Merge tag 'v3.8-rc5' into x86/mm
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / mm / init_64.c
1 /*
2 * linux/arch/x86_64/mm/init.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory.h>
32 #include <linux/memory_hotplug.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35
36 #include <asm/processor.h>
37 #include <asm/bios_ebda.h>
38 #include <asm/uaccess.h>
39 #include <asm/pgtable.h>
40 #include <asm/pgalloc.h>
41 #include <asm/dma.h>
42 #include <asm/fixmap.h>
43 #include <asm/e820.h>
44 #include <asm/apic.h>
45 #include <asm/tlb.h>
46 #include <asm/mmu_context.h>
47 #include <asm/proto.h>
48 #include <asm/smp.h>
49 #include <asm/sections.h>
50 #include <asm/kdebug.h>
51 #include <asm/numa.h>
52 #include <asm/cacheflush.h>
53 #include <asm/init.h>
54 #include <asm/uv/uv.h>
55 #include <asm/setup.h>
56
57 static int __init parse_direct_gbpages_off(char *arg)
58 {
59 direct_gbpages = 0;
60 return 0;
61 }
62 early_param("nogbpages", parse_direct_gbpages_off);
63
64 static int __init parse_direct_gbpages_on(char *arg)
65 {
66 direct_gbpages = 1;
67 return 0;
68 }
69 early_param("gbpages", parse_direct_gbpages_on);
70
71 /*
72 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
73 * physical space so we can cache the place of the first one and move
74 * around without checking the pgd every time.
75 */
76
77 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
78 EXPORT_SYMBOL_GPL(__supported_pte_mask);
79
80 int force_personality32;
81
82 /*
83 * noexec32=on|off
84 * Control non executable heap for 32bit processes.
85 * To control the stack too use noexec=off
86 *
87 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
88 * off PROT_READ implies PROT_EXEC
89 */
90 static int __init nonx32_setup(char *str)
91 {
92 if (!strcmp(str, "on"))
93 force_personality32 &= ~READ_IMPLIES_EXEC;
94 else if (!strcmp(str, "off"))
95 force_personality32 |= READ_IMPLIES_EXEC;
96 return 1;
97 }
98 __setup("noexec32=", nonx32_setup);
99
100 /*
101 * When memory was added/removed make sure all the processes MM have
102 * suitable PGD entries in the local PGD level page.
103 */
104 void sync_global_pgds(unsigned long start, unsigned long end)
105 {
106 unsigned long address;
107
108 for (address = start; address <= end; address += PGDIR_SIZE) {
109 const pgd_t *pgd_ref = pgd_offset_k(address);
110 struct page *page;
111
112 if (pgd_none(*pgd_ref))
113 continue;
114
115 spin_lock(&pgd_lock);
116 list_for_each_entry(page, &pgd_list, lru) {
117 pgd_t *pgd;
118 spinlock_t *pgt_lock;
119
120 pgd = (pgd_t *)page_address(page) + pgd_index(address);
121 /* the pgt_lock only for Xen */
122 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
123 spin_lock(pgt_lock);
124
125 if (pgd_none(*pgd))
126 set_pgd(pgd, *pgd_ref);
127 else
128 BUG_ON(pgd_page_vaddr(*pgd)
129 != pgd_page_vaddr(*pgd_ref));
130
131 spin_unlock(pgt_lock);
132 }
133 spin_unlock(&pgd_lock);
134 }
135 }
136
137 /*
138 * NOTE: This function is marked __ref because it calls __init function
139 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
140 */
141 static __ref void *spp_getpage(void)
142 {
143 void *ptr;
144
145 if (after_bootmem)
146 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
147 else
148 ptr = alloc_bootmem_pages(PAGE_SIZE);
149
150 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
151 panic("set_pte_phys: cannot allocate page data %s\n",
152 after_bootmem ? "after bootmem" : "");
153 }
154
155 pr_debug("spp_getpage %p\n", ptr);
156
157 return ptr;
158 }
159
160 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
161 {
162 if (pgd_none(*pgd)) {
163 pud_t *pud = (pud_t *)spp_getpage();
164 pgd_populate(&init_mm, pgd, pud);
165 if (pud != pud_offset(pgd, 0))
166 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
167 pud, pud_offset(pgd, 0));
168 }
169 return pud_offset(pgd, vaddr);
170 }
171
172 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
173 {
174 if (pud_none(*pud)) {
175 pmd_t *pmd = (pmd_t *) spp_getpage();
176 pud_populate(&init_mm, pud, pmd);
177 if (pmd != pmd_offset(pud, 0))
178 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
179 pmd, pmd_offset(pud, 0));
180 }
181 return pmd_offset(pud, vaddr);
182 }
183
184 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
185 {
186 if (pmd_none(*pmd)) {
187 pte_t *pte = (pte_t *) spp_getpage();
188 pmd_populate_kernel(&init_mm, pmd, pte);
189 if (pte != pte_offset_kernel(pmd, 0))
190 printk(KERN_ERR "PAGETABLE BUG #02!\n");
191 }
192 return pte_offset_kernel(pmd, vaddr);
193 }
194
195 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
196 {
197 pud_t *pud;
198 pmd_t *pmd;
199 pte_t *pte;
200
201 pud = pud_page + pud_index(vaddr);
202 pmd = fill_pmd(pud, vaddr);
203 pte = fill_pte(pmd, vaddr);
204
205 set_pte(pte, new_pte);
206
207 /*
208 * It's enough to flush this one mapping.
209 * (PGE mappings get flushed as well)
210 */
211 __flush_tlb_one(vaddr);
212 }
213
214 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
215 {
216 pgd_t *pgd;
217 pud_t *pud_page;
218
219 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
220
221 pgd = pgd_offset_k(vaddr);
222 if (pgd_none(*pgd)) {
223 printk(KERN_ERR
224 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
225 return;
226 }
227 pud_page = (pud_t*)pgd_page_vaddr(*pgd);
228 set_pte_vaddr_pud(pud_page, vaddr, pteval);
229 }
230
231 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
232 {
233 pgd_t *pgd;
234 pud_t *pud;
235
236 pgd = pgd_offset_k(vaddr);
237 pud = fill_pud(pgd, vaddr);
238 return fill_pmd(pud, vaddr);
239 }
240
241 pte_t * __init populate_extra_pte(unsigned long vaddr)
242 {
243 pmd_t *pmd;
244
245 pmd = populate_extra_pmd(vaddr);
246 return fill_pte(pmd, vaddr);
247 }
248
249 /*
250 * Create large page table mappings for a range of physical addresses.
251 */
252 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
253 pgprot_t prot)
254 {
255 pgd_t *pgd;
256 pud_t *pud;
257 pmd_t *pmd;
258
259 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
260 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
261 pgd = pgd_offset_k((unsigned long)__va(phys));
262 if (pgd_none(*pgd)) {
263 pud = (pud_t *) spp_getpage();
264 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
265 _PAGE_USER));
266 }
267 pud = pud_offset(pgd, (unsigned long)__va(phys));
268 if (pud_none(*pud)) {
269 pmd = (pmd_t *) spp_getpage();
270 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
271 _PAGE_USER));
272 }
273 pmd = pmd_offset(pud, phys);
274 BUG_ON(!pmd_none(*pmd));
275 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
276 }
277 }
278
279 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
280 {
281 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
282 }
283
284 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
285 {
286 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
287 }
288
289 /*
290 * The head.S code sets up the kernel high mapping:
291 *
292 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
293 *
294 * phys_addr holds the negative offset to the kernel, which is added
295 * to the compile time generated pmds. This results in invalid pmds up
296 * to the point where we hit the physaddr 0 mapping.
297 *
298 * We limit the mappings to the region from _text to _brk_end. _brk_end
299 * is rounded up to the 2MB boundary. This catches the invalid pmds as
300 * well, as they are located before _text:
301 */
302 void __init cleanup_highmap(void)
303 {
304 unsigned long vaddr = __START_KERNEL_map;
305 unsigned long vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
306 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
307 pmd_t *pmd = level2_kernel_pgt;
308
309 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
310 if (pmd_none(*pmd))
311 continue;
312 if (vaddr < (unsigned long) _text || vaddr > end)
313 set_pmd(pmd, __pmd(0));
314 }
315 }
316
317 static __ref void *alloc_low_page(unsigned long *phys)
318 {
319 unsigned long pfn = pgt_buf_end++;
320 void *adr;
321
322 if (after_bootmem) {
323 adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
324 *phys = __pa(adr);
325
326 return adr;
327 }
328
329 if (pfn >= pgt_buf_top)
330 panic("alloc_low_page: ran out of memory");
331
332 adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
333 clear_page(adr);
334 *phys = pfn * PAGE_SIZE;
335 return adr;
336 }
337
338 static __ref void *map_low_page(void *virt)
339 {
340 void *adr;
341 unsigned long phys, left;
342
343 if (after_bootmem)
344 return virt;
345
346 phys = __pa(virt);
347 left = phys & (PAGE_SIZE - 1);
348 adr = early_memremap(phys & PAGE_MASK, PAGE_SIZE);
349 adr = (void *)(((unsigned long)adr) | left);
350
351 return adr;
352 }
353
354 static __ref void unmap_low_page(void *adr)
355 {
356 if (after_bootmem)
357 return;
358
359 early_iounmap((void *)((unsigned long)adr & PAGE_MASK), PAGE_SIZE);
360 }
361
362 static unsigned long __meminit
363 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
364 pgprot_t prot)
365 {
366 unsigned pages = 0;
367 unsigned long last_map_addr = end;
368 int i;
369
370 pte_t *pte = pte_page + pte_index(addr);
371
372 for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
373
374 if (addr >= end) {
375 if (!after_bootmem) {
376 for(; i < PTRS_PER_PTE; i++, pte++)
377 set_pte(pte, __pte(0));
378 }
379 break;
380 }
381
382 /*
383 * We will re-use the existing mapping.
384 * Xen for example has some special requirements, like mapping
385 * pagetable pages as RO. So assume someone who pre-setup
386 * these mappings are more intelligent.
387 */
388 if (pte_val(*pte)) {
389 if (!after_bootmem)
390 pages++;
391 continue;
392 }
393
394 if (0)
395 printk(" pte=%p addr=%lx pte=%016lx\n",
396 pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
397 pages++;
398 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
399 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
400 }
401
402 update_page_count(PG_LEVEL_4K, pages);
403
404 return last_map_addr;
405 }
406
407 static unsigned long __meminit
408 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
409 unsigned long page_size_mask, pgprot_t prot)
410 {
411 unsigned long pages = 0, next;
412 unsigned long last_map_addr = end;
413
414 int i = pmd_index(address);
415
416 for (; i < PTRS_PER_PMD; i++, address = next) {
417 unsigned long pte_phys;
418 pmd_t *pmd = pmd_page + pmd_index(address);
419 pte_t *pte;
420 pgprot_t new_prot = prot;
421
422 if (address >= end) {
423 if (!after_bootmem) {
424 for (; i < PTRS_PER_PMD; i++, pmd++)
425 set_pmd(pmd, __pmd(0));
426 }
427 break;
428 }
429
430 next = (address & PMD_MASK) + PMD_SIZE;
431
432 if (pmd_val(*pmd)) {
433 if (!pmd_large(*pmd)) {
434 spin_lock(&init_mm.page_table_lock);
435 pte = map_low_page((pte_t *)pmd_page_vaddr(*pmd));
436 last_map_addr = phys_pte_init(pte, address,
437 end, prot);
438 unmap_low_page(pte);
439 spin_unlock(&init_mm.page_table_lock);
440 continue;
441 }
442 /*
443 * If we are ok with PG_LEVEL_2M mapping, then we will
444 * use the existing mapping,
445 *
446 * Otherwise, we will split the large page mapping but
447 * use the same existing protection bits except for
448 * large page, so that we don't violate Intel's TLB
449 * Application note (317080) which says, while changing
450 * the page sizes, new and old translations should
451 * not differ with respect to page frame and
452 * attributes.
453 */
454 if (page_size_mask & (1 << PG_LEVEL_2M)) {
455 if (!after_bootmem)
456 pages++;
457 last_map_addr = next;
458 continue;
459 }
460 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
461 }
462
463 if (page_size_mask & (1<<PG_LEVEL_2M)) {
464 pages++;
465 spin_lock(&init_mm.page_table_lock);
466 set_pte((pte_t *)pmd,
467 pfn_pte(address >> PAGE_SHIFT,
468 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
469 spin_unlock(&init_mm.page_table_lock);
470 last_map_addr = next;
471 continue;
472 }
473
474 pte = alloc_low_page(&pte_phys);
475 last_map_addr = phys_pte_init(pte, address, end, new_prot);
476 unmap_low_page(pte);
477
478 spin_lock(&init_mm.page_table_lock);
479 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
480 spin_unlock(&init_mm.page_table_lock);
481 }
482 update_page_count(PG_LEVEL_2M, pages);
483 return last_map_addr;
484 }
485
486 static unsigned long __meminit
487 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
488 unsigned long page_size_mask)
489 {
490 unsigned long pages = 0, next;
491 unsigned long last_map_addr = end;
492 int i = pud_index(addr);
493
494 for (; i < PTRS_PER_PUD; i++, addr = next) {
495 unsigned long pmd_phys;
496 pud_t *pud = pud_page + pud_index(addr);
497 pmd_t *pmd;
498 pgprot_t prot = PAGE_KERNEL;
499
500 if (addr >= end)
501 break;
502
503 next = (addr & PUD_MASK) + PUD_SIZE;
504
505 if (!after_bootmem && !e820_any_mapped(addr, next, 0)) {
506 set_pud(pud, __pud(0));
507 continue;
508 }
509
510 if (pud_val(*pud)) {
511 if (!pud_large(*pud)) {
512 pmd = map_low_page(pmd_offset(pud, 0));
513 last_map_addr = phys_pmd_init(pmd, addr, end,
514 page_size_mask, prot);
515 unmap_low_page(pmd);
516 __flush_tlb_all();
517 continue;
518 }
519 /*
520 * If we are ok with PG_LEVEL_1G mapping, then we will
521 * use the existing mapping.
522 *
523 * Otherwise, we will split the gbpage mapping but use
524 * the same existing protection bits except for large
525 * page, so that we don't violate Intel's TLB
526 * Application note (317080) which says, while changing
527 * the page sizes, new and old translations should
528 * not differ with respect to page frame and
529 * attributes.
530 */
531 if (page_size_mask & (1 << PG_LEVEL_1G)) {
532 if (!after_bootmem)
533 pages++;
534 last_map_addr = next;
535 continue;
536 }
537 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
538 }
539
540 if (page_size_mask & (1<<PG_LEVEL_1G)) {
541 pages++;
542 spin_lock(&init_mm.page_table_lock);
543 set_pte((pte_t *)pud,
544 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
545 spin_unlock(&init_mm.page_table_lock);
546 last_map_addr = next;
547 continue;
548 }
549
550 pmd = alloc_low_page(&pmd_phys);
551 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
552 prot);
553 unmap_low_page(pmd);
554
555 spin_lock(&init_mm.page_table_lock);
556 pud_populate(&init_mm, pud, __va(pmd_phys));
557 spin_unlock(&init_mm.page_table_lock);
558 }
559 __flush_tlb_all();
560
561 update_page_count(PG_LEVEL_1G, pages);
562
563 return last_map_addr;
564 }
565
566 unsigned long __meminit
567 kernel_physical_mapping_init(unsigned long start,
568 unsigned long end,
569 unsigned long page_size_mask)
570 {
571 bool pgd_changed = false;
572 unsigned long next, last_map_addr = end;
573 unsigned long addr;
574
575 start = (unsigned long)__va(start);
576 end = (unsigned long)__va(end);
577 addr = start;
578
579 for (; start < end; start = next) {
580 pgd_t *pgd = pgd_offset_k(start);
581 unsigned long pud_phys;
582 pud_t *pud;
583
584 next = (start + PGDIR_SIZE) & PGDIR_MASK;
585 if (next > end)
586 next = end;
587
588 if (pgd_val(*pgd)) {
589 pud = map_low_page((pud_t *)pgd_page_vaddr(*pgd));
590 last_map_addr = phys_pud_init(pud, __pa(start),
591 __pa(end), page_size_mask);
592 unmap_low_page(pud);
593 continue;
594 }
595
596 pud = alloc_low_page(&pud_phys);
597 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
598 page_size_mask);
599 unmap_low_page(pud);
600
601 spin_lock(&init_mm.page_table_lock);
602 pgd_populate(&init_mm, pgd, __va(pud_phys));
603 spin_unlock(&init_mm.page_table_lock);
604 pgd_changed = true;
605 }
606
607 if (pgd_changed)
608 sync_global_pgds(addr, end);
609
610 __flush_tlb_all();
611
612 return last_map_addr;
613 }
614
615 #ifndef CONFIG_NUMA
616 void __init initmem_init(void)
617 {
618 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
619 }
620 #endif
621
622 void __init paging_init(void)
623 {
624 sparse_memory_present_with_active_regions(MAX_NUMNODES);
625 sparse_init();
626
627 /*
628 * clear the default setting with node 0
629 * note: don't use nodes_clear here, that is really clearing when
630 * numa support is not compiled in, and later node_set_state
631 * will not set it back.
632 */
633 node_clear_state(0, N_MEMORY);
634 if (N_MEMORY != N_NORMAL_MEMORY)
635 node_clear_state(0, N_NORMAL_MEMORY);
636
637 zone_sizes_init();
638 }
639
640 /*
641 * Memory hotplug specific functions
642 */
643 #ifdef CONFIG_MEMORY_HOTPLUG
644 /*
645 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
646 * updating.
647 */
648 static void update_end_of_memory_vars(u64 start, u64 size)
649 {
650 unsigned long end_pfn = PFN_UP(start + size);
651
652 if (end_pfn > max_pfn) {
653 max_pfn = end_pfn;
654 max_low_pfn = end_pfn;
655 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
656 }
657 }
658
659 /*
660 * Memory is added always to NORMAL zone. This means you will never get
661 * additional DMA/DMA32 memory.
662 */
663 int arch_add_memory(int nid, u64 start, u64 size)
664 {
665 struct pglist_data *pgdat = NODE_DATA(nid);
666 struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
667 unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
668 unsigned long nr_pages = size >> PAGE_SHIFT;
669 int ret;
670
671 last_mapped_pfn = init_memory_mapping(start, start + size);
672 if (last_mapped_pfn > max_pfn_mapped)
673 max_pfn_mapped = last_mapped_pfn;
674
675 ret = __add_pages(nid, zone, start_pfn, nr_pages);
676 WARN_ON_ONCE(ret);
677
678 /* update max_pfn, max_low_pfn and high_memory */
679 update_end_of_memory_vars(start, size);
680
681 return ret;
682 }
683 EXPORT_SYMBOL_GPL(arch_add_memory);
684
685 #endif /* CONFIG_MEMORY_HOTPLUG */
686
687 static struct kcore_list kcore_vsyscall;
688
689 void __init mem_init(void)
690 {
691 long codesize, reservedpages, datasize, initsize;
692 unsigned long absent_pages;
693
694 pci_iommu_alloc();
695
696 /* clear_bss() already clear the empty_zero_page */
697
698 reservedpages = 0;
699
700 /* this will put all low memory onto the freelists */
701 #ifdef CONFIG_NUMA
702 totalram_pages = numa_free_all_bootmem();
703 #else
704 totalram_pages = free_all_bootmem();
705 #endif
706
707 absent_pages = absent_pages_in_range(0, max_pfn);
708 reservedpages = max_pfn - totalram_pages - absent_pages;
709 after_bootmem = 1;
710
711 codesize = (unsigned long) &_etext - (unsigned long) &_text;
712 datasize = (unsigned long) &_edata - (unsigned long) &_etext;
713 initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
714
715 /* Register memory areas for /proc/kcore */
716 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
717 VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
718
719 printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
720 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
721 nr_free_pages() << (PAGE_SHIFT-10),
722 max_pfn << (PAGE_SHIFT-10),
723 codesize >> 10,
724 absent_pages << (PAGE_SHIFT-10),
725 reservedpages << (PAGE_SHIFT-10),
726 datasize >> 10,
727 initsize >> 10);
728 }
729
730 #ifdef CONFIG_DEBUG_RODATA
731 const int rodata_test_data = 0xC3;
732 EXPORT_SYMBOL_GPL(rodata_test_data);
733
734 int kernel_set_to_readonly;
735
736 void set_kernel_text_rw(void)
737 {
738 unsigned long start = PFN_ALIGN(_text);
739 unsigned long end = PFN_ALIGN(__stop___ex_table);
740
741 if (!kernel_set_to_readonly)
742 return;
743
744 pr_debug("Set kernel text: %lx - %lx for read write\n",
745 start, end);
746
747 /*
748 * Make the kernel identity mapping for text RW. Kernel text
749 * mapping will always be RO. Refer to the comment in
750 * static_protections() in pageattr.c
751 */
752 set_memory_rw(start, (end - start) >> PAGE_SHIFT);
753 }
754
755 void set_kernel_text_ro(void)
756 {
757 unsigned long start = PFN_ALIGN(_text);
758 unsigned long end = PFN_ALIGN(__stop___ex_table);
759
760 if (!kernel_set_to_readonly)
761 return;
762
763 pr_debug("Set kernel text: %lx - %lx for read only\n",
764 start, end);
765
766 /*
767 * Set the kernel identity mapping for text RO.
768 */
769 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
770 }
771
772 void mark_rodata_ro(void)
773 {
774 unsigned long start = PFN_ALIGN(_text);
775 unsigned long rodata_start = PFN_ALIGN(__start_rodata);
776 unsigned long end = (unsigned long) &__end_rodata_hpage_align;
777 unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
778 unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
779
780 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
781 (end - start) >> 10);
782 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
783
784 kernel_set_to_readonly = 1;
785
786 /*
787 * The rodata section (but not the kernel text!) should also be
788 * not-executable.
789 */
790 set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
791
792 rodata_test();
793
794 #ifdef CONFIG_CPA_DEBUG
795 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
796 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
797
798 printk(KERN_INFO "Testing CPA: again\n");
799 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
800 #endif
801
802 free_init_pages("unused kernel memory",
803 (unsigned long) __va(__pa_symbol(text_end)),
804 (unsigned long) __va(__pa_symbol(rodata_start)));
805
806 free_init_pages("unused kernel memory",
807 (unsigned long) __va(__pa_symbol(rodata_end)),
808 (unsigned long) __va(__pa_symbol(_sdata)));
809 }
810
811 #endif
812
813 int kern_addr_valid(unsigned long addr)
814 {
815 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
816 pgd_t *pgd;
817 pud_t *pud;
818 pmd_t *pmd;
819 pte_t *pte;
820
821 if (above != 0 && above != -1UL)
822 return 0;
823
824 pgd = pgd_offset_k(addr);
825 if (pgd_none(*pgd))
826 return 0;
827
828 pud = pud_offset(pgd, addr);
829 if (pud_none(*pud))
830 return 0;
831
832 pmd = pmd_offset(pud, addr);
833 if (pmd_none(*pmd))
834 return 0;
835
836 if (pmd_large(*pmd))
837 return pfn_valid(pmd_pfn(*pmd));
838
839 pte = pte_offset_kernel(pmd, addr);
840 if (pte_none(*pte))
841 return 0;
842
843 return pfn_valid(pte_pfn(*pte));
844 }
845
846 /*
847 * A pseudo VMA to allow ptrace access for the vsyscall page. This only
848 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
849 * not need special handling anymore:
850 */
851 static struct vm_area_struct gate_vma = {
852 .vm_start = VSYSCALL_START,
853 .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
854 .vm_page_prot = PAGE_READONLY_EXEC,
855 .vm_flags = VM_READ | VM_EXEC
856 };
857
858 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
859 {
860 #ifdef CONFIG_IA32_EMULATION
861 if (!mm || mm->context.ia32_compat)
862 return NULL;
863 #endif
864 return &gate_vma;
865 }
866
867 int in_gate_area(struct mm_struct *mm, unsigned long addr)
868 {
869 struct vm_area_struct *vma = get_gate_vma(mm);
870
871 if (!vma)
872 return 0;
873
874 return (addr >= vma->vm_start) && (addr < vma->vm_end);
875 }
876
877 /*
878 * Use this when you have no reliable mm, typically from interrupt
879 * context. It is less reliable than using a task's mm and may give
880 * false positives.
881 */
882 int in_gate_area_no_mm(unsigned long addr)
883 {
884 return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
885 }
886
887 const char *arch_vma_name(struct vm_area_struct *vma)
888 {
889 if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
890 return "[vdso]";
891 if (vma == &gate_vma)
892 return "[vsyscall]";
893 return NULL;
894 }
895
896 #ifdef CONFIG_X86_UV
897 unsigned long memory_block_size_bytes(void)
898 {
899 if (is_uv_system()) {
900 printk(KERN_INFO "UV: memory block size 2GB\n");
901 return 2UL * 1024 * 1024 * 1024;
902 }
903 return MIN_MEMORY_BLOCK_SIZE;
904 }
905 #endif
906
907 #ifdef CONFIG_SPARSEMEM_VMEMMAP
908 /*
909 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
910 */
911 static long __meminitdata addr_start, addr_end;
912 static void __meminitdata *p_start, *p_end;
913 static int __meminitdata node_start;
914
915 int __meminit
916 vmemmap_populate(struct page *start_page, unsigned long size, int node)
917 {
918 unsigned long addr = (unsigned long)start_page;
919 unsigned long end = (unsigned long)(start_page + size);
920 unsigned long next;
921 pgd_t *pgd;
922 pud_t *pud;
923 pmd_t *pmd;
924
925 for (; addr < end; addr = next) {
926 void *p = NULL;
927
928 pgd = vmemmap_pgd_populate(addr, node);
929 if (!pgd)
930 return -ENOMEM;
931
932 pud = vmemmap_pud_populate(pgd, addr, node);
933 if (!pud)
934 return -ENOMEM;
935
936 if (!cpu_has_pse) {
937 next = (addr + PAGE_SIZE) & PAGE_MASK;
938 pmd = vmemmap_pmd_populate(pud, addr, node);
939
940 if (!pmd)
941 return -ENOMEM;
942
943 p = vmemmap_pte_populate(pmd, addr, node);
944
945 if (!p)
946 return -ENOMEM;
947
948 addr_end = addr + PAGE_SIZE;
949 p_end = p + PAGE_SIZE;
950 } else {
951 next = pmd_addr_end(addr, end);
952
953 pmd = pmd_offset(pud, addr);
954 if (pmd_none(*pmd)) {
955 pte_t entry;
956
957 p = vmemmap_alloc_block_buf(PMD_SIZE, node);
958 if (!p)
959 return -ENOMEM;
960
961 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
962 PAGE_KERNEL_LARGE);
963 set_pmd(pmd, __pmd(pte_val(entry)));
964
965 /* check to see if we have contiguous blocks */
966 if (p_end != p || node_start != node) {
967 if (p_start)
968 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
969 addr_start, addr_end-1, p_start, p_end-1, node_start);
970 addr_start = addr;
971 node_start = node;
972 p_start = p;
973 }
974
975 addr_end = addr + PMD_SIZE;
976 p_end = p + PMD_SIZE;
977 } else
978 vmemmap_verify((pte_t *)pmd, node, addr, next);
979 }
980
981 }
982 sync_global_pgds((unsigned long)start_page, end);
983 return 0;
984 }
985
986 void __meminit vmemmap_populate_print_last(void)
987 {
988 if (p_start) {
989 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
990 addr_start, addr_end-1, p_start, p_end-1, node_start);
991 p_start = NULL;
992 p_end = NULL;
993 node_start = 0;
994 }
995 }
996 #endif