
803 bcp->period_giveups++;
804 if (bcp->period_giveups == 1)
805 bcp->period_end = get_cycles() + bcp->disabled_period;
806 if (bcp->period_giveups > bcp->giveup_limit) {
807 disable_for_period(bcp, stat);
808 stat->s_giveuplimit++;
809 }
810 }
811 }
812
813 /*
814 * Because of a uv1 hardware bug only a limited number of concurrent
815 * requests can be made.
816 */
817 static void uv1_throttle(struct bau_control *hmaster, struct ptc_stats *stat)
818 {
819 spinlock_t *lock = &hmaster->uvhub_lock;
820 atomic_t *v;
821
822 v = &hmaster->active_descriptor_count;
823 if (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr)) {
824 stat->s_throttles++;
825 do {
826 cpu_relax();
827 } while (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr));
828 }
829 }
830
831 /*
832 * Handle the completion status of a message send.
833 */
834 static void handle_cmplt(int completion_status, struct bau_desc *bau_desc,
835 struct bau_control *bcp, struct bau_control *hmaster,
836 struct ptc_stats *stat)
837 {
838 if (completion_status == FLUSH_RETRY_PLUGGED)
839 destination_plugged(bau_desc, bcp, hmaster, stat);
840 else if (completion_status == FLUSH_RETRY_TIMEOUT)
841 destination_timeout(bau_desc, bcp, hmaster, stat);
842 }
843
844 /*
845 * Send a broadcast and wait for it to complete.
846 *
847 * The flush_mask contains the cpus the broadcast is to be sent to including
848 * cpus that are on the local uvhub.
849 *
850 * Returns 0 if all flushing represented in the mask was done.
851 * Returns 1 if it gives up entirely and the original cpu mask is to be
852 * returned to the kernel.
853 */
854 int uv_flush_send_and_wait(struct cpumask *flush_mask, struct bau_control *bcp,
855 struct bau_desc *bau_desc)
856 {
857 int seq_number = 0;
858 int completion_stat = 0;
859 int uv1 = 0;
860 long try = 0;
861 unsigned long index;
862 cycles_t time1;
863 cycles_t time2;
864 struct ptc_stats *stat = bcp->statp;
865 struct bau_control *hmaster = bcp->uvhub_master;
866 struct uv1_bau_msg_header *uv1_hdr = NULL;
867 struct uv2_bau_msg_header *uv2_hdr = NULL;
868
869 if (bcp->uvhub_version == 1) {
870 uv1 = 1;
871 uv1_throttle(hmaster, stat);
872 }
873
874 while (hmaster->uvhub_quiesce)
875 cpu_relax();
876
877 time1 = get_cycles();
878 if (uv1)
879 uv1_hdr = &bau_desc->header.uv1_hdr;
880 else
881 uv2_hdr = &bau_desc->header.uv2_hdr;
882
883 do {
884 if (try == 0) {
885 if (uv1)
886 uv1_hdr->msg_type = MSG_REGULAR;
887 else
888 uv2_hdr->msg_type = MSG_REGULAR;
889 seq_number = bcp->message_number++;
890 } else {
891 if (uv1)
892 uv1_hdr->msg_type = MSG_RETRY;
893 else
894 uv2_hdr->msg_type = MSG_RETRY;
895 stat->s_retry_messages++;
896 }
897
898 if (uv1)
899 uv1_hdr->sequence = seq_number;
900 else
901 uv2_hdr->sequence = seq_number;
902 index = (1UL << AS_PUSH_SHIFT) | bcp->uvhub_cpu;
903 bcp->send_message = get_cycles();
904
905 write_mmr_activation(index);
906
907 try++;
908 completion_stat = wait_completion(bau_desc, bcp, try);
909
910 handle_cmplt(completion_stat, bau_desc, bcp, hmaster, stat);
911
912 if (bcp->ipi_attempts >= bcp->ipi_reset_limit) {
913 bcp->ipi_attempts = 0;
914 stat->s_overipilimit++;
915 completion_stat = FLUSH_GIVEUP;
916 break;
917 }
918 cpu_relax();
919 } while ((completion_stat == FLUSH_RETRY_PLUGGED) ||
920 (completion_stat == FLUSH_RETRY_TIMEOUT));
921
922 time2 = get_cycles();
923
924 count_max_concurr(completion_stat, bcp, hmaster);
925
926 while (hmaster->uvhub_quiesce)
927 cpu_relax();
928
929 atomic_dec(&hmaster->active_descriptor_count);
930
931 record_send_stats(time1, time2, bcp, stat, completion_stat, try);
932
933 if (completion_stat == FLUSH_GIVEUP)
934 /* FLUSH_GIVEUP will fall back to using IPI's for tlb flush */
935 return 1;
936 return 0;
937 }
938
939 /*
940 * The BAU is disabled for this uvhub. When the disabled time period has
941 * expired re-enable it.
942 * Return 0 if it is re-enabled for all cpus on this uvhub.
943 */
944 static int check_enable(struct bau_control *bcp, struct ptc_stats *stat)
945 {
946 int tcpu;
947 struct bau_control *tbcp;
948 struct bau_control *hmaster;
949
950 hmaster = bcp->uvhub_master;
951 spin_lock(&hmaster->disable_lock);
952 if (bcp->baudisabled && (get_cycles() >= bcp->set_bau_on_time)) {
953 stat->s_bau_reenabled++;
954 for_each_present_cpu(tcpu) {
955 tbcp = &per_cpu(bau_control, tcpu);
956 if (tbcp->uvhub_master == hmaster) {
957 tbcp->baudisabled = 0;
958 tbcp->period_requests = 0;
959 tbcp->period_time = 0;
960 tbcp->period_giveups = 0;
961 }
962 }
963 spin_unlock(&hmaster->disable_lock);
964 return 0;
965 }
966 spin_unlock(&hmaster->disable_lock);
967 return -1;
968 }
969
970 static void record_send_statistics(struct ptc_stats *stat, int locals, int hubs,
971 int remotes, struct bau_desc *bau_desc)
972 {
973 stat->s_requestor++;
974 stat->s_ntargcpu += remotes + locals;
975 stat->s_ntargremotes += remotes;
976 stat->s_ntarglocals += locals;
977
978 /* uvhub statistics */
979 hubs = bau_uvhub_weight(&bau_desc->distribution);
980 if (locals) {
981 stat->s_ntarglocaluvhub++;
982 stat->s_ntargremoteuvhub += (hubs - 1);
983 } else
984 stat->s_ntargremoteuvhub += hubs;
985
986 stat->s_ntarguvhub += hubs;
987
988 if (hubs >= 16)
989 stat->s_ntarguvhub16++;
990 else if (hubs >= 8)
991 stat->s_ntarguvhub8++;
992 else if (hubs >= 4)
993 stat->s_ntarguvhub4++;
994 else if (hubs >= 2)
995 stat->s_ntarguvhub2++;
996 else
997 stat->s_ntarguvhub1++;
998 }
999
1000 /*
1001 * Translate a cpu mask to the uvhub distribution mask in the BAU
1002 * activation descriptor.
1003 */
1004 static int set_distrib_bits(struct cpumask *flush_mask, struct bau_control *bcp,
1005 struct bau_desc *bau_desc, int *localsp, int *remotesp)
1006 {
1007 int cpu;
1008 int pnode;
1009 int cnt = 0;
1010 struct hub_and_pnode *hpp;
1011
1012 for_each_cpu(cpu, flush_mask) {
1013 /*
1014 * The distribution vector is a bit map of pnodes, relative
1015 * to the partition base pnode (and the partition base nasid
1016 * in the header).
1017 * Translate cpu to pnode and hub using a local memory array.
1018 */
1019 hpp = &bcp->socket_master->thp[cpu];
1020 pnode = hpp->pnode - bcp->partition_base_pnode;
1021 bau_uvhub_set(pnode, &bau_desc->distribution);
1022 cnt++;
1023 if (hpp->uvhub == bcp->uvhub)
1024 (*localsp)++;
1025 else
1026 (*remotesp)++;
1027 }
1028 if (!cnt)
1029 return 1;
1030 return 0;
1031 }
1032
1033 /*
1034 * globally purge translation cache of a virtual address or all TLB's
1035 * @cpumask: mask of all cpu's in which the address is to be removed
1036 * @mm: mm_struct containing virtual address range
1037 * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
1038 * @cpu: the current cpu
1039 *
1040 * This is the entry point for initiating any UV global TLB shootdown.
1041 *
1042 * Purges the translation caches of all specified processors of the given
1043 * virtual address, or purges all TLB's on specified processors.
1044 *
1045 * The caller has derived the cpumask from the mm_struct. This function
1046 * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
1047 *
1048 * The cpumask is converted into a uvhubmask of the uvhubs containing
1049 * those cpus.
1050 *
1051 * Note that this function should be called with preemption disabled.
1052 *
1053 * Returns NULL if all remote flushing was done.
1054 * Returns pointer to cpumask if some remote flushing remains to be
1055 * done. The returned pointer is valid till preemption is re-enabled.
1056 */
1057 const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
1058 struct mm_struct *mm, unsigned long start,
1059 unsigned end, unsigned int cpu)
1060 {
1061 int locals = 0;
1062 int remotes = 0;
1063 int hubs = 0;
1064 struct bau_desc *bau_desc;
1065 struct cpumask *flush_mask;
1066 struct ptc_stats *stat;
1067 struct bau_control *bcp;
1068 unsigned long descriptor_status;
1069 unsigned long status;
1070
1071 bcp = &per_cpu(bau_control, cpu);
1072 stat = bcp->statp;
1073 stat->s_enters++;
1074
1075 if (bcp->nobau)
1076 return cpumask;
1077
1078 if (bcp->busy) {
1079 descriptor_status =
1080 read_lmmr(UVH_LB_BAU_SB_ACTIVATION_STATUS_0);
1081 status = ((descriptor_status >> (bcp->uvhub_cpu *
1082 UV_ACT_STATUS_SIZE)) & UV_ACT_STATUS_MASK) << 1;
1083 if (status == UV2H_DESC_BUSY)
1084 return cpumask;
1085 bcp->busy = 0;
1086 }
1087
1088 /* bau was disabled due to slow response */
1089 if (bcp->baudisabled) {
1090 if (check_enable(bcp, stat)) {
1091 stat->s_ipifordisabled++;
1092 return cpumask;
1093 }
1094 }
1095
1096 /*
1097 * Each sending cpu has a per-cpu mask which it fills from the caller's
1098 * cpu mask. All cpus are converted to uvhubs and copied to the
1099 * activation descriptor.
1100 */
1101 flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu);
1102 /* don't actually do a shootdown of the local cpu */
1103 cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
1104
1105 if (cpu_isset(cpu, *cpumask))
1106 stat->s_ntargself++;
1107
1108 bau_desc = bcp->descriptor_base;
1109 bau_desc += (ITEMS_PER_DESC * bcp->uvhub_cpu);
1110 bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
1111 if (set_distrib_bits(flush_mask, bcp, bau_desc, &locals, &remotes))
1112 return NULL;
1113
1114 record_send_statistics(stat, locals, hubs, remotes, bau_desc);
1115
1116 bau_desc->payload.address = start;
1117 bau_desc->payload.sending_cpu = cpu;
1118 /*
1119 * uv_flush_send_and_wait returns 0 if all cpu's were messaged,
1120 * or 1 if it gave up and the original cpumask should be returned.
1121 */
1122 if (!uv_flush_send_and_wait(flush_mask, bcp, bau_desc))
1123 return NULL;
1124 else
1125 return cpumask;
1126 }
1127
1128 /*
1129 * Search the message queue for any 'other' unprocessed message with the
1130 * same software acknowledge resource bit vector as the 'msg' message.
1131 */
1132 struct bau_pq_entry *find_another_by_swack(struct bau_pq_entry *msg,
1133 struct bau_control *bcp)
1134 {
1135 struct bau_pq_entry *msg_next = msg + 1;
1136 unsigned char swack_vec = msg->swack_vec;
1137
1138 if (msg_next > bcp->queue_last)
1139 msg_next = bcp->queue_first;
1140 while (msg_next != msg) {
1141 if ((msg_next->canceled == 0) && (msg_next->replied_to == 0) &&
1142 (msg_next->swack_vec == swack_vec))
1143 return msg_next;
1144 msg_next++;
1145 if (msg_next > bcp->queue_last)
1146 msg_next = bcp->queue_first;
1147 }
1148 return NULL;
1149 }
1150
1151 /*
1152 * UV2 needs to work around a bug in which an arriving message has not
1153 * set a bit in the UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE register.
1154 * Such a message must be ignored.
1155 */
1156 void process_uv2_message(struct msg_desc *mdp, struct bau_control *bcp)
1157 {
1158 unsigned long mmr_image;
1159 unsigned char swack_vec;
1160 struct bau_pq_entry *msg = mdp->msg;
1161 struct bau_pq_entry *other_msg;
1162
1163 mmr_image = read_mmr_sw_ack();
1164 swack_vec = msg->swack_vec;
1165
1166 if ((swack_vec & mmr_image) == 0) {
1167 /*
1168 * This message was assigned a swack resource, but no
1169 * reserved acknowlegment is pending.
1170 * The bug has prevented this message from setting the MMR.
1171 */
1172 /*
1173 * Some message has set the MMR 'pending' bit; it might have
1174 * been another message. Look for that message.
1175 */
1176 other_msg = find_another_by_swack(msg, bcp);
1177 if (other_msg) {
1178 /*
1179 * There is another. Process this one but do not
1180 * ack it.
1181 */
1182 bau_process_message(mdp, bcp, 0);
1183 /*
1184 * Let the natural processing of that other message
1185 * acknowledge it. Don't get the processing of sw_ack's
1186 * out of order.
1187 */
1188 return;
1189 }
1190 }
1191
1192 /*
1193 * Either the MMR shows this one pending a reply or there is no
1194 * other message using this sw_ack, so it is safe to acknowledge it.
1195 */
1196 bau_process_message(mdp, bcp, 1);
1197
1198 return;
1199 }
1200
1201 /*
1202 * The BAU message interrupt comes here. (registered by set_intr_gate)
1203 * See entry_64.S
1204 *
1205 * We received a broadcast assist message.
1206 *
1207 * Interrupts are disabled; this interrupt could represent
1208 * the receipt of several messages.
1209 *
1210 * All cores/threads on this hub get this interrupt.
1211 * The last one to see it does the software ack.
1212 * (the resource will not be freed until noninterruptable cpus see this
1213 * interrupt; hardware may timeout the s/w ack and reply ERROR)
1214 */
1215 void uv_bau_message_interrupt(struct pt_regs *regs)
1216 {
1217 int count = 0;
1218 cycles_t time_start;
1219 struct bau_pq_entry *msg;
1220 struct bau_control *bcp;
1221 struct ptc_stats *stat;
1222 struct msg_desc msgdesc;
1223
1224 ack_APIC_irq();
1225 time_start = get_cycles();
1226
1227 bcp = &per_cpu(bau_control, smp_processor_id());
1228 stat = bcp->statp;
1229
1230 msgdesc.queue_first = bcp->queue_first;
1231 msgdesc.queue_last = bcp->queue_last;
1232
1233 msg = bcp->bau_msg_head;
1234 while (msg->swack_vec) {
1235 count++;
1236
1237 msgdesc.msg_slot = msg - msgdesc.queue_first;
1238 msgdesc.msg = msg;
1239 if (bcp->uvhub_version == 2)
1240 process_uv2_message(&msgdesc, bcp);
1241 else
1242 bau_process_message(&msgdesc, bcp, 1);
1243
1244 msg++;
1245 if (msg > msgdesc.queue_last)
1246 msg = msgdesc.queue_first;
1247 bcp->bau_msg_head = msg;
1248 }
1249 stat->d_time += (get_cycles() - time_start);
1250 if (!count)
1251 stat->d_nomsg++;
1252 else if (count > 1)
1253 stat->d_multmsg++;
1254 }
1255
1256 /*
1257 * Each target uvhub (i.e. a uvhub that has cpu's) needs to have
1258 * shootdown message timeouts enabled. The timeout does not cause
1259 * an interrupt, but causes an error message to be returned to
1260 * the sender.
1261 */
1262 static void __init enable_timeouts(void)
1263 {
1264 int uvhub;
1265 int nuvhubs;
1266 int pnode;
1267 unsigned long mmr_image;
1268
1269 nuvhubs = uv_num_possible_blades();
1270
1271 for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
1272 if (!uv_blade_nr_possible_cpus(uvhub))
1273 continue;
1274
1275 pnode = uv_blade_to_pnode(uvhub);
1276 mmr_image = read_mmr_misc_control(pnode);
1277 /*
1278 * Set the timeout period and then lock it in, in three
1279 * steps; captures and locks in the period.
1280 *
1281 * To program the period, the SOFT_ACK_MODE must be off.
1282 */
1283 mmr_image &= ~(1L << SOFTACK_MSHIFT);
1284 write_mmr_misc_control(pnode, mmr_image);
1285 /*
1286 * Set the 4-bit period.
1287 */
1288 mmr_image &= ~((unsigned long)0xf << SOFTACK_PSHIFT);
1289 mmr_image |= (SOFTACK_TIMEOUT_PERIOD << SOFTACK_PSHIFT);
1290 write_mmr_misc_control(pnode, mmr_image);
1291 /*
1292 * UV1:
1293 * Subsequent reversals of the timebase bit (3) cause an
1294 * immediate timeout of one or all INTD resources as
1295 * indicated in bits 2:0 (7 causes all of them to timeout).
1296 */
1297 mmr_image |= (1L << SOFTACK_MSHIFT);
1298 if (is_uv2_hub()) {
1299 /* hw bug workaround; do not use extended status */
1300 mmr_image &= ~(1L << UV2_EXT_SHFT);
1301 }
1302 write_mmr_misc_control(pnode, mmr_image);
1303 }
1304 }
1305
1306 static void *ptc_seq_start(struct seq_file *file, loff_t *offset)
1307 {
1308 if (*offset < num_possible_cpus())
1309 return offset;
1310 return NULL;
1311 }
1312
1313 static void *ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
1314 {
1315 (*offset)++;
1316 if (*offset < num_possible_cpus())
1317 return offset;
1318 return NULL;
1319 }
1320
1321 static void ptc_seq_stop(struct seq_file *file, void *data)
1322 {
1323 }
1324
1325 static inline unsigned long long usec_2_cycles(unsigned long microsec)
1326 {
1327 unsigned long ns;
1328 unsigned long long cyc;
1329
1330 ns = microsec * 1000;
1331 cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
1332 return cyc;
1333 }
1334
1335 /*
1336 * Display the statistics thru /proc/sgi_uv/ptc_statistics
1337 * 'data' points to the cpu number
1338 * Note: see the descriptions in stat_description[].
1339 */
1340 static int ptc_seq_show(struct seq_file *file, void *data)
1341 {
1342 struct ptc_stats *stat;
1343 struct bau_control *bcp;
1344 int cpu;
1345
1346 cpu = *(loff_t *)data;
1347 if (!cpu) {
1348 seq_printf(file,
1349 "# cpu bauoff sent stime self locals remotes ncpus localhub ");
1350 seq_printf(file,
1351 "remotehub numuvhubs numuvhubs16 numuvhubs8 ");
1352 seq_printf(file,
1353 "numuvhubs4 numuvhubs2 numuvhubs1 dto snacks retries ");
1354 seq_printf(file,
1355 "rok resetp resett giveup sto bz throt disable ");
1356 seq_printf(file,
1357 "enable wars warshw warwaits enters ipidis plugged ");
1358 seq_printf(file,
1359 "ipiover glim cong swack recv rtime all one mult ");
1360 seq_printf(file,
1361 "none retry canc nocan reset rcan\n");
1362 }
1363 if (cpu < num_possible_cpus() && cpu_online(cpu)) {
1364 bcp = &per_cpu(bau_control, cpu);
1365 stat = bcp->statp;
1366 /* source side statistics */
1367 seq_printf(file,
1368 "cpu %d %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1369 cpu, bcp->nobau, stat->s_requestor,
1370 cycles_2_us(stat->s_time),
1371 stat->s_ntargself, stat->s_ntarglocals,
1372 stat->s_ntargremotes, stat->s_ntargcpu,
1373 stat->s_ntarglocaluvhub, stat->s_ntargremoteuvhub,
1374 stat->s_ntarguvhub, stat->s_ntarguvhub16);
1375 seq_printf(file, "%ld %ld %ld %ld %ld %ld ",
1376 stat->s_ntarguvhub8, stat->s_ntarguvhub4,
1377 stat->s_ntarguvhub2, stat->s_ntarguvhub1,
1378 stat->s_dtimeout, stat->s_strongnacks);
1379 seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ",
1380 stat->s_retry_messages, stat->s_retriesok,
1381 stat->s_resets_plug, stat->s_resets_timeout,
1382 stat->s_giveup, stat->s_stimeout,
1383 stat->s_busy, stat->s_throttles);
1384 seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1385 stat->s_bau_disabled, stat->s_bau_reenabled,
1386 stat->s_uv2_wars, stat->s_uv2_wars_hw,
1387 stat->s_uv2_war_waits, stat->s_enters,
1388 stat->s_ipifordisabled, stat->s_plugged,
1389 stat->s_overipilimit, stat->s_giveuplimit,
1390 stat->s_congested);
1391
1392 /* destination side statistics */
1393 seq_printf(file,
1394 "%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n",
1395 read_gmmr_sw_ack(uv_cpu_to_pnode(cpu)),
1396 stat->d_requestee, cycles_2_us(stat->d_time),
1397 stat->d_alltlb, stat->d_onetlb, stat->d_multmsg,
1398 stat->d_nomsg, stat->d_retries, stat->d_canceled,
1399 stat->d_nocanceled, stat->d_resets,
1400 stat->d_rcanceled);
1401 }
1402 return 0;
1403 }
1404
1405 /*
1406 * Display the tunables thru debugfs
1407 */
1408 static ssize_t tunables_read(struct file *file, char __user *userbuf,
1409 size_t count, loff_t *ppos)
1410 {
1411 char *buf;
1412 int ret;
1413
1414 buf = kasprintf(GFP_KERNEL, "%s %s %s\n%d %d %d %d %d %d %d %d %d %d\n",
1415 "max_concur plugged_delay plugsb4reset timeoutsb4reset",
1416 "ipi_reset_limit complete_threshold congested_response_us",
1417 "congested_reps disabled_period giveup_limit",
1418 max_concurr, plugged_delay, plugsb4reset,
1419 timeoutsb4reset, ipi_reset_limit, complete_threshold,
1420 congested_respns_us, congested_reps, disabled_period,
1421 giveup_limit);
1422
1423 if (!buf)
1424 return -ENOMEM;
1425
1426 ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
1427 kfree(buf);
1428 return ret;
1429 }
1430
1431 /*
1432 * handle a write to /proc/sgi_uv/ptc_statistics
1433 * -1: reset the statistics
1434 * 0: display meaning of the statistics
1435 */
1436 static ssize_t ptc_proc_write(struct file *file, const char __user *user,
1437 size_t count, loff_t *data)
1438 {
1439 int cpu;
1440 int i;
1441 int elements;
1442 long input_arg;
1443 char optstr[64];
1444 struct ptc_stats *stat;
1445
1446 if (count == 0 || count > sizeof(optstr))
1447 return -EINVAL;
1448 if (copy_from_user(optstr, user, count))
1449 return -EFAULT;
1450 optstr[count - 1] = '\0';
1451
1452 if (!strcmp(optstr, "on")) {
1453 set_bau_on();
1454 return count;
1455 } else if (!strcmp(optstr, "off")) {
1456 set_bau_off();
1457 return count;
1458 }
1459
1460 if (strict_strtol(optstr, 10, &input_arg) < 0) {
1461 printk(KERN_DEBUG "%s is invalid\n", optstr);
1462 return -EINVAL;
1463 }
1464
1465 if (input_arg == 0) {
1466 elements = sizeof(stat_description)/sizeof(*stat_description);
1467 printk(KERN_DEBUG "# cpu: cpu number\n");
1468 printk(KERN_DEBUG "Sender statistics:\n");
1469 for (i = 0; i < elements; i++)
1470 printk(KERN_DEBUG "%s\n", stat_description[i]);
1471 } else if (input_arg == -1) {
1472 for_each_present_cpu(cpu) {
1473 stat = &per_cpu(ptcstats, cpu);
1474 memset(stat, 0, sizeof(struct ptc_stats));
1475 }
1476 }
1477
1478 return count;
1479 }
1480
1481 static int local_atoi(const char *name)
1482 {
1483 int val = 0;
1484
1485 for (;; name++) {
1486 switch (*name) {
1487 case '0' ... '9':
1488 val = 10*val+(*name-'0');
1489 break;
1490 default:
1491 return val;
1492 }
1493 }
1494 }
1495
1496 /*
1497 * Parse the values written to /sys/kernel/debug/sgi_uv/bau_tunables.
1498 * Zero values reset them to defaults.
1499 */
1500 static int parse_tunables_write(struct bau_control *bcp, char *instr,
1501 int count)
1502 {
1503 char *p;
1504 char *q;
1505 int cnt = 0;
1506 int val;
1507 int e = sizeof(tunables) / sizeof(*tunables);
1508
1509 p = instr + strspn(instr, WHITESPACE);
1510 q = p;
1511 for (; *p; p = q + strspn(q, WHITESPACE)) {
1512 q = p + strcspn(p, WHITESPACE);
1513 cnt++;
1514 if (q == p)
1515 break;
1516 }
1517 if (cnt != e) {
1518 printk(KERN_INFO "bau tunable error: should be %d values\n", e);
1519 return -EINVAL;
1520 }
1521
1522 p = instr + strspn(instr, WHITESPACE);
1523 q = p;
1524 for (cnt = 0; *p; p = q + strspn(q, WHITESPACE), cnt++) {
1525 q = p + strcspn(p, WHITESPACE);
1526 val = local_atoi(p);
1527 switch (cnt) {
1528 case 0:
1529 if (val == 0) {
1530 max_concurr = MAX_BAU_CONCURRENT;
1531 max_concurr_const = MAX_BAU_CONCURRENT;
1532 continue;
1533 }
1534 if (val < 1 || val > bcp->cpus_in_uvhub) {
1535 printk(KERN_DEBUG
1536 "Error: BAU max concurrent %d is invalid\n",
1537 val);
1538 return -EINVAL;
1539 }
1540 max_concurr = val;
1541 max_concurr_const = val;
1542 continue;
1543 default:
1544 if (val == 0)
1545 *tunables[cnt].tunp = tunables[cnt].deflt;
1546 else
1547 *tunables[cnt].tunp = val;
1548 continue;
1549 }
1550 if (q == p)
1551 break;
1552 }
1553 return 0;
1554 }
1555
1556 /*
1557 * Handle a write to debugfs. (/sys/kernel/debug/sgi_uv/bau_tunables)
1558 */
1559 static ssize_t tunables_write(struct file *file, const char __user *user,
1560 size_t count, loff_t *data)
1561 {
1562 int cpu;
1563 int ret;
1564 char instr[100];
1565 struct bau_control *bcp;
1566
1567 if (count == 0 || count > sizeof(instr)-1)
1568 return -EINVAL;
1569 if (copy_from_user(instr, user, count))
1570 return -EFAULT;
1571
1572 instr[count] = '\0';
1573
1574 cpu = get_cpu();
1575 bcp = &per_cpu(bau_control, cpu);
1576 ret = parse_tunables_write(bcp, instr, count);
1577 put_cpu();
1578 if (ret)
1579 return ret;
1580
1581 for_each_present_cpu(cpu) {
1582 bcp = &per_cpu(bau_control, cpu);
1583 bcp->max_concurr = max_concurr;
1584 bcp->max_concurr_const = max_concurr;
1585 bcp->plugged_delay = plugged_delay;
1586 bcp->plugsb4reset = plugsb4reset;
1587 bcp->timeoutsb4reset = timeoutsb4reset;
1588 bcp->ipi_reset_limit = ipi_reset_limit;
1589 bcp->complete_threshold = complete_threshold;
1590 bcp->cong_response_us = congested_respns_us;
1591 bcp->cong_reps = congested_reps;
1592 bcp->disabled_period = sec_2_cycles(disabled_period);
1593 bcp->giveup_limit = giveup_limit;
1594 }
1595 return count;
1596 }
1597
1598 static const struct seq_operations uv_ptc_seq_ops = {
1599 .start = ptc_seq_start,
1600 .next = ptc_seq_next,
1601 .stop = ptc_seq_stop,
1602 .show = ptc_seq_show
1603 };
1604
1605 static int ptc_proc_open(struct inode *inode, struct file *file)
1606 {
1607 return seq_open(file, &uv_ptc_seq_ops);
1608 }
1609
1610 static int tunables_open(struct inode *inode, struct file *file)
1611 {
1612 return 0;
1613 }
1614
1615 static const struct file_operations proc_uv_ptc_operations = {
1616 .open = ptc_proc_open,
1617 .read = seq_read,
1618 .write = ptc_proc_write,
1619 .llseek = seq_lseek,
1620 .release = seq_release,
1621 };
1622
1623 static const struct file_operations tunables_fops = {
1624 .open = tunables_open,
1625 .read = tunables_read,
1626 .write = tunables_write,
1627 .llseek = default_llseek,
1628 };
1629
1630 static int __init uv_ptc_init(void)
1631 {
1632 struct proc_dir_entry *proc_uv_ptc;
1633
1634 if (!is_uv_system())
1635 return 0;
1636
1637 proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
1638 &proc_uv_ptc_operations);
1639 if (!proc_uv_ptc) {
1640 printk(KERN_ERR "unable to create %s proc entry\n",
1641 UV_PTC_BASENAME);
1642 return -EINVAL;
1643 }
1644
1645 tunables_dir = debugfs_create_dir(UV_BAU_TUNABLES_DIR, NULL);
1646 if (!tunables_dir) {
1647 printk(KERN_ERR "unable to create debugfs directory %s\n",
1648 UV_BAU_TUNABLES_DIR);
1649 return -EINVAL;
1650 }
1651 tunables_file = debugfs_create_file(UV_BAU_TUNABLES_FILE, 0600,
1652 tunables_dir, NULL, &tunables_fops);
1653 if (!tunables_file) {
1654 printk(KERN_ERR "unable to create debugfs file %s\n",
1655 UV_BAU_TUNABLES_FILE);
1656 return -EINVAL;
1657 }
1658 return 0;
1659 }
1660
1661 /*
1662 * Initialize the sending side's sending buffers.
1663 */
1664 static void activation_descriptor_init(int node, int pnode, int base_pnode)
1665 {
1666 int i;
1667 int cpu;
1668 int uv1 = 0;
1669 unsigned long gpa;
1670 unsigned long m;
1671 unsigned long n;
1672 size_t dsize;
1673 struct bau_desc *bau_desc;
1674 struct bau_desc *bd2;
1675 struct uv1_bau_msg_header *uv1_hdr;
1676 struct uv2_bau_msg_header *uv2_hdr;
1677 struct bau_control *bcp;
1678
1679 /*
1680 * each bau_desc is 64 bytes; there are 8 (ITEMS_PER_DESC)
1681 * per cpu; and one per cpu on the uvhub (ADP_SZ)
1682 */
1683 dsize = sizeof(struct bau_desc) * ADP_SZ * ITEMS_PER_DESC;
1684 bau_desc = kmalloc_node(dsize, GFP_KERNEL, node);
1685 BUG_ON(!bau_desc);
1686
1687 gpa = uv_gpa(bau_desc);
1688 n = uv_gpa_to_gnode(gpa);
1689 m = uv_gpa_to_offset(gpa);
1690 if (is_uv1_hub())
1691 uv1 = 1;
1692
1693 /* the 14-bit pnode */
1694 write_mmr_descriptor_base(pnode, (n << UV_DESC_PSHIFT | m));
1695 /*
1696 * Initializing all 8 (ITEMS_PER_DESC) descriptors for each
1697 * cpu even though we only use the first one; one descriptor can
1698 * describe a broadcast to 256 uv hubs.
1699 */
1700 for (i = 0, bd2 = bau_desc; i < (ADP_SZ * ITEMS_PER_DESC); i++, bd2++) {
1701 memset(bd2, 0, sizeof(struct bau_desc));
1702 if (uv1) {
1703 uv1_hdr = &bd2->header.uv1_hdr;
1704 uv1_hdr->swack_flag = 1;
1705 /*
1706 * The base_dest_nasid set in the message header
1707 * is the nasid of the first uvhub in the partition.
1708 * The bit map will indicate destination pnode numbers
1709 * relative to that base. They may not be consecutive
1710 * if nasid striding is being used.
1711 */
1712 uv1_hdr->base_dest_nasid =
1713 UV_PNODE_TO_NASID(base_pnode);
1714 uv1_hdr->dest_subnodeid = UV_LB_SUBNODEID;
1715 uv1_hdr->command = UV_NET_ENDPOINT_INTD;
1716 uv1_hdr->int_both = 1;
1717 /*
1718 * all others need to be set to zero:
1719 * fairness chaining multilevel count replied_to
1720 */
1721 } else {
1722 /*
1723 * BIOS uses legacy mode, but UV2 hardware always
1724 * uses native mode for selective broadcasts.
1725 */
1726 uv2_hdr = &bd2->header.uv2_hdr;
1727 uv2_hdr->swack_flag = 1;
1728 uv2_hdr->base_dest_nasid =
1729 UV_PNODE_TO_NASID(base_pnode);
1730 uv2_hdr->dest_subnodeid = UV_LB_SUBNODEID;
1731 uv2_hdr->command = UV_NET_ENDPOINT_INTD;
1732 }
1733 }
1734 for_each_present_cpu(cpu) {
1735 if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu)))
1736 continue;
1737 bcp = &per_cpu(bau_control, cpu);
1738 bcp->descriptor_base = bau_desc;
1739 }
1740 }
1741
1742 /*
1743 * initialize the destination side's receiving buffers
1744 * entered for each uvhub in the partition
1745 * - node is first node (kernel memory notion) on the uvhub
1746 * - pnode is the uvhub's physical identifier
1747 */
1748 static void pq_init(int node, int pnode)
1749 {
1750 int cpu;
1751 size_t plsize;
1752 char *cp;
1753 void *vp;
1754 unsigned long pn;
1755 unsigned long first;
1756 unsigned long pn_first;
1757 unsigned long last;
1758 struct bau_pq_entry *pqp;
1759 struct bau_control *bcp;
1760
1761 plsize = (DEST_Q_SIZE + 1) * sizeof(struct bau_pq_entry);
1762 vp = kmalloc_node(plsize, GFP_KERNEL, node);
1763 pqp = (struct bau_pq_entry *)vp;
1764 BUG_ON(!pqp);
1765
1766 cp = (char *)pqp + 31;
1767 pqp = (struct bau_pq_entry *)(((unsigned long)cp >> 5) << 5);
1768
1769 for_each_present_cpu(cpu) {
1770 if (pnode != uv_cpu_to_pnode(cpu))
1771 continue;
1772 /* for every cpu on this pnode: */
1773 bcp = &per_cpu(bau_control, cpu);
1774 bcp->queue_first = pqp;
1775 bcp->bau_msg_head = pqp;
1776 bcp->queue_last = pqp + (DEST_Q_SIZE - 1);
1777 }
1778 /*
1779 * need the gnode of where the memory was really allocated
1780 */
1781 pn = uv_gpa_to_gnode(uv_gpa(pqp));
1782 first = uv_physnodeaddr(pqp);
1783 pn_first = ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) | first;
1784 last = uv_physnodeaddr(pqp + (DEST_Q_SIZE - 1));
1785 write_mmr_payload_first(pnode, pn_first);
1786 write_mmr_payload_tail(pnode, first);
1787 write_mmr_payload_last(pnode, last);
1788 write_gmmr_sw_ack(pnode, 0xffffUL);
1789
1790 /* in effect, all msg_type's are set to MSG_NOOP */
1791 memset(pqp, 0, sizeof(struct bau_pq_entry) * DEST_Q_SIZE);
1792 }
1793
1794 /*
1795 * Initialization of each UV hub's structures
1796 */
1797 static void __init init_uvhub(int uvhub, int vector, int base_pnode)
1798 {
1799 int node;
1800 int pnode;
1801 unsigned long apicid;
1802
1803 node = uvhub_to_first_node(uvhub);
1804 pnode = uv_blade_to_pnode(uvhub);
1805
1806 activation_descriptor_init(node, pnode, base_pnode);
1807
1808 pq_init(node, pnode);
1809 /*
1810 * The below initialization can't be in firmware because the
1811 * messaging IRQ will be determined by the OS.
1812 */
1813 apicid = uvhub_to_first_apicid(uvhub) | uv_apicid_hibits;
1814 write_mmr_data_config(pnode, ((apicid << 32) | vector));
1815 }
1816
1817 /*
1818 * We will set BAU_MISC_CONTROL with a timeout period.
1819 * But the BIOS has set UVH_AGING_PRESCALE_SEL and UVH_TRANSACTION_TIMEOUT.
1820 * So the destination timeout period has to be calculated from them.
1821 */
1822 static int calculate_destination_timeout(void)
1823 {
1824 unsigned long mmr_image;
1825 int mult1;
1826 int mult2;
1827 int index;
1828 int base;
1829 int ret;
1830 unsigned long ts_ns;
1831
1832 if (is_uv1_hub()) {
1833 mult1 = SOFTACK_TIMEOUT_PERIOD & BAU_MISC_CONTROL_MULT_MASK;
1834 mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
1835 index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK;
1836 mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT);
1837 mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK;
1838 ts_ns = timeout_base_ns[index];
1839 ts_ns *= (mult1 * mult2);
1840 ret = ts_ns / 1000;
1841 } else {
1842 /* 4 bits 0/1 for 10/80us base, 3 bits of multiplier */
1843 mmr_image = uv_read_local_mmr(UVH_LB_BAU_MISC_CONTROL);
1844 mmr_image = (mmr_image & UV_SA_MASK) >> UV_SA_SHFT;
1845 if (mmr_image & (1L << UV2_ACK_UNITS_SHFT))
1846 base = 80;
1847 else
1848 base = 10;
1849 mult1 = mmr_image & UV2_ACK_MASK;
1850 ret = mult1 * base;
1851 }
1852 return ret;
1853 }
1854
1855 static void __init init_per_cpu_tunables(void)
1856 {
1857 int cpu;
1858 struct bau_control *bcp;
1859
1860 for_each_present_cpu(cpu) {
1861 bcp = &per_cpu(bau_control, cpu);
1862 bcp->baudisabled = 0;
1863 if (nobau)
1864 bcp->nobau = 1;
1865 bcp->statp = &per_cpu(ptcstats, cpu);
1866 /* time interval to catch a hardware stay-busy bug */
1867 bcp->timeout_interval = usec_2_cycles(2*timeout_us);
1868 bcp->max_concurr = max_concurr;
1869 bcp->max_concurr_const = max_concurr;
1870 bcp->plugged_delay = plugged_delay;
1871 bcp->plugsb4reset = plugsb4reset;
1872 bcp->timeoutsb4reset = timeoutsb4reset;
1873 bcp->ipi_reset_limit = ipi_reset_limit;
1874 bcp->complete_threshold = complete_threshold;
1875 bcp->cong_response_us = congested_respns_us;
1876 bcp->cong_reps = congested_reps;
1877 bcp->disabled_period = sec_2_cycles(disabled_period);
1878 bcp->giveup_limit = giveup_limit;
1879 spin_lock_init(&bcp->queue_lock);
1880 spin_lock_init(&bcp->uvhub_lock);
1881 spin_lock_init(&bcp->disable_lock);
1882 }
1883 }
1884
1885 /*
1886 * Scan all cpus to collect blade and socket summaries.
1887 */
1888 static int __init get_cpu_topology(int base_pnode,
1889 struct uvhub_desc *uvhub_descs,
1890 unsigned char *uvhub_mask)
1891 {
1892 int cpu;
1893 int pnode;
1894 int uvhub;
1895 int socket;
1896 struct bau_control *bcp;
1897 struct uvhub_desc *bdp;
1898 struct socket_desc *sdp;
1899
1900 for_each_present_cpu(cpu) {
1901 bcp = &per_cpu(bau_control, cpu);
1902
1903 memset(bcp, 0, sizeof(struct bau_control));
1904
1905 pnode = uv_cpu_hub_info(cpu)->pnode;
1906 if ((pnode - base_pnode) >= UV_DISTRIBUTION_SIZE) {
1907 printk(KERN_EMERG
1908 "cpu %d pnode %d-%d beyond %d; BAU disabled\n",
1909 cpu, pnode, base_pnode, UV_DISTRIBUTION_SIZE);
1910 return 1;
1911 }
1912
1913 bcp->osnode = cpu_to_node(cpu);
1914 bcp->partition_base_pnode = base_pnode;
1915
1916 uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
1917 *(uvhub_mask + (uvhub/8)) |= (1 << (uvhub%8));
1918 bdp = &uvhub_descs[uvhub];
1919
1920 bdp->num_cpus++;
1921 bdp->uvhub = uvhub;
1922 bdp->pnode = pnode;
1923
1924 /* kludge: 'assuming' one node per socket, and assuming that
1925 disabling a socket just leaves a gap in node numbers */
1926 socket = bcp->osnode & 1;
1927 bdp->socket_mask |= (1 << socket);
1928 sdp = &bdp->socket[socket];
1929 sdp->cpu_number[sdp->num_cpus] = cpu;
1930 sdp->num_cpus++;
1931 if (sdp->num_cpus > MAX_CPUS_PER_SOCKET) {
1932 printk(KERN_EMERG "%d cpus per socket invalid\n",
1933 sdp->num_cpus);
1934 return 1;
1935 }
1936 }
1937 return 0;
1938 }
1939
1940 /*
1941 * Each socket is to get a local array of pnodes/hubs.
1942 */
1943 static void make_per_cpu_thp(struct bau_control *smaster)
1944 {
1945 int cpu;
1946 size_t hpsz = sizeof(struct hub_and_pnode) * num_possible_cpus();
1947
1948 smaster->thp = kmalloc_node(hpsz, GFP_KERNEL, smaster->osnode);
1949 memset(smaster->thp, 0, hpsz);
1950 for_each_present_cpu(cpu) {
1951 smaster->thp[cpu].pnode = uv_cpu_hub_info(cpu)->pnode;
1952 smaster->thp[cpu].uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
1953 }
1954 }
1955
1956 /*
1957 * Each uvhub is to get a local cpumask.
1958 */
1959 static void make_per_hub_cpumask(struct bau_control *hmaster)
1960 {
1961 int sz = sizeof(cpumask_t);
1962
1963 hmaster->cpumask = kzalloc_node(sz, GFP_KERNEL, hmaster->osnode);
1964 }
1965
1966 /*
1967 * Initialize all the per_cpu information for the cpu's on a given socket,
1968 * given what has been gathered into the socket_desc struct.
1969 * And reports the chosen hub and socket masters back to the caller.
1970 */
1971 static int scan_sock(struct socket_desc *sdp, struct uvhub_desc *bdp,
1972 struct bau_control **smasterp,
1973 struct bau_control **hmasterp)
1974 {
1975 int i;
1976 int cpu;
1977 struct bau_control *bcp;
1978
1979 for (i = 0; i < sdp->num_cpus; i++) {
1980 cpu = sdp->cpu_number[i];
1981 bcp = &per_cpu(bau_control, cpu);
1982 bcp->cpu = cpu;
1983 if (i == 0) {
1984 *smasterp = bcp;
1985 if (!(*hmasterp))
1986 *hmasterp = bcp;
1987 }
1988 bcp->cpus_in_uvhub = bdp->num_cpus;
1989 bcp->cpus_in_socket = sdp->num_cpus;
1990 bcp->socket_master = *smasterp;
1991 bcp->uvhub = bdp->uvhub;
1992 if (is_uv1_hub())
1993 bcp->uvhub_version = 1;
1994 else if (is_uv2_hub())
1995 bcp->uvhub_version = 2;
1996 else {
1997 printk(KERN_EMERG "uvhub version not 1 or 2\n");
1998 return 1;
1999 }
2000 bcp->uvhub_master = *hmasterp;
2001 bcp->uvhub_cpu = uv_cpu_hub_info(cpu)->blade_processor_id;
2002 if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) {
2003 printk(KERN_EMERG "%d cpus per uvhub invalid\n",
2004 bcp->uvhub_cpu);
2005 return 1;
2006 }
2007 }
2008 return 0;
2009 }
2010
2011 /*
2012 * Summarize the blade and socket topology into the per_cpu structures.
2013 */
2014 static int __init summarize_uvhub_sockets(int nuvhubs,
2015 struct uvhub_desc *uvhub_descs,
2016 unsigned char *uvhub_mask)
2017 {
2018 int socket;
2019 int uvhub;
2020 unsigned short socket_mask;
2021
2022 for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
2023 struct uvhub_desc *bdp;
2024 struct bau_control *smaster = NULL;
2025 struct bau_control *hmaster = NULL;
2026
2027 if (!(*(uvhub_mask + (uvhub/8)) & (1 << (uvhub%8))))
2028 continue;
2029
2030 bdp = &uvhub_descs[uvhub];
2031 socket_mask = bdp->socket_mask;
2032 socket = 0;
2033 while (socket_mask) {
2034 struct socket_desc *sdp;
2035 if ((socket_mask & 1)) {
2036 sdp = &bdp->socket[socket];
2037 if (scan_sock(sdp, bdp, &smaster, &hmaster))
2038 return 1;
2039 make_per_cpu_thp(smaster);
2040 }
2041 socket++;
2042 socket_mask = (socket_mask >> 1);
2043 }
2044 make_per_hub_cpumask(hmaster);
2045 }
2046 return 0;
2047 }
2048
2049 /*
2050 * initialize the bau_control structure for each cpu
2051 */
2052 static int __init init_per_cpu(int nuvhubs, int base_part_pnode)
2053 {
2054 unsigned char *uvhub_mask;
2055 void *vp;
2056 struct uvhub_desc *uvhub_descs;
2057
2058 timeout_us = calculate_destination_timeout();
2059
2060 vp = kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL);
2061 uvhub_descs = (struct uvhub_desc *)vp;
2062 memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc));
2063 uvhub_mask = kzalloc((nuvhubs+7)/8, GFP_KERNEL);
2064
2065 if (get_cpu_topology(base_part_pnode, uvhub_descs, uvhub_mask))
2066 goto fail;
2067
2068 if (summarize_uvhub_sockets(nuvhubs, uvhub_descs, uvhub_mask))
2069 goto fail;
2070
2071 kfree(uvhub_descs);
2072 kfree(uvhub_mask);
2073 init_per_cpu_tunables();
2074 return 0;
2075
2076 fail:
2077 kfree(uvhub_descs);
2078 kfree(uvhub_mask);
2079 return 1;
2080 }
2081
2082 /*
2083 * Initialization of BAU-related structures
2084 */
2085 static int __init uv_bau_init(void)
2086 {
2087 int uvhub;
2088 int pnode;
2089 int nuvhubs;
2090 int cur_cpu;
2091 int cpus;
2092 int vector;
2093 cpumask_var_t *mask;
2094
2095 if (!is_uv_system())
2096 return 0;
2097
2098 for_each_possible_cpu(cur_cpu) {
2099 mask = &per_cpu(uv_flush_tlb_mask, cur_cpu);
2100 zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cur_cpu));
2101 }
2102
2103 nuvhubs = uv_num_possible_blades();
2104 congested_cycles = usec_2_cycles(congested_respns_us);
2105
2106 uv_base_pnode = 0x7fffffff;
2107 for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
2108 cpus = uv_blade_nr_possible_cpus(uvhub);
2109 if (cpus && (uv_blade_to_pnode(uvhub) < uv_base_pnode))
2110 uv_base_pnode = uv_blade_to_pnode(uvhub);
2111 }
2112
2113 enable_timeouts();
2114
2115 if (init_per_cpu(nuvhubs, uv_base_pnode)) {
2116 set_bau_off();
2117 nobau_perm = 1;
2118 return 0;
2119 }
2120
2121 vector = UV_BAU_MESSAGE;
2122 for_each_possible_blade(uvhub)
2123 if (uv_blade_nr_possible_cpus(uvhub))
2124 init_uvhub(uvhub, vector, uv_base_pnode);
2125
2126 alloc_intr_gate(vector, uv_bau_message_intr1);
2127
2128 for_each_possible_blade(uvhub) {
2129 if (uv_blade_nr_possible_cpus(uvhub)) {
2130 unsigned long val;
2131 unsigned long mmr;
2132 pnode = uv_blade_to_pnode(uvhub);
2133 /* INIT the bau */
2134 val = 1L << 63;
2135 write_gmmr_activation(pnode, val);
2136 mmr = 1; /* should be 1 to broadcast to both sockets */
2137 if (!is_uv1_hub())
2138 write_mmr_data_broadcast(pnode, mmr);
2139 }
2140 }
2141
2142 return 0;
2143 }
2144 core_initcall(uv_bau_init);
2145 fs_initcall(uv_ptc_init);