Merge branch 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / process.c
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <trace/power.h>
13 #include <asm/system.h>
14 #include <asm/apic.h>
15 #include <asm/syscalls.h>
16 #include <asm/idle.h>
17 #include <asm/uaccess.h>
18 #include <asm/i387.h>
19
20 unsigned long idle_halt;
21 EXPORT_SYMBOL(idle_halt);
22 unsigned long idle_nomwait;
23 EXPORT_SYMBOL(idle_nomwait);
24
25 struct kmem_cache *task_xstate_cachep;
26
27 DEFINE_TRACE(power_start);
28 DEFINE_TRACE(power_end);
29
30 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
31 {
32 *dst = *src;
33 if (src->thread.xstate) {
34 dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
35 GFP_KERNEL);
36 if (!dst->thread.xstate)
37 return -ENOMEM;
38 WARN_ON((unsigned long)dst->thread.xstate & 15);
39 memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
40 }
41 return 0;
42 }
43
44 void free_thread_xstate(struct task_struct *tsk)
45 {
46 if (tsk->thread.xstate) {
47 kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
48 tsk->thread.xstate = NULL;
49 }
50 }
51
52 void free_thread_info(struct thread_info *ti)
53 {
54 free_thread_xstate(ti->task);
55 free_pages((unsigned long)ti, get_order(THREAD_SIZE));
56 }
57
58 void arch_task_cache_init(void)
59 {
60 task_xstate_cachep =
61 kmem_cache_create("task_xstate", xstate_size,
62 __alignof__(union thread_xstate),
63 SLAB_PANIC, NULL);
64 }
65
66 /*
67 * Free current thread data structures etc..
68 */
69 void exit_thread(void)
70 {
71 struct task_struct *me = current;
72 struct thread_struct *t = &me->thread;
73 unsigned long *bp = t->io_bitmap_ptr;
74
75 if (bp) {
76 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
77
78 t->io_bitmap_ptr = NULL;
79 clear_thread_flag(TIF_IO_BITMAP);
80 /*
81 * Careful, clear this in the TSS too:
82 */
83 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
84 t->io_bitmap_max = 0;
85 put_cpu();
86 kfree(bp);
87 }
88
89 ds_exit_thread(current);
90 }
91
92 void flush_thread(void)
93 {
94 struct task_struct *tsk = current;
95
96 #ifdef CONFIG_X86_64
97 if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) {
98 clear_tsk_thread_flag(tsk, TIF_ABI_PENDING);
99 if (test_tsk_thread_flag(tsk, TIF_IA32)) {
100 clear_tsk_thread_flag(tsk, TIF_IA32);
101 } else {
102 set_tsk_thread_flag(tsk, TIF_IA32);
103 current_thread_info()->status |= TS_COMPAT;
104 }
105 }
106 #endif
107
108 clear_tsk_thread_flag(tsk, TIF_DEBUG);
109
110 tsk->thread.debugreg0 = 0;
111 tsk->thread.debugreg1 = 0;
112 tsk->thread.debugreg2 = 0;
113 tsk->thread.debugreg3 = 0;
114 tsk->thread.debugreg6 = 0;
115 tsk->thread.debugreg7 = 0;
116 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
117 /*
118 * Forget coprocessor state..
119 */
120 tsk->fpu_counter = 0;
121 clear_fpu(tsk);
122 clear_used_math();
123 }
124
125 static void hard_disable_TSC(void)
126 {
127 write_cr4(read_cr4() | X86_CR4_TSD);
128 }
129
130 void disable_TSC(void)
131 {
132 preempt_disable();
133 if (!test_and_set_thread_flag(TIF_NOTSC))
134 /*
135 * Must flip the CPU state synchronously with
136 * TIF_NOTSC in the current running context.
137 */
138 hard_disable_TSC();
139 preempt_enable();
140 }
141
142 static void hard_enable_TSC(void)
143 {
144 write_cr4(read_cr4() & ~X86_CR4_TSD);
145 }
146
147 static void enable_TSC(void)
148 {
149 preempt_disable();
150 if (test_and_clear_thread_flag(TIF_NOTSC))
151 /*
152 * Must flip the CPU state synchronously with
153 * TIF_NOTSC in the current running context.
154 */
155 hard_enable_TSC();
156 preempt_enable();
157 }
158
159 int get_tsc_mode(unsigned long adr)
160 {
161 unsigned int val;
162
163 if (test_thread_flag(TIF_NOTSC))
164 val = PR_TSC_SIGSEGV;
165 else
166 val = PR_TSC_ENABLE;
167
168 return put_user(val, (unsigned int __user *)adr);
169 }
170
171 int set_tsc_mode(unsigned int val)
172 {
173 if (val == PR_TSC_SIGSEGV)
174 disable_TSC();
175 else if (val == PR_TSC_ENABLE)
176 enable_TSC();
177 else
178 return -EINVAL;
179
180 return 0;
181 }
182
183 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
184 struct tss_struct *tss)
185 {
186 struct thread_struct *prev, *next;
187
188 prev = &prev_p->thread;
189 next = &next_p->thread;
190
191 if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
192 test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
193 ds_switch_to(prev_p, next_p);
194 else if (next->debugctlmsr != prev->debugctlmsr)
195 update_debugctlmsr(next->debugctlmsr);
196
197 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
198 set_debugreg(next->debugreg0, 0);
199 set_debugreg(next->debugreg1, 1);
200 set_debugreg(next->debugreg2, 2);
201 set_debugreg(next->debugreg3, 3);
202 /* no 4 and 5 */
203 set_debugreg(next->debugreg6, 6);
204 set_debugreg(next->debugreg7, 7);
205 }
206
207 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
208 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
209 /* prev and next are different */
210 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
211 hard_disable_TSC();
212 else
213 hard_enable_TSC();
214 }
215
216 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
217 /*
218 * Copy the relevant range of the IO bitmap.
219 * Normally this is 128 bytes or less:
220 */
221 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
222 max(prev->io_bitmap_max, next->io_bitmap_max));
223 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
224 /*
225 * Clear any possible leftover bits:
226 */
227 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
228 }
229 }
230
231 int sys_fork(struct pt_regs *regs)
232 {
233 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
234 }
235
236 /*
237 * This is trivial, and on the face of it looks like it
238 * could equally well be done in user mode.
239 *
240 * Not so, for quite unobvious reasons - register pressure.
241 * In user mode vfork() cannot have a stack frame, and if
242 * done by calling the "clone()" system call directly, you
243 * do not have enough call-clobbered registers to hold all
244 * the information you need.
245 */
246 int sys_vfork(struct pt_regs *regs)
247 {
248 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
249 NULL, NULL);
250 }
251
252
253 /*
254 * Idle related variables and functions
255 */
256 unsigned long boot_option_idle_override = 0;
257 EXPORT_SYMBOL(boot_option_idle_override);
258
259 /*
260 * Powermanagement idle function, if any..
261 */
262 void (*pm_idle)(void);
263 EXPORT_SYMBOL(pm_idle);
264
265 #ifdef CONFIG_X86_32
266 /*
267 * This halt magic was a workaround for ancient floppy DMA
268 * wreckage. It should be safe to remove.
269 */
270 static int hlt_counter;
271 void disable_hlt(void)
272 {
273 hlt_counter++;
274 }
275 EXPORT_SYMBOL(disable_hlt);
276
277 void enable_hlt(void)
278 {
279 hlt_counter--;
280 }
281 EXPORT_SYMBOL(enable_hlt);
282
283 static inline int hlt_use_halt(void)
284 {
285 return (!hlt_counter && boot_cpu_data.hlt_works_ok);
286 }
287 #else
288 static inline int hlt_use_halt(void)
289 {
290 return 1;
291 }
292 #endif
293
294 /*
295 * We use this if we don't have any better
296 * idle routine..
297 */
298 void default_idle(void)
299 {
300 if (hlt_use_halt()) {
301 struct power_trace it;
302
303 trace_power_start(&it, POWER_CSTATE, 1);
304 current_thread_info()->status &= ~TS_POLLING;
305 /*
306 * TS_POLLING-cleared state must be visible before we
307 * test NEED_RESCHED:
308 */
309 smp_mb();
310
311 if (!need_resched())
312 safe_halt(); /* enables interrupts racelessly */
313 else
314 local_irq_enable();
315 current_thread_info()->status |= TS_POLLING;
316 trace_power_end(&it);
317 } else {
318 local_irq_enable();
319 /* loop is done by the caller */
320 cpu_relax();
321 }
322 }
323 #ifdef CONFIG_APM_MODULE
324 EXPORT_SYMBOL(default_idle);
325 #endif
326
327 void stop_this_cpu(void *dummy)
328 {
329 local_irq_disable();
330 /*
331 * Remove this CPU:
332 */
333 set_cpu_online(smp_processor_id(), false);
334 disable_local_APIC();
335
336 for (;;) {
337 if (hlt_works(smp_processor_id()))
338 halt();
339 }
340 }
341
342 static void do_nothing(void *unused)
343 {
344 }
345
346 /*
347 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
348 * pm_idle and update to new pm_idle value. Required while changing pm_idle
349 * handler on SMP systems.
350 *
351 * Caller must have changed pm_idle to the new value before the call. Old
352 * pm_idle value will not be used by any CPU after the return of this function.
353 */
354 void cpu_idle_wait(void)
355 {
356 smp_mb();
357 /* kick all the CPUs so that they exit out of pm_idle */
358 smp_call_function(do_nothing, NULL, 1);
359 }
360 EXPORT_SYMBOL_GPL(cpu_idle_wait);
361
362 /*
363 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
364 * which can obviate IPI to trigger checking of need_resched.
365 * We execute MONITOR against need_resched and enter optimized wait state
366 * through MWAIT. Whenever someone changes need_resched, we would be woken
367 * up from MWAIT (without an IPI).
368 *
369 * New with Core Duo processors, MWAIT can take some hints based on CPU
370 * capability.
371 */
372 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
373 {
374 struct power_trace it;
375
376 trace_power_start(&it, POWER_CSTATE, (ax>>4)+1);
377 if (!need_resched()) {
378 if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
379 clflush((void *)&current_thread_info()->flags);
380
381 __monitor((void *)&current_thread_info()->flags, 0, 0);
382 smp_mb();
383 if (!need_resched())
384 __mwait(ax, cx);
385 }
386 trace_power_end(&it);
387 }
388
389 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
390 static void mwait_idle(void)
391 {
392 struct power_trace it;
393 if (!need_resched()) {
394 trace_power_start(&it, POWER_CSTATE, 1);
395 if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
396 clflush((void *)&current_thread_info()->flags);
397
398 __monitor((void *)&current_thread_info()->flags, 0, 0);
399 smp_mb();
400 if (!need_resched())
401 __sti_mwait(0, 0);
402 else
403 local_irq_enable();
404 trace_power_end(&it);
405 } else
406 local_irq_enable();
407 }
408
409 /*
410 * On SMP it's slightly faster (but much more power-consuming!)
411 * to poll the ->work.need_resched flag instead of waiting for the
412 * cross-CPU IPI to arrive. Use this option with caution.
413 */
414 static void poll_idle(void)
415 {
416 struct power_trace it;
417
418 trace_power_start(&it, POWER_CSTATE, 0);
419 local_irq_enable();
420 while (!need_resched())
421 cpu_relax();
422 trace_power_end(&it);
423 }
424
425 /*
426 * mwait selection logic:
427 *
428 * It depends on the CPU. For AMD CPUs that support MWAIT this is
429 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
430 * then depend on a clock divisor and current Pstate of the core. If
431 * all cores of a processor are in halt state (C1) the processor can
432 * enter the C1E (C1 enhanced) state. If mwait is used this will never
433 * happen.
434 *
435 * idle=mwait overrides this decision and forces the usage of mwait.
436 */
437 static int __cpuinitdata force_mwait;
438
439 #define MWAIT_INFO 0x05
440 #define MWAIT_ECX_EXTENDED_INFO 0x01
441 #define MWAIT_EDX_C1 0xf0
442
443 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
444 {
445 u32 eax, ebx, ecx, edx;
446
447 if (force_mwait)
448 return 1;
449
450 if (c->cpuid_level < MWAIT_INFO)
451 return 0;
452
453 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
454 /* Check, whether EDX has extended info about MWAIT */
455 if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
456 return 1;
457
458 /*
459 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
460 * C1 supports MWAIT
461 */
462 return (edx & MWAIT_EDX_C1);
463 }
464
465 /*
466 * Check for AMD CPUs, which have potentially C1E support
467 */
468 static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
469 {
470 if (c->x86_vendor != X86_VENDOR_AMD)
471 return 0;
472
473 if (c->x86 < 0x0F)
474 return 0;
475
476 /* Family 0x0f models < rev F do not have C1E */
477 if (c->x86 == 0x0f && c->x86_model < 0x40)
478 return 0;
479
480 return 1;
481 }
482
483 static cpumask_var_t c1e_mask;
484 static int c1e_detected;
485
486 void c1e_remove_cpu(int cpu)
487 {
488 if (c1e_mask != NULL)
489 cpumask_clear_cpu(cpu, c1e_mask);
490 }
491
492 /*
493 * C1E aware idle routine. We check for C1E active in the interrupt
494 * pending message MSR. If we detect C1E, then we handle it the same
495 * way as C3 power states (local apic timer and TSC stop)
496 */
497 static void c1e_idle(void)
498 {
499 if (need_resched())
500 return;
501
502 if (!c1e_detected) {
503 u32 lo, hi;
504
505 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
506 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
507 c1e_detected = 1;
508 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
509 mark_tsc_unstable("TSC halt in AMD C1E");
510 printk(KERN_INFO "System has AMD C1E enabled\n");
511 set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
512 }
513 }
514
515 if (c1e_detected) {
516 int cpu = smp_processor_id();
517
518 if (!cpumask_test_cpu(cpu, c1e_mask)) {
519 cpumask_set_cpu(cpu, c1e_mask);
520 /*
521 * Force broadcast so ACPI can not interfere. Needs
522 * to run with interrupts enabled as it uses
523 * smp_function_call.
524 */
525 local_irq_enable();
526 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
527 &cpu);
528 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
529 cpu);
530 local_irq_disable();
531 }
532 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
533
534 default_idle();
535
536 /*
537 * The switch back from broadcast mode needs to be
538 * called with interrupts disabled.
539 */
540 local_irq_disable();
541 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
542 local_irq_enable();
543 } else
544 default_idle();
545 }
546
547 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
548 {
549 #ifdef CONFIG_SMP
550 if (pm_idle == poll_idle && smp_num_siblings > 1) {
551 printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
552 " performance may degrade.\n");
553 }
554 #endif
555 if (pm_idle)
556 return;
557
558 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
559 /*
560 * One CPU supports mwait => All CPUs supports mwait
561 */
562 printk(KERN_INFO "using mwait in idle threads.\n");
563 pm_idle = mwait_idle;
564 } else if (check_c1e_idle(c)) {
565 printk(KERN_INFO "using C1E aware idle routine\n");
566 pm_idle = c1e_idle;
567 } else
568 pm_idle = default_idle;
569 }
570
571 void __init init_c1e_mask(void)
572 {
573 /* If we're using c1e_idle, we need to allocate c1e_mask. */
574 if (pm_idle == c1e_idle) {
575 alloc_cpumask_var(&c1e_mask, GFP_KERNEL);
576 cpumask_clear(c1e_mask);
577 }
578 }
579
580 static int __init idle_setup(char *str)
581 {
582 if (!str)
583 return -EINVAL;
584
585 if (!strcmp(str, "poll")) {
586 printk("using polling idle threads.\n");
587 pm_idle = poll_idle;
588 } else if (!strcmp(str, "mwait"))
589 force_mwait = 1;
590 else if (!strcmp(str, "halt")) {
591 /*
592 * When the boot option of idle=halt is added, halt is
593 * forced to be used for CPU idle. In such case CPU C2/C3
594 * won't be used again.
595 * To continue to load the CPU idle driver, don't touch
596 * the boot_option_idle_override.
597 */
598 pm_idle = default_idle;
599 idle_halt = 1;
600 return 0;
601 } else if (!strcmp(str, "nomwait")) {
602 /*
603 * If the boot option of "idle=nomwait" is added,
604 * it means that mwait will be disabled for CPU C2/C3
605 * states. In such case it won't touch the variable
606 * of boot_option_idle_override.
607 */
608 idle_nomwait = 1;
609 return 0;
610 } else
611 return -1;
612
613 boot_option_idle_override = 1;
614 return 0;
615 }
616 early_param("idle", idle_setup);
617
618 unsigned long arch_align_stack(unsigned long sp)
619 {
620 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
621 sp -= get_random_int() % 8192;
622 return sp & ~0xf;
623 }
624
625 unsigned long arch_randomize_brk(struct mm_struct *mm)
626 {
627 unsigned long range_end = mm->brk + 0x02000000;
628 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
629 }
630