Merge branch 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / process.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/clockchips.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/i387.h>
28 #include <asm/fpu-internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
31
32 /*
33 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
34 * no more per-task TSS's. The TSS size is kept cacheline-aligned
35 * so they are allowed to end up in the .data..cacheline_aligned
36 * section. Since TSS's are completely CPU-local, we want them
37 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
38 */
39 DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
40
41 #ifdef CONFIG_X86_64
42 static DEFINE_PER_CPU(unsigned char, is_idle);
43 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
44
45 void idle_notifier_register(struct notifier_block *n)
46 {
47 atomic_notifier_chain_register(&idle_notifier, n);
48 }
49 EXPORT_SYMBOL_GPL(idle_notifier_register);
50
51 void idle_notifier_unregister(struct notifier_block *n)
52 {
53 atomic_notifier_chain_unregister(&idle_notifier, n);
54 }
55 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
56 #endif
57
58 struct kmem_cache *task_xstate_cachep;
59 EXPORT_SYMBOL_GPL(task_xstate_cachep);
60
61 /*
62 * this gets called so that we can store lazy state into memory and copy the
63 * current task into the new thread.
64 */
65 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
66 {
67 int ret;
68
69 *dst = *src;
70 if (fpu_allocated(&src->thread.fpu)) {
71 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
72 ret = fpu_alloc(&dst->thread.fpu);
73 if (ret)
74 return ret;
75 fpu_copy(dst, src);
76 }
77 return 0;
78 }
79
80 void free_thread_xstate(struct task_struct *tsk)
81 {
82 fpu_free(&tsk->thread.fpu);
83 }
84
85 void arch_release_task_struct(struct task_struct *tsk)
86 {
87 free_thread_xstate(tsk);
88 }
89
90 void arch_task_cache_init(void)
91 {
92 task_xstate_cachep =
93 kmem_cache_create("task_xstate", xstate_size,
94 __alignof__(union thread_xstate),
95 SLAB_PANIC | SLAB_NOTRACK, NULL);
96 }
97
98 /*
99 * Free current thread data structures etc..
100 */
101 void exit_thread(void)
102 {
103 struct task_struct *me = current;
104 struct thread_struct *t = &me->thread;
105 unsigned long *bp = t->io_bitmap_ptr;
106
107 if (bp) {
108 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
109
110 t->io_bitmap_ptr = NULL;
111 clear_thread_flag(TIF_IO_BITMAP);
112 /*
113 * Careful, clear this in the TSS too:
114 */
115 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
116 t->io_bitmap_max = 0;
117 put_cpu();
118 kfree(bp);
119 }
120
121 drop_fpu(me);
122 }
123
124 void show_regs_common(void)
125 {
126 const char *vendor, *product, *board;
127
128 vendor = dmi_get_system_info(DMI_SYS_VENDOR);
129 if (!vendor)
130 vendor = "";
131 product = dmi_get_system_info(DMI_PRODUCT_NAME);
132 if (!product)
133 product = "";
134
135 /* Board Name is optional */
136 board = dmi_get_system_info(DMI_BOARD_NAME);
137
138 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s %s%s%s\n",
139 current->pid, current->comm, print_tainted(),
140 init_utsname()->release,
141 (int)strcspn(init_utsname()->version, " "),
142 init_utsname()->version,
143 vendor, product,
144 board ? "/" : "",
145 board ? board : "");
146 }
147
148 void flush_thread(void)
149 {
150 struct task_struct *tsk = current;
151
152 flush_ptrace_hw_breakpoint(tsk);
153 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
154 drop_init_fpu(tsk);
155 /*
156 * Free the FPU state for non xsave platforms. They get reallocated
157 * lazily at the first use.
158 */
159 if (!use_eager_fpu())
160 free_thread_xstate(tsk);
161 }
162
163 static void hard_disable_TSC(void)
164 {
165 write_cr4(read_cr4() | X86_CR4_TSD);
166 }
167
168 void disable_TSC(void)
169 {
170 preempt_disable();
171 if (!test_and_set_thread_flag(TIF_NOTSC))
172 /*
173 * Must flip the CPU state synchronously with
174 * TIF_NOTSC in the current running context.
175 */
176 hard_disable_TSC();
177 preempt_enable();
178 }
179
180 static void hard_enable_TSC(void)
181 {
182 write_cr4(read_cr4() & ~X86_CR4_TSD);
183 }
184
185 static void enable_TSC(void)
186 {
187 preempt_disable();
188 if (test_and_clear_thread_flag(TIF_NOTSC))
189 /*
190 * Must flip the CPU state synchronously with
191 * TIF_NOTSC in the current running context.
192 */
193 hard_enable_TSC();
194 preempt_enable();
195 }
196
197 int get_tsc_mode(unsigned long adr)
198 {
199 unsigned int val;
200
201 if (test_thread_flag(TIF_NOTSC))
202 val = PR_TSC_SIGSEGV;
203 else
204 val = PR_TSC_ENABLE;
205
206 return put_user(val, (unsigned int __user *)adr);
207 }
208
209 int set_tsc_mode(unsigned int val)
210 {
211 if (val == PR_TSC_SIGSEGV)
212 disable_TSC();
213 else if (val == PR_TSC_ENABLE)
214 enable_TSC();
215 else
216 return -EINVAL;
217
218 return 0;
219 }
220
221 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
222 struct tss_struct *tss)
223 {
224 struct thread_struct *prev, *next;
225
226 prev = &prev_p->thread;
227 next = &next_p->thread;
228
229 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
230 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
231 unsigned long debugctl = get_debugctlmsr();
232
233 debugctl &= ~DEBUGCTLMSR_BTF;
234 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
235 debugctl |= DEBUGCTLMSR_BTF;
236
237 update_debugctlmsr(debugctl);
238 }
239
240 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
241 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
242 /* prev and next are different */
243 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
244 hard_disable_TSC();
245 else
246 hard_enable_TSC();
247 }
248
249 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
250 /*
251 * Copy the relevant range of the IO bitmap.
252 * Normally this is 128 bytes or less:
253 */
254 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
255 max(prev->io_bitmap_max, next->io_bitmap_max));
256 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
257 /*
258 * Clear any possible leftover bits:
259 */
260 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
261 }
262 propagate_user_return_notify(prev_p, next_p);
263 }
264
265 /*
266 * Idle related variables and functions
267 */
268 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
269 EXPORT_SYMBOL(boot_option_idle_override);
270
271 static void (*x86_idle)(void);
272
273 #ifndef CONFIG_SMP
274 static inline void play_dead(void)
275 {
276 BUG();
277 }
278 #endif
279
280 #ifdef CONFIG_X86_64
281 void enter_idle(void)
282 {
283 this_cpu_write(is_idle, 1);
284 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
285 }
286
287 static void __exit_idle(void)
288 {
289 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
290 return;
291 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
292 }
293
294 /* Called from interrupts to signify idle end */
295 void exit_idle(void)
296 {
297 /* idle loop has pid 0 */
298 if (current->pid)
299 return;
300 __exit_idle();
301 }
302 #endif
303
304 void arch_cpu_idle_prepare(void)
305 {
306 /*
307 * If we're the non-boot CPU, nothing set the stack canary up
308 * for us. CPU0 already has it initialized but no harm in
309 * doing it again. This is a good place for updating it, as
310 * we wont ever return from this function (so the invalid
311 * canaries already on the stack wont ever trigger).
312 */
313 boot_init_stack_canary();
314 }
315
316 void arch_cpu_idle_enter(void)
317 {
318 local_touch_nmi();
319 enter_idle();
320 }
321
322 void arch_cpu_idle_exit(void)
323 {
324 __exit_idle();
325 }
326
327 void arch_cpu_idle_dead(void)
328 {
329 play_dead();
330 }
331
332 /*
333 * Called from the generic idle code.
334 */
335 void arch_cpu_idle(void)
336 {
337 if (cpuidle_idle_call())
338 x86_idle();
339 }
340
341 /*
342 * We use this if we don't have any better idle routine..
343 */
344 void default_idle(void)
345 {
346 trace_cpu_idle_rcuidle(1, smp_processor_id());
347 safe_halt();
348 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
349 }
350 #ifdef CONFIG_APM_MODULE
351 EXPORT_SYMBOL(default_idle);
352 #endif
353
354 #ifdef CONFIG_XEN
355 bool xen_set_default_idle(void)
356 {
357 bool ret = !!x86_idle;
358
359 x86_idle = default_idle;
360
361 return ret;
362 }
363 #endif
364 void stop_this_cpu(void *dummy)
365 {
366 local_irq_disable();
367 /*
368 * Remove this CPU:
369 */
370 set_cpu_online(smp_processor_id(), false);
371 disable_local_APIC();
372
373 for (;;)
374 halt();
375 }
376
377 bool amd_e400_c1e_detected;
378 EXPORT_SYMBOL(amd_e400_c1e_detected);
379
380 static cpumask_var_t amd_e400_c1e_mask;
381
382 void amd_e400_remove_cpu(int cpu)
383 {
384 if (amd_e400_c1e_mask != NULL)
385 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
386 }
387
388 /*
389 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
390 * pending message MSR. If we detect C1E, then we handle it the same
391 * way as C3 power states (local apic timer and TSC stop)
392 */
393 static void amd_e400_idle(void)
394 {
395 if (need_resched())
396 return;
397
398 if (!amd_e400_c1e_detected) {
399 u32 lo, hi;
400
401 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
402
403 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
404 amd_e400_c1e_detected = true;
405 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
406 mark_tsc_unstable("TSC halt in AMD C1E");
407 pr_info("System has AMD C1E enabled\n");
408 }
409 }
410
411 if (amd_e400_c1e_detected) {
412 int cpu = smp_processor_id();
413
414 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
415 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
416 /*
417 * Force broadcast so ACPI can not interfere.
418 */
419 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
420 &cpu);
421 pr_info("Switch to broadcast mode on CPU%d\n", cpu);
422 }
423 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
424
425 default_idle();
426
427 /*
428 * The switch back from broadcast mode needs to be
429 * called with interrupts disabled.
430 */
431 local_irq_disable();
432 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
433 local_irq_enable();
434 } else
435 default_idle();
436 }
437
438 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
439 {
440 #ifdef CONFIG_SMP
441 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
442 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
443 #endif
444 if (x86_idle || boot_option_idle_override == IDLE_POLL)
445 return;
446
447 if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
448 /* E400: APIC timer interrupt does not wake up CPU from C1e */
449 pr_info("using AMD E400 aware idle routine\n");
450 x86_idle = amd_e400_idle;
451 } else
452 x86_idle = default_idle;
453 }
454
455 void __init init_amd_e400_c1e_mask(void)
456 {
457 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
458 if (x86_idle == amd_e400_idle)
459 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
460 }
461
462 static int __init idle_setup(char *str)
463 {
464 if (!str)
465 return -EINVAL;
466
467 if (!strcmp(str, "poll")) {
468 pr_info("using polling idle threads\n");
469 boot_option_idle_override = IDLE_POLL;
470 cpu_idle_poll_ctrl(true);
471 } else if (!strcmp(str, "halt")) {
472 /*
473 * When the boot option of idle=halt is added, halt is
474 * forced to be used for CPU idle. In such case CPU C2/C3
475 * won't be used again.
476 * To continue to load the CPU idle driver, don't touch
477 * the boot_option_idle_override.
478 */
479 x86_idle = default_idle;
480 boot_option_idle_override = IDLE_HALT;
481 } else if (!strcmp(str, "nomwait")) {
482 /*
483 * If the boot option of "idle=nomwait" is added,
484 * it means that mwait will be disabled for CPU C2/C3
485 * states. In such case it won't touch the variable
486 * of boot_option_idle_override.
487 */
488 boot_option_idle_override = IDLE_NOMWAIT;
489 } else
490 return -1;
491
492 return 0;
493 }
494 early_param("idle", idle_setup);
495
496 unsigned long arch_align_stack(unsigned long sp)
497 {
498 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
499 sp -= get_random_int() % 8192;
500 return sp & ~0xf;
501 }
502
503 unsigned long arch_randomize_brk(struct mm_struct *mm)
504 {
505 unsigned long range_end = mm->brk + 0x02000000;
506 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
507 }
508