d8b1ff68dbb9366692ba2502286172692fb36ef5
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / mm / fault.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5 */
6 #include <linux/magic.h> /* STACK_END_MAGIC */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/kdebug.h> /* oops_begin/end, ... */
9 #include <linux/module.h> /* search_exception_table */
10 #include <linux/bootmem.h> /* max_low_pfn */
11 #include <linux/kprobes.h> /* __kprobes, ... */
12 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
13 #include <linux/perf_event.h> /* perf_sw_event */
14 #include <linux/hugetlb.h> /* hstate_index_to_shift */
15 #include <linux/prefetch.h> /* prefetchw */
16 #include <linux/context_tracking.h> /* exception_enter(), ... */
17
18 #include <asm/traps.h> /* dotraplinkage, ... */
19 #include <asm/pgalloc.h> /* pgd_*(), ... */
20 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
21 #include <asm/fixmap.h> /* VSYSCALL_START */
22
23 /*
24 * Page fault error code bits:
25 *
26 * bit 0 == 0: no page found 1: protection fault
27 * bit 1 == 0: read access 1: write access
28 * bit 2 == 0: kernel-mode access 1: user-mode access
29 * bit 3 == 1: use of reserved bit detected
30 * bit 4 == 1: fault was an instruction fetch
31 */
32 enum x86_pf_error_code {
33
34 PF_PROT = 1 << 0,
35 PF_WRITE = 1 << 1,
36 PF_USER = 1 << 2,
37 PF_RSVD = 1 << 3,
38 PF_INSTR = 1 << 4,
39 };
40
41 /*
42 * Returns 0 if mmiotrace is disabled, or if the fault is not
43 * handled by mmiotrace:
44 */
45 static inline int __kprobes
46 kmmio_fault(struct pt_regs *regs, unsigned long addr)
47 {
48 if (unlikely(is_kmmio_active()))
49 if (kmmio_handler(regs, addr) == 1)
50 return -1;
51 return 0;
52 }
53
54 static inline int __kprobes notify_page_fault(struct pt_regs *regs)
55 {
56 int ret = 0;
57
58 /* kprobe_running() needs smp_processor_id() */
59 if (kprobes_built_in() && !user_mode_vm(regs)) {
60 preempt_disable();
61 if (kprobe_running() && kprobe_fault_handler(regs, 14))
62 ret = 1;
63 preempt_enable();
64 }
65
66 return ret;
67 }
68
69 /*
70 * Prefetch quirks:
71 *
72 * 32-bit mode:
73 *
74 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
75 * Check that here and ignore it.
76 *
77 * 64-bit mode:
78 *
79 * Sometimes the CPU reports invalid exceptions on prefetch.
80 * Check that here and ignore it.
81 *
82 * Opcode checker based on code by Richard Brunner.
83 */
84 static inline int
85 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
86 unsigned char opcode, int *prefetch)
87 {
88 unsigned char instr_hi = opcode & 0xf0;
89 unsigned char instr_lo = opcode & 0x0f;
90
91 switch (instr_hi) {
92 case 0x20:
93 case 0x30:
94 /*
95 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
96 * In X86_64 long mode, the CPU will signal invalid
97 * opcode if some of these prefixes are present so
98 * X86_64 will never get here anyway
99 */
100 return ((instr_lo & 7) == 0x6);
101 #ifdef CONFIG_X86_64
102 case 0x40:
103 /*
104 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
105 * Need to figure out under what instruction mode the
106 * instruction was issued. Could check the LDT for lm,
107 * but for now it's good enough to assume that long
108 * mode only uses well known segments or kernel.
109 */
110 return (!user_mode(regs) || user_64bit_mode(regs));
111 #endif
112 case 0x60:
113 /* 0x64 thru 0x67 are valid prefixes in all modes. */
114 return (instr_lo & 0xC) == 0x4;
115 case 0xF0:
116 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
117 return !instr_lo || (instr_lo>>1) == 1;
118 case 0x00:
119 /* Prefetch instruction is 0x0F0D or 0x0F18 */
120 if (probe_kernel_address(instr, opcode))
121 return 0;
122
123 *prefetch = (instr_lo == 0xF) &&
124 (opcode == 0x0D || opcode == 0x18);
125 return 0;
126 default:
127 return 0;
128 }
129 }
130
131 static int
132 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
133 {
134 unsigned char *max_instr;
135 unsigned char *instr;
136 int prefetch = 0;
137
138 /*
139 * If it was a exec (instruction fetch) fault on NX page, then
140 * do not ignore the fault:
141 */
142 if (error_code & PF_INSTR)
143 return 0;
144
145 instr = (void *)convert_ip_to_linear(current, regs);
146 max_instr = instr + 15;
147
148 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
149 return 0;
150
151 while (instr < max_instr) {
152 unsigned char opcode;
153
154 if (probe_kernel_address(instr, opcode))
155 break;
156
157 instr++;
158
159 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
160 break;
161 }
162 return prefetch;
163 }
164
165 static void
166 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
167 struct task_struct *tsk, int fault)
168 {
169 unsigned lsb = 0;
170 siginfo_t info;
171
172 info.si_signo = si_signo;
173 info.si_errno = 0;
174 info.si_code = si_code;
175 info.si_addr = (void __user *)address;
176 if (fault & VM_FAULT_HWPOISON_LARGE)
177 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
178 if (fault & VM_FAULT_HWPOISON)
179 lsb = PAGE_SHIFT;
180 info.si_addr_lsb = lsb;
181
182 force_sig_info(si_signo, &info, tsk);
183 }
184
185 DEFINE_SPINLOCK(pgd_lock);
186 LIST_HEAD(pgd_list);
187
188 #ifdef CONFIG_X86_32
189 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
190 {
191 unsigned index = pgd_index(address);
192 pgd_t *pgd_k;
193 pud_t *pud, *pud_k;
194 pmd_t *pmd, *pmd_k;
195
196 pgd += index;
197 pgd_k = init_mm.pgd + index;
198
199 if (!pgd_present(*pgd_k))
200 return NULL;
201
202 /*
203 * set_pgd(pgd, *pgd_k); here would be useless on PAE
204 * and redundant with the set_pmd() on non-PAE. As would
205 * set_pud.
206 */
207 pud = pud_offset(pgd, address);
208 pud_k = pud_offset(pgd_k, address);
209 if (!pud_present(*pud_k))
210 return NULL;
211
212 pmd = pmd_offset(pud, address);
213 pmd_k = pmd_offset(pud_k, address);
214 if (!pmd_present(*pmd_k))
215 return NULL;
216
217 if (!pmd_present(*pmd))
218 set_pmd(pmd, *pmd_k);
219 else
220 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
221
222 return pmd_k;
223 }
224
225 void vmalloc_sync_all(void)
226 {
227 unsigned long address;
228
229 if (SHARED_KERNEL_PMD)
230 return;
231
232 for (address = VMALLOC_START & PMD_MASK;
233 address >= TASK_SIZE && address < FIXADDR_TOP;
234 address += PMD_SIZE) {
235 struct page *page;
236
237 spin_lock(&pgd_lock);
238 list_for_each_entry(page, &pgd_list, lru) {
239 spinlock_t *pgt_lock;
240 pmd_t *ret;
241
242 /* the pgt_lock only for Xen */
243 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
244
245 spin_lock(pgt_lock);
246 ret = vmalloc_sync_one(page_address(page), address);
247 spin_unlock(pgt_lock);
248
249 if (!ret)
250 break;
251 }
252 spin_unlock(&pgd_lock);
253 }
254 }
255
256 /*
257 * 32-bit:
258 *
259 * Handle a fault on the vmalloc or module mapping area
260 */
261 static noinline __kprobes int vmalloc_fault(unsigned long address)
262 {
263 unsigned long pgd_paddr;
264 pmd_t *pmd_k;
265 pte_t *pte_k;
266
267 /* Make sure we are in vmalloc area: */
268 if (!(address >= VMALLOC_START && address < VMALLOC_END))
269 return -1;
270
271 WARN_ON_ONCE(in_nmi());
272
273 /*
274 * Synchronize this task's top level page-table
275 * with the 'reference' page table.
276 *
277 * Do _not_ use "current" here. We might be inside
278 * an interrupt in the middle of a task switch..
279 */
280 pgd_paddr = read_cr3();
281 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
282 if (!pmd_k)
283 return -1;
284
285 pte_k = pte_offset_kernel(pmd_k, address);
286 if (!pte_present(*pte_k))
287 return -1;
288
289 return 0;
290 }
291
292 /*
293 * Did it hit the DOS screen memory VA from vm86 mode?
294 */
295 static inline void
296 check_v8086_mode(struct pt_regs *regs, unsigned long address,
297 struct task_struct *tsk)
298 {
299 unsigned long bit;
300
301 if (!v8086_mode(regs))
302 return;
303
304 bit = (address - 0xA0000) >> PAGE_SHIFT;
305 if (bit < 32)
306 tsk->thread.screen_bitmap |= 1 << bit;
307 }
308
309 static bool low_pfn(unsigned long pfn)
310 {
311 return pfn < max_low_pfn;
312 }
313
314 static void dump_pagetable(unsigned long address)
315 {
316 pgd_t *base = __va(read_cr3());
317 pgd_t *pgd = &base[pgd_index(address)];
318 pmd_t *pmd;
319 pte_t *pte;
320
321 #ifdef CONFIG_X86_PAE
322 printk("*pdpt = %016Lx ", pgd_val(*pgd));
323 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
324 goto out;
325 #endif
326 pmd = pmd_offset(pud_offset(pgd, address), address);
327 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
328
329 /*
330 * We must not directly access the pte in the highpte
331 * case if the page table is located in highmem.
332 * And let's rather not kmap-atomic the pte, just in case
333 * it's allocated already:
334 */
335 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
336 goto out;
337
338 pte = pte_offset_kernel(pmd, address);
339 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
340 out:
341 printk("\n");
342 }
343
344 #else /* CONFIG_X86_64: */
345
346 void vmalloc_sync_all(void)
347 {
348 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
349 }
350
351 /*
352 * 64-bit:
353 *
354 * Handle a fault on the vmalloc area
355 *
356 * This assumes no large pages in there.
357 */
358 static noinline __kprobes int vmalloc_fault(unsigned long address)
359 {
360 pgd_t *pgd, *pgd_ref;
361 pud_t *pud, *pud_ref;
362 pmd_t *pmd, *pmd_ref;
363 pte_t *pte, *pte_ref;
364
365 /* Make sure we are in vmalloc area: */
366 if (!(address >= VMALLOC_START && address < VMALLOC_END))
367 return -1;
368
369 WARN_ON_ONCE(in_nmi());
370
371 /*
372 * Copy kernel mappings over when needed. This can also
373 * happen within a race in page table update. In the later
374 * case just flush:
375 */
376 pgd = pgd_offset(current->active_mm, address);
377 pgd_ref = pgd_offset_k(address);
378 if (pgd_none(*pgd_ref))
379 return -1;
380
381 if (pgd_none(*pgd)) {
382 set_pgd(pgd, *pgd_ref);
383 arch_flush_lazy_mmu_mode();
384 } else {
385 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
386 }
387
388 /*
389 * Below here mismatches are bugs because these lower tables
390 * are shared:
391 */
392
393 pud = pud_offset(pgd, address);
394 pud_ref = pud_offset(pgd_ref, address);
395 if (pud_none(*pud_ref))
396 return -1;
397
398 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
399 BUG();
400
401 pmd = pmd_offset(pud, address);
402 pmd_ref = pmd_offset(pud_ref, address);
403 if (pmd_none(*pmd_ref))
404 return -1;
405
406 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
407 BUG();
408
409 pte_ref = pte_offset_kernel(pmd_ref, address);
410 if (!pte_present(*pte_ref))
411 return -1;
412
413 pte = pte_offset_kernel(pmd, address);
414
415 /*
416 * Don't use pte_page here, because the mappings can point
417 * outside mem_map, and the NUMA hash lookup cannot handle
418 * that:
419 */
420 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
421 BUG();
422
423 return 0;
424 }
425
426 #ifdef CONFIG_CPU_SUP_AMD
427 static const char errata93_warning[] =
428 KERN_ERR
429 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
430 "******* Working around it, but it may cause SEGVs or burn power.\n"
431 "******* Please consider a BIOS update.\n"
432 "******* Disabling USB legacy in the BIOS may also help.\n";
433 #endif
434
435 /*
436 * No vm86 mode in 64-bit mode:
437 */
438 static inline void
439 check_v8086_mode(struct pt_regs *regs, unsigned long address,
440 struct task_struct *tsk)
441 {
442 }
443
444 static int bad_address(void *p)
445 {
446 unsigned long dummy;
447
448 return probe_kernel_address((unsigned long *)p, dummy);
449 }
450
451 static void dump_pagetable(unsigned long address)
452 {
453 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
454 pgd_t *pgd = base + pgd_index(address);
455 pud_t *pud;
456 pmd_t *pmd;
457 pte_t *pte;
458
459 if (bad_address(pgd))
460 goto bad;
461
462 printk("PGD %lx ", pgd_val(*pgd));
463
464 if (!pgd_present(*pgd))
465 goto out;
466
467 pud = pud_offset(pgd, address);
468 if (bad_address(pud))
469 goto bad;
470
471 printk("PUD %lx ", pud_val(*pud));
472 if (!pud_present(*pud) || pud_large(*pud))
473 goto out;
474
475 pmd = pmd_offset(pud, address);
476 if (bad_address(pmd))
477 goto bad;
478
479 printk("PMD %lx ", pmd_val(*pmd));
480 if (!pmd_present(*pmd) || pmd_large(*pmd))
481 goto out;
482
483 pte = pte_offset_kernel(pmd, address);
484 if (bad_address(pte))
485 goto bad;
486
487 printk("PTE %lx", pte_val(*pte));
488 out:
489 printk("\n");
490 return;
491 bad:
492 printk("BAD\n");
493 }
494
495 #endif /* CONFIG_X86_64 */
496
497 /*
498 * Workaround for K8 erratum #93 & buggy BIOS.
499 *
500 * BIOS SMM functions are required to use a specific workaround
501 * to avoid corruption of the 64bit RIP register on C stepping K8.
502 *
503 * A lot of BIOS that didn't get tested properly miss this.
504 *
505 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
506 * Try to work around it here.
507 *
508 * Note we only handle faults in kernel here.
509 * Does nothing on 32-bit.
510 */
511 static int is_errata93(struct pt_regs *regs, unsigned long address)
512 {
513 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
514 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
515 || boot_cpu_data.x86 != 0xf)
516 return 0;
517
518 if (address != regs->ip)
519 return 0;
520
521 if ((address >> 32) != 0)
522 return 0;
523
524 address |= 0xffffffffUL << 32;
525 if ((address >= (u64)_stext && address <= (u64)_etext) ||
526 (address >= MODULES_VADDR && address <= MODULES_END)) {
527 printk_once(errata93_warning);
528 regs->ip = address;
529 return 1;
530 }
531 #endif
532 return 0;
533 }
534
535 /*
536 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
537 * to illegal addresses >4GB.
538 *
539 * We catch this in the page fault handler because these addresses
540 * are not reachable. Just detect this case and return. Any code
541 * segment in LDT is compatibility mode.
542 */
543 static int is_errata100(struct pt_regs *regs, unsigned long address)
544 {
545 #ifdef CONFIG_X86_64
546 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
547 return 1;
548 #endif
549 return 0;
550 }
551
552 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
553 {
554 #ifdef CONFIG_X86_F00F_BUG
555 unsigned long nr;
556
557 /*
558 * Pentium F0 0F C7 C8 bug workaround:
559 */
560 if (boot_cpu_has_bug(X86_BUG_F00F)) {
561 nr = (address - idt_descr.address) >> 3;
562
563 if (nr == 6) {
564 do_invalid_op(regs, 0);
565 return 1;
566 }
567 }
568 #endif
569 return 0;
570 }
571
572 static const char nx_warning[] = KERN_CRIT
573 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
574
575 static void
576 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
577 unsigned long address)
578 {
579 if (!oops_may_print())
580 return;
581
582 if (error_code & PF_INSTR) {
583 unsigned int level;
584
585 pte_t *pte = lookup_address(address, &level);
586
587 if (pte && pte_present(*pte) && !pte_exec(*pte))
588 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
589 }
590
591 printk(KERN_ALERT "BUG: unable to handle kernel ");
592 if (address < PAGE_SIZE)
593 printk(KERN_CONT "NULL pointer dereference");
594 else
595 printk(KERN_CONT "paging request");
596
597 printk(KERN_CONT " at %p\n", (void *) address);
598 printk(KERN_ALERT "IP:");
599 printk_address(regs->ip, 1);
600
601 dump_pagetable(address);
602 }
603
604 static noinline void
605 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
606 unsigned long address)
607 {
608 struct task_struct *tsk;
609 unsigned long flags;
610 int sig;
611
612 flags = oops_begin();
613 tsk = current;
614 sig = SIGKILL;
615
616 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
617 tsk->comm, address);
618 dump_pagetable(address);
619
620 tsk->thread.cr2 = address;
621 tsk->thread.trap_nr = X86_TRAP_PF;
622 tsk->thread.error_code = error_code;
623
624 if (__die("Bad pagetable", regs, error_code))
625 sig = 0;
626
627 oops_end(flags, regs, sig);
628 }
629
630 static noinline void
631 no_context(struct pt_regs *regs, unsigned long error_code,
632 unsigned long address, int signal, int si_code)
633 {
634 struct task_struct *tsk = current;
635 unsigned long *stackend;
636 unsigned long flags;
637 int sig;
638
639 /* Are we prepared to handle this kernel fault? */
640 if (fixup_exception(regs)) {
641 if (current_thread_info()->sig_on_uaccess_error && signal) {
642 tsk->thread.trap_nr = X86_TRAP_PF;
643 tsk->thread.error_code = error_code | PF_USER;
644 tsk->thread.cr2 = address;
645
646 /* XXX: hwpoison faults will set the wrong code. */
647 force_sig_info_fault(signal, si_code, address, tsk, 0);
648 }
649 return;
650 }
651
652 /*
653 * 32-bit:
654 *
655 * Valid to do another page fault here, because if this fault
656 * had been triggered by is_prefetch fixup_exception would have
657 * handled it.
658 *
659 * 64-bit:
660 *
661 * Hall of shame of CPU/BIOS bugs.
662 */
663 if (is_prefetch(regs, error_code, address))
664 return;
665
666 if (is_errata93(regs, address))
667 return;
668
669 /*
670 * Oops. The kernel tried to access some bad page. We'll have to
671 * terminate things with extreme prejudice:
672 */
673 flags = oops_begin();
674
675 show_fault_oops(regs, error_code, address);
676
677 stackend = end_of_stack(tsk);
678 if (tsk != &init_task && *stackend != STACK_END_MAGIC)
679 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
680
681 tsk->thread.cr2 = address;
682 tsk->thread.trap_nr = X86_TRAP_PF;
683 tsk->thread.error_code = error_code;
684
685 sig = SIGKILL;
686 if (__die("Oops", regs, error_code))
687 sig = 0;
688
689 /* Executive summary in case the body of the oops scrolled away */
690 printk(KERN_DEFAULT "CR2: %016lx\n", address);
691
692 oops_end(flags, regs, sig);
693 }
694
695 /*
696 * Print out info about fatal segfaults, if the show_unhandled_signals
697 * sysctl is set:
698 */
699 static inline void
700 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
701 unsigned long address, struct task_struct *tsk)
702 {
703 if (!unhandled_signal(tsk, SIGSEGV))
704 return;
705
706 if (!printk_ratelimit())
707 return;
708
709 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
710 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
711 tsk->comm, task_pid_nr(tsk), address,
712 (void *)regs->ip, (void *)regs->sp, error_code);
713
714 print_vma_addr(KERN_CONT " in ", regs->ip);
715
716 printk(KERN_CONT "\n");
717 }
718
719 static void
720 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
721 unsigned long address, int si_code)
722 {
723 struct task_struct *tsk = current;
724
725 /* User mode accesses just cause a SIGSEGV */
726 if (error_code & PF_USER) {
727 /*
728 * It's possible to have interrupts off here:
729 */
730 local_irq_enable();
731
732 /*
733 * Valid to do another page fault here because this one came
734 * from user space:
735 */
736 if (is_prefetch(regs, error_code, address))
737 return;
738
739 if (is_errata100(regs, address))
740 return;
741
742 #ifdef CONFIG_X86_64
743 /*
744 * Instruction fetch faults in the vsyscall page might need
745 * emulation.
746 */
747 if (unlikely((error_code & PF_INSTR) &&
748 ((address & ~0xfff) == VSYSCALL_START))) {
749 if (emulate_vsyscall(regs, address))
750 return;
751 }
752 #endif
753 /* Kernel addresses are always protection faults: */
754 if (address >= TASK_SIZE)
755 error_code |= PF_PROT;
756
757 if (likely(show_unhandled_signals))
758 show_signal_msg(regs, error_code, address, tsk);
759
760 tsk->thread.cr2 = address;
761 tsk->thread.error_code = error_code;
762 tsk->thread.trap_nr = X86_TRAP_PF;
763
764 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
765
766 return;
767 }
768
769 if (is_f00f_bug(regs, address))
770 return;
771
772 no_context(regs, error_code, address, SIGSEGV, si_code);
773 }
774
775 static noinline void
776 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
777 unsigned long address)
778 {
779 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
780 }
781
782 static void
783 __bad_area(struct pt_regs *regs, unsigned long error_code,
784 unsigned long address, int si_code)
785 {
786 struct mm_struct *mm = current->mm;
787
788 /*
789 * Something tried to access memory that isn't in our memory map..
790 * Fix it, but check if it's kernel or user first..
791 */
792 up_read(&mm->mmap_sem);
793
794 __bad_area_nosemaphore(regs, error_code, address, si_code);
795 }
796
797 static noinline void
798 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
799 {
800 __bad_area(regs, error_code, address, SEGV_MAPERR);
801 }
802
803 static noinline void
804 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
805 unsigned long address)
806 {
807 __bad_area(regs, error_code, address, SEGV_ACCERR);
808 }
809
810 static void
811 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
812 unsigned int fault)
813 {
814 struct task_struct *tsk = current;
815 struct mm_struct *mm = tsk->mm;
816 int code = BUS_ADRERR;
817
818 up_read(&mm->mmap_sem);
819
820 /* Kernel mode? Handle exceptions or die: */
821 if (!(error_code & PF_USER)) {
822 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
823 return;
824 }
825
826 /* User-space => ok to do another page fault: */
827 if (is_prefetch(regs, error_code, address))
828 return;
829
830 tsk->thread.cr2 = address;
831 tsk->thread.error_code = error_code;
832 tsk->thread.trap_nr = X86_TRAP_PF;
833
834 #ifdef CONFIG_MEMORY_FAILURE
835 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
836 printk(KERN_ERR
837 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
838 tsk->comm, tsk->pid, address);
839 code = BUS_MCEERR_AR;
840 }
841 #endif
842 force_sig_info_fault(SIGBUS, code, address, tsk, fault);
843 }
844
845 static noinline void
846 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
847 unsigned long address, unsigned int fault)
848 {
849 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
850 up_read(&current->mm->mmap_sem);
851 no_context(regs, error_code, address, 0, 0);
852 return;
853 }
854
855 if (fault & VM_FAULT_OOM) {
856 /* Kernel mode? Handle exceptions or die: */
857 if (!(error_code & PF_USER)) {
858 up_read(&current->mm->mmap_sem);
859 no_context(regs, error_code, address,
860 SIGSEGV, SEGV_MAPERR);
861 return;
862 }
863
864 up_read(&current->mm->mmap_sem);
865
866 /*
867 * We ran out of memory, call the OOM killer, and return the
868 * userspace (which will retry the fault, or kill us if we got
869 * oom-killed):
870 */
871 pagefault_out_of_memory();
872 } else {
873 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
874 VM_FAULT_HWPOISON_LARGE))
875 do_sigbus(regs, error_code, address, fault);
876 else
877 BUG();
878 }
879 }
880
881 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
882 {
883 if ((error_code & PF_WRITE) && !pte_write(*pte))
884 return 0;
885
886 if ((error_code & PF_INSTR) && !pte_exec(*pte))
887 return 0;
888
889 return 1;
890 }
891
892 /*
893 * Handle a spurious fault caused by a stale TLB entry.
894 *
895 * This allows us to lazily refresh the TLB when increasing the
896 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
897 * eagerly is very expensive since that implies doing a full
898 * cross-processor TLB flush, even if no stale TLB entries exist
899 * on other processors.
900 *
901 * There are no security implications to leaving a stale TLB when
902 * increasing the permissions on a page.
903 */
904 static noinline __kprobes int
905 spurious_fault(unsigned long error_code, unsigned long address)
906 {
907 pgd_t *pgd;
908 pud_t *pud;
909 pmd_t *pmd;
910 pte_t *pte;
911 int ret;
912
913 /* Reserved-bit violation or user access to kernel space? */
914 if (error_code & (PF_USER | PF_RSVD))
915 return 0;
916
917 pgd = init_mm.pgd + pgd_index(address);
918 if (!pgd_present(*pgd))
919 return 0;
920
921 pud = pud_offset(pgd, address);
922 if (!pud_present(*pud))
923 return 0;
924
925 if (pud_large(*pud))
926 return spurious_fault_check(error_code, (pte_t *) pud);
927
928 pmd = pmd_offset(pud, address);
929 if (!pmd_present(*pmd))
930 return 0;
931
932 if (pmd_large(*pmd))
933 return spurious_fault_check(error_code, (pte_t *) pmd);
934
935 pte = pte_offset_kernel(pmd, address);
936 if (!pte_present(*pte))
937 return 0;
938
939 ret = spurious_fault_check(error_code, pte);
940 if (!ret)
941 return 0;
942
943 /*
944 * Make sure we have permissions in PMD.
945 * If not, then there's a bug in the page tables:
946 */
947 ret = spurious_fault_check(error_code, (pte_t *) pmd);
948 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
949
950 return ret;
951 }
952
953 int show_unhandled_signals = 1;
954
955 static inline int
956 access_error(unsigned long error_code, struct vm_area_struct *vma)
957 {
958 if (error_code & PF_WRITE) {
959 /* write, present and write, not present: */
960 if (unlikely(!(vma->vm_flags & VM_WRITE)))
961 return 1;
962 return 0;
963 }
964
965 /* read, present: */
966 if (unlikely(error_code & PF_PROT))
967 return 1;
968
969 /* read, not present: */
970 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
971 return 1;
972
973 return 0;
974 }
975
976 static int fault_in_kernel_space(unsigned long address)
977 {
978 return address >= TASK_SIZE_MAX;
979 }
980
981 static inline bool smap_violation(int error_code, struct pt_regs *regs)
982 {
983 if (!IS_ENABLED(CONFIG_X86_SMAP))
984 return false;
985
986 if (!static_cpu_has(X86_FEATURE_SMAP))
987 return false;
988
989 if (error_code & PF_USER)
990 return false;
991
992 if (!user_mode_vm(regs) && (regs->flags & X86_EFLAGS_AC))
993 return false;
994
995 return true;
996 }
997
998 /*
999 * This routine handles page faults. It determines the address,
1000 * and the problem, and then passes it off to one of the appropriate
1001 * routines.
1002 */
1003 static void __kprobes
1004 __do_page_fault(struct pt_regs *regs, unsigned long error_code)
1005 {
1006 struct vm_area_struct *vma;
1007 struct task_struct *tsk;
1008 unsigned long address;
1009 struct mm_struct *mm;
1010 int fault;
1011 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1012
1013 tsk = current;
1014 mm = tsk->mm;
1015
1016 /* Get the faulting address: */
1017 address = read_cr2();
1018
1019 /*
1020 * Detect and handle instructions that would cause a page fault for
1021 * both a tracked kernel page and a userspace page.
1022 */
1023 if (kmemcheck_active(regs))
1024 kmemcheck_hide(regs);
1025 prefetchw(&mm->mmap_sem);
1026
1027 if (unlikely(kmmio_fault(regs, address)))
1028 return;
1029
1030 /*
1031 * We fault-in kernel-space virtual memory on-demand. The
1032 * 'reference' page table is init_mm.pgd.
1033 *
1034 * NOTE! We MUST NOT take any locks for this case. We may
1035 * be in an interrupt or a critical region, and should
1036 * only copy the information from the master page table,
1037 * nothing more.
1038 *
1039 * This verifies that the fault happens in kernel space
1040 * (error_code & 4) == 0, and that the fault was not a
1041 * protection error (error_code & 9) == 0.
1042 */
1043 if (unlikely(fault_in_kernel_space(address))) {
1044 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1045 if (vmalloc_fault(address) >= 0)
1046 return;
1047
1048 if (kmemcheck_fault(regs, address, error_code))
1049 return;
1050 }
1051
1052 /* Can handle a stale RO->RW TLB: */
1053 if (spurious_fault(error_code, address))
1054 return;
1055
1056 /* kprobes don't want to hook the spurious faults: */
1057 if (notify_page_fault(regs))
1058 return;
1059 /*
1060 * Don't take the mm semaphore here. If we fixup a prefetch
1061 * fault we could otherwise deadlock:
1062 */
1063 bad_area_nosemaphore(regs, error_code, address);
1064
1065 return;
1066 }
1067
1068 /* kprobes don't want to hook the spurious faults: */
1069 if (unlikely(notify_page_fault(regs)))
1070 return;
1071 /*
1072 * It's safe to allow irq's after cr2 has been saved and the
1073 * vmalloc fault has been handled.
1074 *
1075 * User-mode registers count as a user access even for any
1076 * potential system fault or CPU buglet:
1077 */
1078 if (user_mode_vm(regs)) {
1079 local_irq_enable();
1080 error_code |= PF_USER;
1081 flags |= FAULT_FLAG_USER;
1082 } else {
1083 if (regs->flags & X86_EFLAGS_IF)
1084 local_irq_enable();
1085 }
1086
1087 if (unlikely(error_code & PF_RSVD))
1088 pgtable_bad(regs, error_code, address);
1089
1090 if (unlikely(smap_violation(error_code, regs))) {
1091 bad_area_nosemaphore(regs, error_code, address);
1092 return;
1093 }
1094
1095 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1096
1097 /*
1098 * If we're in an interrupt, have no user context or are running
1099 * in an atomic region then we must not take the fault:
1100 */
1101 if (unlikely(in_atomic() || !mm)) {
1102 bad_area_nosemaphore(regs, error_code, address);
1103 return;
1104 }
1105
1106 if (error_code & PF_WRITE)
1107 flags |= FAULT_FLAG_WRITE;
1108
1109 /*
1110 * When running in the kernel we expect faults to occur only to
1111 * addresses in user space. All other faults represent errors in
1112 * the kernel and should generate an OOPS. Unfortunately, in the
1113 * case of an erroneous fault occurring in a code path which already
1114 * holds mmap_sem we will deadlock attempting to validate the fault
1115 * against the address space. Luckily the kernel only validly
1116 * references user space from well defined areas of code, which are
1117 * listed in the exceptions table.
1118 *
1119 * As the vast majority of faults will be valid we will only perform
1120 * the source reference check when there is a possibility of a
1121 * deadlock. Attempt to lock the address space, if we cannot we then
1122 * validate the source. If this is invalid we can skip the address
1123 * space check, thus avoiding the deadlock:
1124 */
1125 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1126 if ((error_code & PF_USER) == 0 &&
1127 !search_exception_tables(regs->ip)) {
1128 bad_area_nosemaphore(regs, error_code, address);
1129 return;
1130 }
1131 retry:
1132 down_read(&mm->mmap_sem);
1133 } else {
1134 /*
1135 * The above down_read_trylock() might have succeeded in
1136 * which case we'll have missed the might_sleep() from
1137 * down_read():
1138 */
1139 might_sleep();
1140 }
1141
1142 vma = find_vma(mm, address);
1143 if (unlikely(!vma)) {
1144 bad_area(regs, error_code, address);
1145 return;
1146 }
1147 if (likely(vma->vm_start <= address))
1148 goto good_area;
1149 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1150 bad_area(regs, error_code, address);
1151 return;
1152 }
1153 if (error_code & PF_USER) {
1154 /*
1155 * Accessing the stack below %sp is always a bug.
1156 * The large cushion allows instructions like enter
1157 * and pusha to work. ("enter $65535, $31" pushes
1158 * 32 pointers and then decrements %sp by 65535.)
1159 */
1160 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1161 bad_area(regs, error_code, address);
1162 return;
1163 }
1164 }
1165 if (unlikely(expand_stack(vma, address))) {
1166 bad_area(regs, error_code, address);
1167 return;
1168 }
1169
1170 /*
1171 * Ok, we have a good vm_area for this memory access, so
1172 * we can handle it..
1173 */
1174 good_area:
1175 if (unlikely(access_error(error_code, vma))) {
1176 bad_area_access_error(regs, error_code, address);
1177 return;
1178 }
1179
1180 /*
1181 * If for any reason at all we couldn't handle the fault,
1182 * make sure we exit gracefully rather than endlessly redo
1183 * the fault:
1184 */
1185 fault = handle_mm_fault(mm, vma, address, flags);
1186
1187 /*
1188 * If we need to retry but a fatal signal is pending, handle the
1189 * signal first. We do not need to release the mmap_sem because it
1190 * would already be released in __lock_page_or_retry in mm/filemap.c.
1191 */
1192 if (unlikely((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)))
1193 return;
1194
1195 if (unlikely(fault & VM_FAULT_ERROR)) {
1196 mm_fault_error(regs, error_code, address, fault);
1197 return;
1198 }
1199
1200 /*
1201 * Major/minor page fault accounting is only done on the
1202 * initial attempt. If we go through a retry, it is extremely
1203 * likely that the page will be found in page cache at that point.
1204 */
1205 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1206 if (fault & VM_FAULT_MAJOR) {
1207 tsk->maj_flt++;
1208 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
1209 regs, address);
1210 } else {
1211 tsk->min_flt++;
1212 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
1213 regs, address);
1214 }
1215 if (fault & VM_FAULT_RETRY) {
1216 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1217 * of starvation. */
1218 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1219 flags |= FAULT_FLAG_TRIED;
1220 goto retry;
1221 }
1222 }
1223
1224 check_v8086_mode(regs, address, tsk);
1225
1226 up_read(&mm->mmap_sem);
1227 }
1228
1229 dotraplinkage void __kprobes
1230 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1231 {
1232 enum ctx_state prev_state;
1233
1234 prev_state = exception_enter();
1235 __do_page_fault(regs, error_code);
1236 exception_exit(prev_state);
1237 }