Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / process.c
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <linux/dmi.h>
14 #include <linux/utsname.h>
15 #include <linux/stackprotector.h>
16 #include <linux/tick.h>
17 #include <linux/cpuidle.h>
18 #include <trace/events/power.h>
19 #include <linux/hw_breakpoint.h>
20 #include <asm/cpu.h>
21 #include <asm/apic.h>
22 #include <asm/syscalls.h>
23 #include <asm/idle.h>
24 #include <asm/uaccess.h>
25 #include <asm/i387.h>
26 #include <asm/fpu-internal.h>
27 #include <asm/debugreg.h>
28 #include <asm/nmi.h>
29
30 #ifdef CONFIG_X86_64
31 static DEFINE_PER_CPU(unsigned char, is_idle);
32 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
33
34 void idle_notifier_register(struct notifier_block *n)
35 {
36 atomic_notifier_chain_register(&idle_notifier, n);
37 }
38 EXPORT_SYMBOL_GPL(idle_notifier_register);
39
40 void idle_notifier_unregister(struct notifier_block *n)
41 {
42 atomic_notifier_chain_unregister(&idle_notifier, n);
43 }
44 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
45 #endif
46
47 struct kmem_cache *task_xstate_cachep;
48 EXPORT_SYMBOL_GPL(task_xstate_cachep);
49
50 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
51 {
52 int ret;
53
54 *dst = *src;
55 if (fpu_allocated(&src->thread.fpu)) {
56 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
57 ret = fpu_alloc(&dst->thread.fpu);
58 if (ret)
59 return ret;
60 fpu_copy(&dst->thread.fpu, &src->thread.fpu);
61 }
62 return 0;
63 }
64
65 void free_thread_xstate(struct task_struct *tsk)
66 {
67 fpu_free(&tsk->thread.fpu);
68 }
69
70 void free_thread_info(struct thread_info *ti)
71 {
72 free_thread_xstate(ti->task);
73 free_pages((unsigned long)ti, THREAD_ORDER);
74 }
75
76 void arch_task_cache_init(void)
77 {
78 task_xstate_cachep =
79 kmem_cache_create("task_xstate", xstate_size,
80 __alignof__(union thread_xstate),
81 SLAB_PANIC | SLAB_NOTRACK, NULL);
82 }
83
84 /*
85 * Free current thread data structures etc..
86 */
87 void exit_thread(void)
88 {
89 struct task_struct *me = current;
90 struct thread_struct *t = &me->thread;
91 unsigned long *bp = t->io_bitmap_ptr;
92
93 if (bp) {
94 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
95
96 t->io_bitmap_ptr = NULL;
97 clear_thread_flag(TIF_IO_BITMAP);
98 /*
99 * Careful, clear this in the TSS too:
100 */
101 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
102 t->io_bitmap_max = 0;
103 put_cpu();
104 kfree(bp);
105 }
106 }
107
108 void show_regs(struct pt_regs *regs)
109 {
110 show_registers(regs);
111 show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs), 0);
112 }
113
114 void show_regs_common(void)
115 {
116 const char *vendor, *product, *board;
117
118 vendor = dmi_get_system_info(DMI_SYS_VENDOR);
119 if (!vendor)
120 vendor = "";
121 product = dmi_get_system_info(DMI_PRODUCT_NAME);
122 if (!product)
123 product = "";
124
125 /* Board Name is optional */
126 board = dmi_get_system_info(DMI_BOARD_NAME);
127
128 printk(KERN_CONT "\n");
129 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
130 current->pid, current->comm, print_tainted(),
131 init_utsname()->release,
132 (int)strcspn(init_utsname()->version, " "),
133 init_utsname()->version);
134 printk(KERN_CONT " %s %s", vendor, product);
135 if (board)
136 printk(KERN_CONT "/%s", board);
137 printk(KERN_CONT "\n");
138 }
139
140 void flush_thread(void)
141 {
142 struct task_struct *tsk = current;
143
144 flush_ptrace_hw_breakpoint(tsk);
145 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
146 /*
147 * Forget coprocessor state..
148 */
149 tsk->fpu_counter = 0;
150 clear_fpu(tsk);
151 clear_used_math();
152 }
153
154 static void hard_disable_TSC(void)
155 {
156 write_cr4(read_cr4() | X86_CR4_TSD);
157 }
158
159 void disable_TSC(void)
160 {
161 preempt_disable();
162 if (!test_and_set_thread_flag(TIF_NOTSC))
163 /*
164 * Must flip the CPU state synchronously with
165 * TIF_NOTSC in the current running context.
166 */
167 hard_disable_TSC();
168 preempt_enable();
169 }
170
171 static void hard_enable_TSC(void)
172 {
173 write_cr4(read_cr4() & ~X86_CR4_TSD);
174 }
175
176 static void enable_TSC(void)
177 {
178 preempt_disable();
179 if (test_and_clear_thread_flag(TIF_NOTSC))
180 /*
181 * Must flip the CPU state synchronously with
182 * TIF_NOTSC in the current running context.
183 */
184 hard_enable_TSC();
185 preempt_enable();
186 }
187
188 int get_tsc_mode(unsigned long adr)
189 {
190 unsigned int val;
191
192 if (test_thread_flag(TIF_NOTSC))
193 val = PR_TSC_SIGSEGV;
194 else
195 val = PR_TSC_ENABLE;
196
197 return put_user(val, (unsigned int __user *)adr);
198 }
199
200 int set_tsc_mode(unsigned int val)
201 {
202 if (val == PR_TSC_SIGSEGV)
203 disable_TSC();
204 else if (val == PR_TSC_ENABLE)
205 enable_TSC();
206 else
207 return -EINVAL;
208
209 return 0;
210 }
211
212 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
213 struct tss_struct *tss)
214 {
215 struct thread_struct *prev, *next;
216
217 prev = &prev_p->thread;
218 next = &next_p->thread;
219
220 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
221 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
222 unsigned long debugctl = get_debugctlmsr();
223
224 debugctl &= ~DEBUGCTLMSR_BTF;
225 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
226 debugctl |= DEBUGCTLMSR_BTF;
227
228 update_debugctlmsr(debugctl);
229 }
230
231 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
232 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
233 /* prev and next are different */
234 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
235 hard_disable_TSC();
236 else
237 hard_enable_TSC();
238 }
239
240 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
241 /*
242 * Copy the relevant range of the IO bitmap.
243 * Normally this is 128 bytes or less:
244 */
245 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
246 max(prev->io_bitmap_max, next->io_bitmap_max));
247 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
248 /*
249 * Clear any possible leftover bits:
250 */
251 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
252 }
253 propagate_user_return_notify(prev_p, next_p);
254 }
255
256 int sys_fork(struct pt_regs *regs)
257 {
258 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
259 }
260
261 /*
262 * This is trivial, and on the face of it looks like it
263 * could equally well be done in user mode.
264 *
265 * Not so, for quite unobvious reasons - register pressure.
266 * In user mode vfork() cannot have a stack frame, and if
267 * done by calling the "clone()" system call directly, you
268 * do not have enough call-clobbered registers to hold all
269 * the information you need.
270 */
271 int sys_vfork(struct pt_regs *regs)
272 {
273 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
274 NULL, NULL);
275 }
276
277 long
278 sys_clone(unsigned long clone_flags, unsigned long newsp,
279 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
280 {
281 if (!newsp)
282 newsp = regs->sp;
283 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
284 }
285
286 /*
287 * This gets run with %si containing the
288 * function to call, and %di containing
289 * the "args".
290 */
291 extern void kernel_thread_helper(void);
292
293 /*
294 * Create a kernel thread
295 */
296 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
297 {
298 struct pt_regs regs;
299
300 memset(&regs, 0, sizeof(regs));
301
302 regs.si = (unsigned long) fn;
303 regs.di = (unsigned long) arg;
304
305 #ifdef CONFIG_X86_32
306 regs.ds = __USER_DS;
307 regs.es = __USER_DS;
308 regs.fs = __KERNEL_PERCPU;
309 regs.gs = __KERNEL_STACK_CANARY;
310 #else
311 regs.ss = __KERNEL_DS;
312 #endif
313
314 regs.orig_ax = -1;
315 regs.ip = (unsigned long) kernel_thread_helper;
316 regs.cs = __KERNEL_CS | get_kernel_rpl();
317 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_BIT1;
318
319 /* Ok, create the new process.. */
320 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
321 }
322 EXPORT_SYMBOL(kernel_thread);
323
324 /*
325 * sys_execve() executes a new program.
326 */
327 long sys_execve(const char __user *name,
328 const char __user *const __user *argv,
329 const char __user *const __user *envp, struct pt_regs *regs)
330 {
331 long error;
332 char *filename;
333
334 filename = getname(name);
335 error = PTR_ERR(filename);
336 if (IS_ERR(filename))
337 return error;
338 error = do_execve(filename, argv, envp, regs);
339
340 #ifdef CONFIG_X86_32
341 if (error == 0) {
342 /* Make sure we don't return using sysenter.. */
343 set_thread_flag(TIF_IRET);
344 }
345 #endif
346
347 putname(filename);
348 return error;
349 }
350
351 /*
352 * Idle related variables and functions
353 */
354 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
355 EXPORT_SYMBOL(boot_option_idle_override);
356
357 /*
358 * Powermanagement idle function, if any..
359 */
360 void (*pm_idle)(void);
361 #ifdef CONFIG_APM_MODULE
362 EXPORT_SYMBOL(pm_idle);
363 #endif
364
365 #ifdef CONFIG_X86_32
366 /*
367 * This halt magic was a workaround for ancient floppy DMA
368 * wreckage. It should be safe to remove.
369 */
370 static int hlt_counter;
371 void disable_hlt(void)
372 {
373 hlt_counter++;
374 }
375 EXPORT_SYMBOL(disable_hlt);
376
377 void enable_hlt(void)
378 {
379 hlt_counter--;
380 }
381 EXPORT_SYMBOL(enable_hlt);
382
383 static inline int hlt_use_halt(void)
384 {
385 return (!hlt_counter && boot_cpu_data.hlt_works_ok);
386 }
387 #else
388 static inline int hlt_use_halt(void)
389 {
390 return 1;
391 }
392 #endif
393
394 #ifndef CONFIG_SMP
395 static inline void play_dead(void)
396 {
397 BUG();
398 }
399 #endif
400
401 #ifdef CONFIG_X86_64
402 void enter_idle(void)
403 {
404 percpu_write(is_idle, 1);
405 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
406 }
407
408 static void __exit_idle(void)
409 {
410 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
411 return;
412 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
413 }
414
415 /* Called from interrupts to signify idle end */
416 void exit_idle(void)
417 {
418 /* idle loop has pid 0 */
419 if (current->pid)
420 return;
421 __exit_idle();
422 }
423 #endif
424
425 /*
426 * The idle thread. There's no useful work to be
427 * done, so just try to conserve power and have a
428 * low exit latency (ie sit in a loop waiting for
429 * somebody to say that they'd like to reschedule)
430 */
431 void cpu_idle(void)
432 {
433 /*
434 * If we're the non-boot CPU, nothing set the stack canary up
435 * for us. CPU0 already has it initialized but no harm in
436 * doing it again. This is a good place for updating it, as
437 * we wont ever return from this function (so the invalid
438 * canaries already on the stack wont ever trigger).
439 */
440 boot_init_stack_canary();
441 current_thread_info()->status |= TS_POLLING;
442
443 while (1) {
444 tick_nohz_idle_enter();
445
446 while (!need_resched()) {
447 rmb();
448
449 if (cpu_is_offline(smp_processor_id()))
450 play_dead();
451
452 /*
453 * Idle routines should keep interrupts disabled
454 * from here on, until they go to idle.
455 * Otherwise, idle callbacks can misfire.
456 */
457 local_touch_nmi();
458 local_irq_disable();
459
460 enter_idle();
461
462 /* Don't trace irqs off for idle */
463 stop_critical_timings();
464
465 /* enter_idle() needs rcu for notifiers */
466 rcu_idle_enter();
467
468 if (cpuidle_idle_call())
469 pm_idle();
470
471 rcu_idle_exit();
472 start_critical_timings();
473
474 /* In many cases the interrupt that ended idle
475 has already called exit_idle. But some idle
476 loops can be woken up without interrupt. */
477 __exit_idle();
478 }
479
480 tick_nohz_idle_exit();
481 preempt_enable_no_resched();
482 schedule();
483 preempt_disable();
484 }
485 }
486
487 /*
488 * We use this if we don't have any better
489 * idle routine..
490 */
491 void default_idle(void)
492 {
493 if (hlt_use_halt()) {
494 trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
495 trace_cpu_idle_rcuidle(1, smp_processor_id());
496 current_thread_info()->status &= ~TS_POLLING;
497 /*
498 * TS_POLLING-cleared state must be visible before we
499 * test NEED_RESCHED:
500 */
501 smp_mb();
502
503 if (!need_resched())
504 safe_halt(); /* enables interrupts racelessly */
505 else
506 local_irq_enable();
507 current_thread_info()->status |= TS_POLLING;
508 trace_power_end_rcuidle(smp_processor_id());
509 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
510 } else {
511 local_irq_enable();
512 /* loop is done by the caller */
513 cpu_relax();
514 }
515 }
516 #ifdef CONFIG_APM_MODULE
517 EXPORT_SYMBOL(default_idle);
518 #endif
519
520 bool set_pm_idle_to_default(void)
521 {
522 bool ret = !!pm_idle;
523
524 pm_idle = default_idle;
525
526 return ret;
527 }
528 void stop_this_cpu(void *dummy)
529 {
530 local_irq_disable();
531 /*
532 * Remove this CPU:
533 */
534 set_cpu_online(smp_processor_id(), false);
535 disable_local_APIC();
536
537 for (;;) {
538 if (hlt_works(smp_processor_id()))
539 halt();
540 }
541 }
542
543 static void do_nothing(void *unused)
544 {
545 }
546
547 /*
548 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
549 * pm_idle and update to new pm_idle value. Required while changing pm_idle
550 * handler on SMP systems.
551 *
552 * Caller must have changed pm_idle to the new value before the call. Old
553 * pm_idle value will not be used by any CPU after the return of this function.
554 */
555 void cpu_idle_wait(void)
556 {
557 smp_mb();
558 /* kick all the CPUs so that they exit out of pm_idle */
559 smp_call_function(do_nothing, NULL, 1);
560 }
561 EXPORT_SYMBOL_GPL(cpu_idle_wait);
562
563 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
564 static void mwait_idle(void)
565 {
566 if (!need_resched()) {
567 trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
568 trace_cpu_idle_rcuidle(1, smp_processor_id());
569 if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
570 clflush((void *)&current_thread_info()->flags);
571
572 __monitor((void *)&current_thread_info()->flags, 0, 0);
573 smp_mb();
574 if (!need_resched())
575 __sti_mwait(0, 0);
576 else
577 local_irq_enable();
578 trace_power_end_rcuidle(smp_processor_id());
579 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
580 } else
581 local_irq_enable();
582 }
583
584 /*
585 * On SMP it's slightly faster (but much more power-consuming!)
586 * to poll the ->work.need_resched flag instead of waiting for the
587 * cross-CPU IPI to arrive. Use this option with caution.
588 */
589 static void poll_idle(void)
590 {
591 trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id());
592 trace_cpu_idle_rcuidle(0, smp_processor_id());
593 local_irq_enable();
594 while (!need_resched())
595 cpu_relax();
596 trace_power_end_rcuidle(smp_processor_id());
597 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
598 }
599
600 /*
601 * mwait selection logic:
602 *
603 * It depends on the CPU. For AMD CPUs that support MWAIT this is
604 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
605 * then depend on a clock divisor and current Pstate of the core. If
606 * all cores of a processor are in halt state (C1) the processor can
607 * enter the C1E (C1 enhanced) state. If mwait is used this will never
608 * happen.
609 *
610 * idle=mwait overrides this decision and forces the usage of mwait.
611 */
612
613 #define MWAIT_INFO 0x05
614 #define MWAIT_ECX_EXTENDED_INFO 0x01
615 #define MWAIT_EDX_C1 0xf0
616
617 int mwait_usable(const struct cpuinfo_x86 *c)
618 {
619 u32 eax, ebx, ecx, edx;
620
621 if (boot_option_idle_override == IDLE_FORCE_MWAIT)
622 return 1;
623
624 if (c->cpuid_level < MWAIT_INFO)
625 return 0;
626
627 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
628 /* Check, whether EDX has extended info about MWAIT */
629 if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
630 return 1;
631
632 /*
633 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
634 * C1 supports MWAIT
635 */
636 return (edx & MWAIT_EDX_C1);
637 }
638
639 bool amd_e400_c1e_detected;
640 EXPORT_SYMBOL(amd_e400_c1e_detected);
641
642 static cpumask_var_t amd_e400_c1e_mask;
643
644 void amd_e400_remove_cpu(int cpu)
645 {
646 if (amd_e400_c1e_mask != NULL)
647 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
648 }
649
650 /*
651 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
652 * pending message MSR. If we detect C1E, then we handle it the same
653 * way as C3 power states (local apic timer and TSC stop)
654 */
655 static void amd_e400_idle(void)
656 {
657 if (need_resched())
658 return;
659
660 if (!amd_e400_c1e_detected) {
661 u32 lo, hi;
662
663 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
664
665 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
666 amd_e400_c1e_detected = true;
667 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
668 mark_tsc_unstable("TSC halt in AMD C1E");
669 printk(KERN_INFO "System has AMD C1E enabled\n");
670 }
671 }
672
673 if (amd_e400_c1e_detected) {
674 int cpu = smp_processor_id();
675
676 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
677 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
678 /*
679 * Force broadcast so ACPI can not interfere.
680 */
681 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
682 &cpu);
683 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
684 cpu);
685 }
686 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
687
688 default_idle();
689
690 /*
691 * The switch back from broadcast mode needs to be
692 * called with interrupts disabled.
693 */
694 local_irq_disable();
695 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
696 local_irq_enable();
697 } else
698 default_idle();
699 }
700
701 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
702 {
703 #ifdef CONFIG_SMP
704 if (pm_idle == poll_idle && smp_num_siblings > 1) {
705 printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
706 " performance may degrade.\n");
707 }
708 #endif
709 if (pm_idle)
710 return;
711
712 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
713 /*
714 * One CPU supports mwait => All CPUs supports mwait
715 */
716 printk(KERN_INFO "using mwait in idle threads.\n");
717 pm_idle = mwait_idle;
718 } else if (cpu_has_amd_erratum(amd_erratum_400)) {
719 /* E400: APIC timer interrupt does not wake up CPU from C1e */
720 printk(KERN_INFO "using AMD E400 aware idle routine\n");
721 pm_idle = amd_e400_idle;
722 } else
723 pm_idle = default_idle;
724 }
725
726 void __init init_amd_e400_c1e_mask(void)
727 {
728 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
729 if (pm_idle == amd_e400_idle)
730 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
731 }
732
733 static int __init idle_setup(char *str)
734 {
735 if (!str)
736 return -EINVAL;
737
738 if (!strcmp(str, "poll")) {
739 printk("using polling idle threads.\n");
740 pm_idle = poll_idle;
741 boot_option_idle_override = IDLE_POLL;
742 } else if (!strcmp(str, "mwait")) {
743 boot_option_idle_override = IDLE_FORCE_MWAIT;
744 WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
745 } else if (!strcmp(str, "halt")) {
746 /*
747 * When the boot option of idle=halt is added, halt is
748 * forced to be used for CPU idle. In such case CPU C2/C3
749 * won't be used again.
750 * To continue to load the CPU idle driver, don't touch
751 * the boot_option_idle_override.
752 */
753 pm_idle = default_idle;
754 boot_option_idle_override = IDLE_HALT;
755 } else if (!strcmp(str, "nomwait")) {
756 /*
757 * If the boot option of "idle=nomwait" is added,
758 * it means that mwait will be disabled for CPU C2/C3
759 * states. In such case it won't touch the variable
760 * of boot_option_idle_override.
761 */
762 boot_option_idle_override = IDLE_NOMWAIT;
763 } else
764 return -1;
765
766 return 0;
767 }
768 early_param("idle", idle_setup);
769
770 unsigned long arch_align_stack(unsigned long sp)
771 {
772 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
773 sp -= get_random_int() % 8192;
774 return sp & ~0xf;
775 }
776
777 unsigned long arch_randomize_brk(struct mm_struct *mm)
778 {
779 unsigned long range_end = mm->brk + 0x02000000;
780 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
781 }
782