2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
30 #include <asm/stacktrace.h>
33 #include <asm/alternative.h>
34 #include <asm/timer.h>
38 #include "perf_event.h"
40 struct x86_pmu x86_pmu __read_mostly
;
42 DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
) = {
46 u64 __read_mostly hw_cache_event_ids
47 [PERF_COUNT_HW_CACHE_MAX
]
48 [PERF_COUNT_HW_CACHE_OP_MAX
]
49 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
50 u64 __read_mostly hw_cache_extra_regs
51 [PERF_COUNT_HW_CACHE_MAX
]
52 [PERF_COUNT_HW_CACHE_OP_MAX
]
53 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
56 * Propagate event elapsed time into the generic event.
57 * Can only be executed on the CPU where the event is active.
58 * Returns the delta events processed.
60 u64
x86_perf_event_update(struct perf_event
*event
)
62 struct hw_perf_event
*hwc
= &event
->hw
;
63 int shift
= 64 - x86_pmu
.cntval_bits
;
64 u64 prev_raw_count
, new_raw_count
;
68 if (idx
== INTEL_PMC_IDX_FIXED_BTS
)
72 * Careful: an NMI might modify the previous event value.
74 * Our tactic to handle this is to first atomically read and
75 * exchange a new raw count - then add that new-prev delta
76 * count to the generic event atomically:
79 prev_raw_count
= local64_read(&hwc
->prev_count
);
80 rdpmcl(hwc
->event_base_rdpmc
, new_raw_count
);
82 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
83 new_raw_count
) != prev_raw_count
)
87 * Now we have the new raw value and have updated the prev
88 * timestamp already. We can now calculate the elapsed delta
89 * (event-)time and add that to the generic event.
91 * Careful, not all hw sign-extends above the physical width
94 delta
= (new_raw_count
<< shift
) - (prev_raw_count
<< shift
);
97 local64_add(delta
, &event
->count
);
98 local64_sub(delta
, &hwc
->period_left
);
100 return new_raw_count
;
104 * Find and validate any extra registers to set up.
106 static int x86_pmu_extra_regs(u64 config
, struct perf_event
*event
)
108 struct hw_perf_event_extra
*reg
;
109 struct extra_reg
*er
;
111 reg
= &event
->hw
.extra_reg
;
113 if (!x86_pmu
.extra_regs
)
116 for (er
= x86_pmu
.extra_regs
; er
->msr
; er
++) {
117 if (er
->event
!= (config
& er
->config_mask
))
119 if (event
->attr
.config1
& ~er
->valid_mask
)
123 reg
->config
= event
->attr
.config1
;
130 static atomic_t active_events
;
131 static DEFINE_MUTEX(pmc_reserve_mutex
);
133 #ifdef CONFIG_X86_LOCAL_APIC
135 static bool reserve_pmc_hardware(void)
139 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
140 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i
)))
144 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
145 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i
)))
152 for (i
--; i
>= 0; i
--)
153 release_evntsel_nmi(x86_pmu_config_addr(i
));
155 i
= x86_pmu
.num_counters
;
158 for (i
--; i
>= 0; i
--)
159 release_perfctr_nmi(x86_pmu_event_addr(i
));
164 static void release_pmc_hardware(void)
168 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
169 release_perfctr_nmi(x86_pmu_event_addr(i
));
170 release_evntsel_nmi(x86_pmu_config_addr(i
));
176 static bool reserve_pmc_hardware(void) { return true; }
177 static void release_pmc_hardware(void) {}
181 static bool check_hw_exists(void)
183 u64 val
, val_fail
, val_new
= ~0;
184 int i
, reg
, reg_fail
, ret
= 0;
188 * Check to see if the BIOS enabled any of the counters, if so
191 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
192 reg
= x86_pmu_config_addr(i
);
193 ret
= rdmsrl_safe(reg
, &val
);
196 if (val
& ARCH_PERFMON_EVENTSEL_ENABLE
) {
203 if (x86_pmu
.num_counters_fixed
) {
204 reg
= MSR_ARCH_PERFMON_FIXED_CTR_CTRL
;
205 ret
= rdmsrl_safe(reg
, &val
);
208 for (i
= 0; i
< x86_pmu
.num_counters_fixed
; i
++) {
209 if (val
& (0x03 << i
*4)) {
218 * Read the current value, change it and read it back to see if it
219 * matches, this is needed to detect certain hardware emulators
220 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
222 reg
= x86_pmu_event_addr(0);
223 if (rdmsrl_safe(reg
, &val
))
226 ret
= wrmsrl_safe(reg
, val
);
227 ret
|= rdmsrl_safe(reg
, &val_new
);
228 if (ret
|| val
!= val_new
)
232 * We still allow the PMU driver to operate:
235 printk(KERN_CONT
"Broken BIOS detected, complain to your hardware vendor.\n");
236 printk(KERN_ERR FW_BUG
"the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail
, val_fail
);
242 printk(KERN_CONT
"Broken PMU hardware detected, using software events only.\n");
243 printk(KERN_ERR
"Failed to access perfctr msr (MSR %x is %Lx)\n", reg
, val_new
);
248 static void hw_perf_event_destroy(struct perf_event
*event
)
250 if (atomic_dec_and_mutex_lock(&active_events
, &pmc_reserve_mutex
)) {
251 release_pmc_hardware();
252 release_ds_buffers();
253 mutex_unlock(&pmc_reserve_mutex
);
257 static inline int x86_pmu_initialized(void)
259 return x86_pmu
.handle_irq
!= NULL
;
263 set_ext_hw_attr(struct hw_perf_event
*hwc
, struct perf_event
*event
)
265 struct perf_event_attr
*attr
= &event
->attr
;
266 unsigned int cache_type
, cache_op
, cache_result
;
269 config
= attr
->config
;
271 cache_type
= (config
>> 0) & 0xff;
272 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
275 cache_op
= (config
>> 8) & 0xff;
276 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
279 cache_result
= (config
>> 16) & 0xff;
280 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
283 val
= hw_cache_event_ids
[cache_type
][cache_op
][cache_result
];
292 attr
->config1
= hw_cache_extra_regs
[cache_type
][cache_op
][cache_result
];
293 return x86_pmu_extra_regs(val
, event
);
296 int x86_setup_perfctr(struct perf_event
*event
)
298 struct perf_event_attr
*attr
= &event
->attr
;
299 struct hw_perf_event
*hwc
= &event
->hw
;
302 if (!is_sampling_event(event
)) {
303 hwc
->sample_period
= x86_pmu
.max_period
;
304 hwc
->last_period
= hwc
->sample_period
;
305 local64_set(&hwc
->period_left
, hwc
->sample_period
);
308 * If we have a PMU initialized but no APIC
309 * interrupts, we cannot sample hardware
310 * events (user-space has to fall back and
311 * sample via a hrtimer based software event):
317 if (attr
->type
== PERF_TYPE_RAW
)
318 return x86_pmu_extra_regs(event
->attr
.config
, event
);
320 if (attr
->type
== PERF_TYPE_HW_CACHE
)
321 return set_ext_hw_attr(hwc
, event
);
323 if (attr
->config
>= x86_pmu
.max_events
)
329 config
= x86_pmu
.event_map(attr
->config
);
340 if (attr
->config
== PERF_COUNT_HW_BRANCH_INSTRUCTIONS
&&
341 !attr
->freq
&& hwc
->sample_period
== 1) {
342 /* BTS is not supported by this architecture. */
343 if (!x86_pmu
.bts_active
)
346 /* BTS is currently only allowed for user-mode. */
347 if (!attr
->exclude_kernel
)
351 hwc
->config
|= config
;
357 * check that branch_sample_type is compatible with
358 * settings needed for precise_ip > 1 which implies
359 * using the LBR to capture ALL taken branches at the
360 * priv levels of the measurement
362 static inline int precise_br_compat(struct perf_event
*event
)
364 u64 m
= event
->attr
.branch_sample_type
;
367 /* must capture all branches */
368 if (!(m
& PERF_SAMPLE_BRANCH_ANY
))
371 m
&= PERF_SAMPLE_BRANCH_KERNEL
| PERF_SAMPLE_BRANCH_USER
;
373 if (!event
->attr
.exclude_user
)
374 b
|= PERF_SAMPLE_BRANCH_USER
;
376 if (!event
->attr
.exclude_kernel
)
377 b
|= PERF_SAMPLE_BRANCH_KERNEL
;
380 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
386 int x86_pmu_hw_config(struct perf_event
*event
)
388 if (event
->attr
.precise_ip
) {
391 /* Support for constant skid */
392 if (x86_pmu
.pebs_active
&& !x86_pmu
.pebs_broken
) {
395 /* Support for IP fixup */
400 if (event
->attr
.precise_ip
> precise
)
403 * check that PEBS LBR correction does not conflict with
404 * whatever the user is asking with attr->branch_sample_type
406 if (event
->attr
.precise_ip
> 1) {
407 u64
*br_type
= &event
->attr
.branch_sample_type
;
409 if (has_branch_stack(event
)) {
410 if (!precise_br_compat(event
))
413 /* branch_sample_type is compatible */
417 * user did not specify branch_sample_type
419 * For PEBS fixups, we capture all
420 * the branches at the priv level of the
423 *br_type
= PERF_SAMPLE_BRANCH_ANY
;
425 if (!event
->attr
.exclude_user
)
426 *br_type
|= PERF_SAMPLE_BRANCH_USER
;
428 if (!event
->attr
.exclude_kernel
)
429 *br_type
|= PERF_SAMPLE_BRANCH_KERNEL
;
436 * (keep 'enabled' bit clear for now)
438 event
->hw
.config
= ARCH_PERFMON_EVENTSEL_INT
;
441 * Count user and OS events unless requested not to
443 if (!event
->attr
.exclude_user
)
444 event
->hw
.config
|= ARCH_PERFMON_EVENTSEL_USR
;
445 if (!event
->attr
.exclude_kernel
)
446 event
->hw
.config
|= ARCH_PERFMON_EVENTSEL_OS
;
448 if (event
->attr
.type
== PERF_TYPE_RAW
)
449 event
->hw
.config
|= event
->attr
.config
& X86_RAW_EVENT_MASK
;
451 return x86_setup_perfctr(event
);
455 * Setup the hardware configuration for a given attr_type
457 static int __x86_pmu_event_init(struct perf_event
*event
)
461 if (!x86_pmu_initialized())
465 if (!atomic_inc_not_zero(&active_events
)) {
466 mutex_lock(&pmc_reserve_mutex
);
467 if (atomic_read(&active_events
) == 0) {
468 if (!reserve_pmc_hardware())
471 reserve_ds_buffers();
474 atomic_inc(&active_events
);
475 mutex_unlock(&pmc_reserve_mutex
);
480 event
->destroy
= hw_perf_event_destroy
;
483 event
->hw
.last_cpu
= -1;
484 event
->hw
.last_tag
= ~0ULL;
487 event
->hw
.extra_reg
.idx
= EXTRA_REG_NONE
;
488 event
->hw
.branch_reg
.idx
= EXTRA_REG_NONE
;
490 return x86_pmu
.hw_config(event
);
493 void x86_pmu_disable_all(void)
495 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
498 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
501 if (!test_bit(idx
, cpuc
->active_mask
))
503 rdmsrl(x86_pmu_config_addr(idx
), val
);
504 if (!(val
& ARCH_PERFMON_EVENTSEL_ENABLE
))
506 val
&= ~ARCH_PERFMON_EVENTSEL_ENABLE
;
507 wrmsrl(x86_pmu_config_addr(idx
), val
);
511 static void x86_pmu_disable(struct pmu
*pmu
)
513 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
515 if (!x86_pmu_initialized())
525 x86_pmu
.disable_all();
528 void x86_pmu_enable_all(int added
)
530 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
533 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
534 struct hw_perf_event
*hwc
= &cpuc
->events
[idx
]->hw
;
536 if (!test_bit(idx
, cpuc
->active_mask
))
539 __x86_pmu_enable_event(hwc
, ARCH_PERFMON_EVENTSEL_ENABLE
);
543 static struct pmu pmu
;
545 static inline int is_x86_event(struct perf_event
*event
)
547 return event
->pmu
== &pmu
;
551 * Event scheduler state:
553 * Assign events iterating over all events and counters, beginning
554 * with events with least weights first. Keep the current iterator
555 * state in struct sched_state.
559 int event
; /* event index */
560 int counter
; /* counter index */
561 int unassigned
; /* number of events to be assigned left */
562 unsigned long used
[BITS_TO_LONGS(X86_PMC_IDX_MAX
)];
565 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
566 #define SCHED_STATES_MAX 2
571 struct event_constraint
**constraints
;
572 struct sched_state state
;
574 struct sched_state saved
[SCHED_STATES_MAX
];
578 * Initialize interator that runs through all events and counters.
580 static void perf_sched_init(struct perf_sched
*sched
, struct event_constraint
**c
,
581 int num
, int wmin
, int wmax
)
585 memset(sched
, 0, sizeof(*sched
));
586 sched
->max_events
= num
;
587 sched
->max_weight
= wmax
;
588 sched
->constraints
= c
;
590 for (idx
= 0; idx
< num
; idx
++) {
591 if (c
[idx
]->weight
== wmin
)
595 sched
->state
.event
= idx
; /* start with min weight */
596 sched
->state
.weight
= wmin
;
597 sched
->state
.unassigned
= num
;
600 static void perf_sched_save_state(struct perf_sched
*sched
)
602 if (WARN_ON_ONCE(sched
->saved_states
>= SCHED_STATES_MAX
))
605 sched
->saved
[sched
->saved_states
] = sched
->state
;
606 sched
->saved_states
++;
609 static bool perf_sched_restore_state(struct perf_sched
*sched
)
611 if (!sched
->saved_states
)
614 sched
->saved_states
--;
615 sched
->state
= sched
->saved
[sched
->saved_states
];
617 /* continue with next counter: */
618 clear_bit(sched
->state
.counter
++, sched
->state
.used
);
624 * Select a counter for the current event to schedule. Return true on
627 static bool __perf_sched_find_counter(struct perf_sched
*sched
)
629 struct event_constraint
*c
;
632 if (!sched
->state
.unassigned
)
635 if (sched
->state
.event
>= sched
->max_events
)
638 c
= sched
->constraints
[sched
->state
.event
];
640 /* Prefer fixed purpose counters */
641 if (c
->idxmsk64
& (~0ULL << INTEL_PMC_IDX_FIXED
)) {
642 idx
= INTEL_PMC_IDX_FIXED
;
643 for_each_set_bit_from(idx
, c
->idxmsk
, X86_PMC_IDX_MAX
) {
644 if (!__test_and_set_bit(idx
, sched
->state
.used
))
648 /* Grab the first unused counter starting with idx */
649 idx
= sched
->state
.counter
;
650 for_each_set_bit_from(idx
, c
->idxmsk
, INTEL_PMC_IDX_FIXED
) {
651 if (!__test_and_set_bit(idx
, sched
->state
.used
))
658 sched
->state
.counter
= idx
;
661 perf_sched_save_state(sched
);
666 static bool perf_sched_find_counter(struct perf_sched
*sched
)
668 while (!__perf_sched_find_counter(sched
)) {
669 if (!perf_sched_restore_state(sched
))
677 * Go through all unassigned events and find the next one to schedule.
678 * Take events with the least weight first. Return true on success.
680 static bool perf_sched_next_event(struct perf_sched
*sched
)
682 struct event_constraint
*c
;
684 if (!sched
->state
.unassigned
|| !--sched
->state
.unassigned
)
689 sched
->state
.event
++;
690 if (sched
->state
.event
>= sched
->max_events
) {
692 sched
->state
.event
= 0;
693 sched
->state
.weight
++;
694 if (sched
->state
.weight
> sched
->max_weight
)
697 c
= sched
->constraints
[sched
->state
.event
];
698 } while (c
->weight
!= sched
->state
.weight
);
700 sched
->state
.counter
= 0; /* start with first counter */
706 * Assign a counter for each event.
708 int perf_assign_events(struct event_constraint
**constraints
, int n
,
709 int wmin
, int wmax
, int *assign
)
711 struct perf_sched sched
;
713 perf_sched_init(&sched
, constraints
, n
, wmin
, wmax
);
716 if (!perf_sched_find_counter(&sched
))
719 assign
[sched
.state
.event
] = sched
.state
.counter
;
720 } while (perf_sched_next_event(&sched
));
722 return sched
.state
.unassigned
;
725 int x86_schedule_events(struct cpu_hw_events
*cpuc
, int n
, int *assign
)
727 struct event_constraint
*c
, *constraints
[X86_PMC_IDX_MAX
];
728 unsigned long used_mask
[BITS_TO_LONGS(X86_PMC_IDX_MAX
)];
729 int i
, wmin
, wmax
, num
= 0;
730 struct hw_perf_event
*hwc
;
732 bitmap_zero(used_mask
, X86_PMC_IDX_MAX
);
734 for (i
= 0, wmin
= X86_PMC_IDX_MAX
, wmax
= 0; i
< n
; i
++) {
735 c
= x86_pmu
.get_event_constraints(cpuc
, cpuc
->event_list
[i
]);
737 wmin
= min(wmin
, c
->weight
);
738 wmax
= max(wmax
, c
->weight
);
742 * fastpath, try to reuse previous register
744 for (i
= 0; i
< n
; i
++) {
745 hwc
= &cpuc
->event_list
[i
]->hw
;
752 /* constraint still honored */
753 if (!test_bit(hwc
->idx
, c
->idxmsk
))
756 /* not already used */
757 if (test_bit(hwc
->idx
, used_mask
))
760 __set_bit(hwc
->idx
, used_mask
);
762 assign
[i
] = hwc
->idx
;
767 num
= perf_assign_events(constraints
, n
, wmin
, wmax
, assign
);
770 * scheduling failed or is just a simulation,
771 * free resources if necessary
773 if (!assign
|| num
) {
774 for (i
= 0; i
< n
; i
++) {
775 if (x86_pmu
.put_event_constraints
)
776 x86_pmu
.put_event_constraints(cpuc
, cpuc
->event_list
[i
]);
779 return num
? -EINVAL
: 0;
783 * dogrp: true if must collect siblings events (group)
784 * returns total number of events and error code
786 static int collect_events(struct cpu_hw_events
*cpuc
, struct perf_event
*leader
, bool dogrp
)
788 struct perf_event
*event
;
791 max_count
= x86_pmu
.num_counters
+ x86_pmu
.num_counters_fixed
;
793 /* current number of events already accepted */
796 if (is_x86_event(leader
)) {
799 cpuc
->event_list
[n
] = leader
;
805 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
) {
806 if (!is_x86_event(event
) ||
807 event
->state
<= PERF_EVENT_STATE_OFF
)
813 cpuc
->event_list
[n
] = event
;
819 static inline void x86_assign_hw_event(struct perf_event
*event
,
820 struct cpu_hw_events
*cpuc
, int i
)
822 struct hw_perf_event
*hwc
= &event
->hw
;
824 hwc
->idx
= cpuc
->assign
[i
];
825 hwc
->last_cpu
= smp_processor_id();
826 hwc
->last_tag
= ++cpuc
->tags
[i
];
828 if (hwc
->idx
== INTEL_PMC_IDX_FIXED_BTS
) {
829 hwc
->config_base
= 0;
831 } else if (hwc
->idx
>= INTEL_PMC_IDX_FIXED
) {
832 hwc
->config_base
= MSR_ARCH_PERFMON_FIXED_CTR_CTRL
;
833 hwc
->event_base
= MSR_ARCH_PERFMON_FIXED_CTR0
+ (hwc
->idx
- INTEL_PMC_IDX_FIXED
);
834 hwc
->event_base_rdpmc
= (hwc
->idx
- INTEL_PMC_IDX_FIXED
) | 1<<30;
836 hwc
->config_base
= x86_pmu_config_addr(hwc
->idx
);
837 hwc
->event_base
= x86_pmu_event_addr(hwc
->idx
);
838 hwc
->event_base_rdpmc
= x86_pmu_rdpmc_index(hwc
->idx
);
842 static inline int match_prev_assignment(struct hw_perf_event
*hwc
,
843 struct cpu_hw_events
*cpuc
,
846 return hwc
->idx
== cpuc
->assign
[i
] &&
847 hwc
->last_cpu
== smp_processor_id() &&
848 hwc
->last_tag
== cpuc
->tags
[i
];
851 static void x86_pmu_start(struct perf_event
*event
, int flags
);
853 static void x86_pmu_enable(struct pmu
*pmu
)
855 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
856 struct perf_event
*event
;
857 struct hw_perf_event
*hwc
;
858 int i
, added
= cpuc
->n_added
;
860 if (!x86_pmu_initialized())
867 int n_running
= cpuc
->n_events
- cpuc
->n_added
;
869 * apply assignment obtained either from
870 * hw_perf_group_sched_in() or x86_pmu_enable()
872 * step1: save events moving to new counters
873 * step2: reprogram moved events into new counters
875 for (i
= 0; i
< n_running
; i
++) {
876 event
= cpuc
->event_list
[i
];
880 * we can avoid reprogramming counter if:
881 * - assigned same counter as last time
882 * - running on same CPU as last time
883 * - no other event has used the counter since
885 if (hwc
->idx
== -1 ||
886 match_prev_assignment(hwc
, cpuc
, i
))
890 * Ensure we don't accidentally enable a stopped
891 * counter simply because we rescheduled.
893 if (hwc
->state
& PERF_HES_STOPPED
)
894 hwc
->state
|= PERF_HES_ARCH
;
896 x86_pmu_stop(event
, PERF_EF_UPDATE
);
899 for (i
= 0; i
< cpuc
->n_events
; i
++) {
900 event
= cpuc
->event_list
[i
];
903 if (!match_prev_assignment(hwc
, cpuc
, i
))
904 x86_assign_hw_event(event
, cpuc
, i
);
905 else if (i
< n_running
)
908 if (hwc
->state
& PERF_HES_ARCH
)
911 x86_pmu_start(event
, PERF_EF_RELOAD
);
914 perf_events_lapic_init();
920 x86_pmu
.enable_all(added
);
923 static DEFINE_PER_CPU(u64
[X86_PMC_IDX_MAX
], pmc_prev_left
);
926 * Set the next IRQ period, based on the hwc->period_left value.
927 * To be called with the event disabled in hw:
929 int x86_perf_event_set_period(struct perf_event
*event
)
931 struct hw_perf_event
*hwc
= &event
->hw
;
932 s64 left
= local64_read(&hwc
->period_left
);
933 s64 period
= hwc
->sample_period
;
934 int ret
= 0, idx
= hwc
->idx
;
936 if (idx
== INTEL_PMC_IDX_FIXED_BTS
)
940 * If we are way outside a reasonable range then just skip forward:
942 if (unlikely(left
<= -period
)) {
944 local64_set(&hwc
->period_left
, left
);
945 hwc
->last_period
= period
;
949 if (unlikely(left
<= 0)) {
951 local64_set(&hwc
->period_left
, left
);
952 hwc
->last_period
= period
;
956 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
958 if (unlikely(left
< 2))
961 if (left
> x86_pmu
.max_period
)
962 left
= x86_pmu
.max_period
;
964 per_cpu(pmc_prev_left
[idx
], smp_processor_id()) = left
;
967 * The hw event starts counting from this event offset,
968 * mark it to be able to extra future deltas:
970 local64_set(&hwc
->prev_count
, (u64
)-left
);
972 wrmsrl(hwc
->event_base
, (u64
)(-left
) & x86_pmu
.cntval_mask
);
975 * Due to erratum on certan cpu we need
976 * a second write to be sure the register
977 * is updated properly
979 if (x86_pmu
.perfctr_second_write
) {
980 wrmsrl(hwc
->event_base
,
981 (u64
)(-left
) & x86_pmu
.cntval_mask
);
984 perf_event_update_userpage(event
);
989 void x86_pmu_enable_event(struct perf_event
*event
)
991 if (__this_cpu_read(cpu_hw_events
.enabled
))
992 __x86_pmu_enable_event(&event
->hw
,
993 ARCH_PERFMON_EVENTSEL_ENABLE
);
997 * Add a single event to the PMU.
999 * The event is added to the group of enabled events
1000 * but only if it can be scehduled with existing events.
1002 static int x86_pmu_add(struct perf_event
*event
, int flags
)
1004 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1005 struct hw_perf_event
*hwc
;
1006 int assign
[X86_PMC_IDX_MAX
];
1011 perf_pmu_disable(event
->pmu
);
1012 n0
= cpuc
->n_events
;
1013 ret
= n
= collect_events(cpuc
, event
, false);
1017 hwc
->state
= PERF_HES_UPTODATE
| PERF_HES_STOPPED
;
1018 if (!(flags
& PERF_EF_START
))
1019 hwc
->state
|= PERF_HES_ARCH
;
1022 * If group events scheduling transaction was started,
1023 * skip the schedulability test here, it will be performed
1024 * at commit time (->commit_txn) as a whole
1026 if (cpuc
->group_flag
& PERF_EVENT_TXN
)
1029 ret
= x86_pmu
.schedule_events(cpuc
, n
, assign
);
1033 * copy new assignment, now we know it is possible
1034 * will be used by hw_perf_enable()
1036 memcpy(cpuc
->assign
, assign
, n
*sizeof(int));
1040 cpuc
->n_added
+= n
- n0
;
1041 cpuc
->n_txn
+= n
- n0
;
1045 perf_pmu_enable(event
->pmu
);
1049 static void x86_pmu_start(struct perf_event
*event
, int flags
)
1051 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1052 int idx
= event
->hw
.idx
;
1054 if (WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_STOPPED
)))
1057 if (WARN_ON_ONCE(idx
== -1))
1060 if (flags
& PERF_EF_RELOAD
) {
1061 WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_UPTODATE
));
1062 x86_perf_event_set_period(event
);
1065 event
->hw
.state
= 0;
1067 cpuc
->events
[idx
] = event
;
1068 __set_bit(idx
, cpuc
->active_mask
);
1069 __set_bit(idx
, cpuc
->running
);
1070 x86_pmu
.enable(event
);
1071 perf_event_update_userpage(event
);
1074 void perf_event_print_debug(void)
1076 u64 ctrl
, status
, overflow
, pmc_ctrl
, pmc_count
, prev_left
, fixed
;
1078 struct cpu_hw_events
*cpuc
;
1079 unsigned long flags
;
1082 if (!x86_pmu
.num_counters
)
1085 local_irq_save(flags
);
1087 cpu
= smp_processor_id();
1088 cpuc
= &per_cpu(cpu_hw_events
, cpu
);
1090 if (x86_pmu
.version
>= 2) {
1091 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, ctrl
);
1092 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS
, status
);
1093 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL
, overflow
);
1094 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL
, fixed
);
1095 rdmsrl(MSR_IA32_PEBS_ENABLE
, pebs
);
1098 pr_info("CPU#%d: ctrl: %016llx\n", cpu
, ctrl
);
1099 pr_info("CPU#%d: status: %016llx\n", cpu
, status
);
1100 pr_info("CPU#%d: overflow: %016llx\n", cpu
, overflow
);
1101 pr_info("CPU#%d: fixed: %016llx\n", cpu
, fixed
);
1102 pr_info("CPU#%d: pebs: %016llx\n", cpu
, pebs
);
1104 pr_info("CPU#%d: active: %016llx\n", cpu
, *(u64
*)cpuc
->active_mask
);
1106 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
1107 rdmsrl(x86_pmu_config_addr(idx
), pmc_ctrl
);
1108 rdmsrl(x86_pmu_event_addr(idx
), pmc_count
);
1110 prev_left
= per_cpu(pmc_prev_left
[idx
], cpu
);
1112 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1113 cpu
, idx
, pmc_ctrl
);
1114 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1115 cpu
, idx
, pmc_count
);
1116 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1117 cpu
, idx
, prev_left
);
1119 for (idx
= 0; idx
< x86_pmu
.num_counters_fixed
; idx
++) {
1120 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0
+ idx
, pmc_count
);
1122 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1123 cpu
, idx
, pmc_count
);
1125 local_irq_restore(flags
);
1128 void x86_pmu_stop(struct perf_event
*event
, int flags
)
1130 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1131 struct hw_perf_event
*hwc
= &event
->hw
;
1133 if (__test_and_clear_bit(hwc
->idx
, cpuc
->active_mask
)) {
1134 x86_pmu
.disable(event
);
1135 cpuc
->events
[hwc
->idx
] = NULL
;
1136 WARN_ON_ONCE(hwc
->state
& PERF_HES_STOPPED
);
1137 hwc
->state
|= PERF_HES_STOPPED
;
1140 if ((flags
& PERF_EF_UPDATE
) && !(hwc
->state
& PERF_HES_UPTODATE
)) {
1142 * Drain the remaining delta count out of a event
1143 * that we are disabling:
1145 x86_perf_event_update(event
);
1146 hwc
->state
|= PERF_HES_UPTODATE
;
1150 static void x86_pmu_del(struct perf_event
*event
, int flags
)
1152 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1156 * If we're called during a txn, we don't need to do anything.
1157 * The events never got scheduled and ->cancel_txn will truncate
1160 if (cpuc
->group_flag
& PERF_EVENT_TXN
)
1163 x86_pmu_stop(event
, PERF_EF_UPDATE
);
1165 for (i
= 0; i
< cpuc
->n_events
; i
++) {
1166 if (event
== cpuc
->event_list
[i
]) {
1168 if (i
>= cpuc
->n_events
- cpuc
->n_added
)
1171 if (x86_pmu
.put_event_constraints
)
1172 x86_pmu
.put_event_constraints(cpuc
, event
);
1174 while (++i
< cpuc
->n_events
)
1175 cpuc
->event_list
[i
-1] = cpuc
->event_list
[i
];
1181 perf_event_update_userpage(event
);
1184 int x86_pmu_handle_irq(struct pt_regs
*regs
)
1186 struct perf_sample_data data
;
1187 struct cpu_hw_events
*cpuc
;
1188 struct perf_event
*event
;
1189 int idx
, handled
= 0;
1192 cpuc
= &__get_cpu_var(cpu_hw_events
);
1195 * Some chipsets need to unmask the LVTPC in a particular spot
1196 * inside the nmi handler. As a result, the unmasking was pushed
1197 * into all the nmi handlers.
1199 * This generic handler doesn't seem to have any issues where the
1200 * unmasking occurs so it was left at the top.
1202 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
1204 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
1205 if (!test_bit(idx
, cpuc
->active_mask
)) {
1207 * Though we deactivated the counter some cpus
1208 * might still deliver spurious interrupts still
1209 * in flight. Catch them:
1211 if (__test_and_clear_bit(idx
, cpuc
->running
))
1216 event
= cpuc
->events
[idx
];
1218 val
= x86_perf_event_update(event
);
1219 if (val
& (1ULL << (x86_pmu
.cntval_bits
- 1)))
1226 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
1228 if (!x86_perf_event_set_period(event
))
1231 if (perf_event_overflow(event
, &data
, regs
))
1232 x86_pmu_stop(event
, 0);
1236 inc_irq_stat(apic_perf_irqs
);
1241 void perf_events_lapic_init(void)
1243 if (!x86_pmu
.apic
|| !x86_pmu_initialized())
1247 * Always use NMI for PMU
1249 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
1252 static int __kprobes
1253 perf_event_nmi_handler(unsigned int cmd
, struct pt_regs
*regs
)
1259 if (!atomic_read(&active_events
))
1262 start_clock
= local_clock();
1263 ret
= x86_pmu
.handle_irq(regs
);
1264 finish_clock
= local_clock();
1266 perf_sample_event_took(finish_clock
- start_clock
);
1271 struct event_constraint emptyconstraint
;
1272 struct event_constraint unconstrained
;
1274 static int __cpuinit
1275 x86_pmu_notifier(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
1277 unsigned int cpu
= (long)hcpu
;
1278 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
1279 int ret
= NOTIFY_OK
;
1281 switch (action
& ~CPU_TASKS_FROZEN
) {
1282 case CPU_UP_PREPARE
:
1283 cpuc
->kfree_on_online
= NULL
;
1284 if (x86_pmu
.cpu_prepare
)
1285 ret
= x86_pmu
.cpu_prepare(cpu
);
1289 if (x86_pmu
.attr_rdpmc
)
1290 set_in_cr4(X86_CR4_PCE
);
1291 if (x86_pmu
.cpu_starting
)
1292 x86_pmu
.cpu_starting(cpu
);
1296 kfree(cpuc
->kfree_on_online
);
1300 if (x86_pmu
.cpu_dying
)
1301 x86_pmu
.cpu_dying(cpu
);
1304 case CPU_UP_CANCELED
:
1306 if (x86_pmu
.cpu_dead
)
1307 x86_pmu
.cpu_dead(cpu
);
1317 static void __init
pmu_check_apic(void)
1323 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1324 pr_info("no hardware sampling interrupt available.\n");
1327 static struct attribute_group x86_pmu_format_group
= {
1333 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1334 * out of events_attr attributes.
1336 static void __init
filter_events(struct attribute
**attrs
)
1338 struct device_attribute
*d
;
1339 struct perf_pmu_events_attr
*pmu_attr
;
1342 for (i
= 0; attrs
[i
]; i
++) {
1343 d
= (struct device_attribute
*)attrs
[i
];
1344 pmu_attr
= container_of(d
, struct perf_pmu_events_attr
, attr
);
1346 if (pmu_attr
->event_str
)
1348 if (x86_pmu
.event_map(i
))
1351 for (j
= i
; attrs
[j
]; j
++)
1352 attrs
[j
] = attrs
[j
+ 1];
1354 /* Check the shifted attr. */
1359 /* Merge two pointer arrays */
1360 static __init
struct attribute
**merge_attr(struct attribute
**a
, struct attribute
**b
)
1362 struct attribute
**new;
1365 for (j
= 0; a
[j
]; j
++)
1367 for (i
= 0; b
[i
]; i
++)
1371 new = kmalloc(sizeof(struct attribute
*) * j
, GFP_KERNEL
);
1376 for (i
= 0; a
[i
]; i
++)
1378 for (i
= 0; b
[i
]; i
++)
1385 ssize_t
events_sysfs_show(struct device
*dev
, struct device_attribute
*attr
,
1388 struct perf_pmu_events_attr
*pmu_attr
= \
1389 container_of(attr
, struct perf_pmu_events_attr
, attr
);
1390 u64 config
= x86_pmu
.event_map(pmu_attr
->id
);
1392 /* string trumps id */
1393 if (pmu_attr
->event_str
)
1394 return sprintf(page
, "%s", pmu_attr
->event_str
);
1396 return x86_pmu
.events_sysfs_show(page
, config
);
1399 EVENT_ATTR(cpu
-cycles
, CPU_CYCLES
);
1400 EVENT_ATTR(instructions
, INSTRUCTIONS
);
1401 EVENT_ATTR(cache
-references
, CACHE_REFERENCES
);
1402 EVENT_ATTR(cache
-misses
, CACHE_MISSES
);
1403 EVENT_ATTR(branch
-instructions
, BRANCH_INSTRUCTIONS
);
1404 EVENT_ATTR(branch
-misses
, BRANCH_MISSES
);
1405 EVENT_ATTR(bus
-cycles
, BUS_CYCLES
);
1406 EVENT_ATTR(stalled
-cycles
-frontend
, STALLED_CYCLES_FRONTEND
);
1407 EVENT_ATTR(stalled
-cycles
-backend
, STALLED_CYCLES_BACKEND
);
1408 EVENT_ATTR(ref
-cycles
, REF_CPU_CYCLES
);
1410 static struct attribute
*empty_attrs
;
1412 static struct attribute
*events_attr
[] = {
1413 EVENT_PTR(CPU_CYCLES
),
1414 EVENT_PTR(INSTRUCTIONS
),
1415 EVENT_PTR(CACHE_REFERENCES
),
1416 EVENT_PTR(CACHE_MISSES
),
1417 EVENT_PTR(BRANCH_INSTRUCTIONS
),
1418 EVENT_PTR(BRANCH_MISSES
),
1419 EVENT_PTR(BUS_CYCLES
),
1420 EVENT_PTR(STALLED_CYCLES_FRONTEND
),
1421 EVENT_PTR(STALLED_CYCLES_BACKEND
),
1422 EVENT_PTR(REF_CPU_CYCLES
),
1426 static struct attribute_group x86_pmu_events_group
= {
1428 .attrs
= events_attr
,
1431 ssize_t
x86_event_sysfs_show(char *page
, u64 config
, u64 event
)
1433 u64 umask
= (config
& ARCH_PERFMON_EVENTSEL_UMASK
) >> 8;
1434 u64 cmask
= (config
& ARCH_PERFMON_EVENTSEL_CMASK
) >> 24;
1435 bool edge
= (config
& ARCH_PERFMON_EVENTSEL_EDGE
);
1436 bool pc
= (config
& ARCH_PERFMON_EVENTSEL_PIN_CONTROL
);
1437 bool any
= (config
& ARCH_PERFMON_EVENTSEL_ANY
);
1438 bool inv
= (config
& ARCH_PERFMON_EVENTSEL_INV
);
1442 * We have whole page size to spend and just little data
1443 * to write, so we can safely use sprintf.
1445 ret
= sprintf(page
, "event=0x%02llx", event
);
1448 ret
+= sprintf(page
+ ret
, ",umask=0x%02llx", umask
);
1451 ret
+= sprintf(page
+ ret
, ",edge");
1454 ret
+= sprintf(page
+ ret
, ",pc");
1457 ret
+= sprintf(page
+ ret
, ",any");
1460 ret
+= sprintf(page
+ ret
, ",inv");
1463 ret
+= sprintf(page
+ ret
, ",cmask=0x%02llx", cmask
);
1465 ret
+= sprintf(page
+ ret
, "\n");
1470 static int __init
init_hw_perf_events(void)
1472 struct x86_pmu_quirk
*quirk
;
1475 pr_info("Performance Events: ");
1477 switch (boot_cpu_data
.x86_vendor
) {
1478 case X86_VENDOR_INTEL
:
1479 err
= intel_pmu_init();
1481 case X86_VENDOR_AMD
:
1482 err
= amd_pmu_init();
1488 pr_cont("no PMU driver, software events only.\n");
1494 /* sanity check that the hardware exists or is emulated */
1495 if (!check_hw_exists())
1498 pr_cont("%s PMU driver.\n", x86_pmu
.name
);
1500 for (quirk
= x86_pmu
.quirks
; quirk
; quirk
= quirk
->next
)
1503 if (!x86_pmu
.intel_ctrl
)
1504 x86_pmu
.intel_ctrl
= (1 << x86_pmu
.num_counters
) - 1;
1506 perf_events_lapic_init();
1507 register_nmi_handler(NMI_LOCAL
, perf_event_nmi_handler
, 0, "PMI");
1509 unconstrained
= (struct event_constraint
)
1510 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu
.num_counters
) - 1,
1511 0, x86_pmu
.num_counters
, 0, 0);
1513 x86_pmu
.attr_rdpmc
= 1; /* enable userspace RDPMC usage by default */
1514 x86_pmu_format_group
.attrs
= x86_pmu
.format_attrs
;
1516 if (x86_pmu
.event_attrs
)
1517 x86_pmu_events_group
.attrs
= x86_pmu
.event_attrs
;
1519 if (!x86_pmu
.events_sysfs_show
)
1520 x86_pmu_events_group
.attrs
= &empty_attrs
;
1522 filter_events(x86_pmu_events_group
.attrs
);
1524 if (x86_pmu
.cpu_events
) {
1525 struct attribute
**tmp
;
1527 tmp
= merge_attr(x86_pmu_events_group
.attrs
, x86_pmu
.cpu_events
);
1529 x86_pmu_events_group
.attrs
= tmp
;
1532 pr_info("... version: %d\n", x86_pmu
.version
);
1533 pr_info("... bit width: %d\n", x86_pmu
.cntval_bits
);
1534 pr_info("... generic registers: %d\n", x86_pmu
.num_counters
);
1535 pr_info("... value mask: %016Lx\n", x86_pmu
.cntval_mask
);
1536 pr_info("... max period: %016Lx\n", x86_pmu
.max_period
);
1537 pr_info("... fixed-purpose events: %d\n", x86_pmu
.num_counters_fixed
);
1538 pr_info("... event mask: %016Lx\n", x86_pmu
.intel_ctrl
);
1540 perf_pmu_register(&pmu
, "cpu", PERF_TYPE_RAW
);
1541 perf_cpu_notifier(x86_pmu_notifier
);
1545 early_initcall(init_hw_perf_events
);
1547 static inline void x86_pmu_read(struct perf_event
*event
)
1549 x86_perf_event_update(event
);
1553 * Start group events scheduling transaction
1554 * Set the flag to make pmu::enable() not perform the
1555 * schedulability test, it will be performed at commit time
1557 static void x86_pmu_start_txn(struct pmu
*pmu
)
1559 perf_pmu_disable(pmu
);
1560 __this_cpu_or(cpu_hw_events
.group_flag
, PERF_EVENT_TXN
);
1561 __this_cpu_write(cpu_hw_events
.n_txn
, 0);
1565 * Stop group events scheduling transaction
1566 * Clear the flag and pmu::enable() will perform the
1567 * schedulability test.
1569 static void x86_pmu_cancel_txn(struct pmu
*pmu
)
1571 __this_cpu_and(cpu_hw_events
.group_flag
, ~PERF_EVENT_TXN
);
1573 * Truncate the collected events.
1575 __this_cpu_sub(cpu_hw_events
.n_added
, __this_cpu_read(cpu_hw_events
.n_txn
));
1576 __this_cpu_sub(cpu_hw_events
.n_events
, __this_cpu_read(cpu_hw_events
.n_txn
));
1577 perf_pmu_enable(pmu
);
1581 * Commit group events scheduling transaction
1582 * Perform the group schedulability test as a whole
1583 * Return 0 if success
1585 static int x86_pmu_commit_txn(struct pmu
*pmu
)
1587 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1588 int assign
[X86_PMC_IDX_MAX
];
1593 if (!x86_pmu_initialized())
1596 ret
= x86_pmu
.schedule_events(cpuc
, n
, assign
);
1601 * copy new assignment, now we know it is possible
1602 * will be used by hw_perf_enable()
1604 memcpy(cpuc
->assign
, assign
, n
*sizeof(int));
1606 cpuc
->group_flag
&= ~PERF_EVENT_TXN
;
1607 perf_pmu_enable(pmu
);
1611 * a fake_cpuc is used to validate event groups. Due to
1612 * the extra reg logic, we need to also allocate a fake
1613 * per_core and per_cpu structure. Otherwise, group events
1614 * using extra reg may conflict without the kernel being
1615 * able to catch this when the last event gets added to
1618 static void free_fake_cpuc(struct cpu_hw_events
*cpuc
)
1620 kfree(cpuc
->shared_regs
);
1624 static struct cpu_hw_events
*allocate_fake_cpuc(void)
1626 struct cpu_hw_events
*cpuc
;
1627 int cpu
= raw_smp_processor_id();
1629 cpuc
= kzalloc(sizeof(*cpuc
), GFP_KERNEL
);
1631 return ERR_PTR(-ENOMEM
);
1633 /* only needed, if we have extra_regs */
1634 if (x86_pmu
.extra_regs
) {
1635 cpuc
->shared_regs
= allocate_shared_regs(cpu
);
1636 if (!cpuc
->shared_regs
)
1642 free_fake_cpuc(cpuc
);
1643 return ERR_PTR(-ENOMEM
);
1647 * validate that we can schedule this event
1649 static int validate_event(struct perf_event
*event
)
1651 struct cpu_hw_events
*fake_cpuc
;
1652 struct event_constraint
*c
;
1655 fake_cpuc
= allocate_fake_cpuc();
1656 if (IS_ERR(fake_cpuc
))
1657 return PTR_ERR(fake_cpuc
);
1659 c
= x86_pmu
.get_event_constraints(fake_cpuc
, event
);
1661 if (!c
|| !c
->weight
)
1664 if (x86_pmu
.put_event_constraints
)
1665 x86_pmu
.put_event_constraints(fake_cpuc
, event
);
1667 free_fake_cpuc(fake_cpuc
);
1673 * validate a single event group
1675 * validation include:
1676 * - check events are compatible which each other
1677 * - events do not compete for the same counter
1678 * - number of events <= number of counters
1680 * validation ensures the group can be loaded onto the
1681 * PMU if it was the only group available.
1683 static int validate_group(struct perf_event
*event
)
1685 struct perf_event
*leader
= event
->group_leader
;
1686 struct cpu_hw_events
*fake_cpuc
;
1687 int ret
= -EINVAL
, n
;
1689 fake_cpuc
= allocate_fake_cpuc();
1690 if (IS_ERR(fake_cpuc
))
1691 return PTR_ERR(fake_cpuc
);
1693 * the event is not yet connected with its
1694 * siblings therefore we must first collect
1695 * existing siblings, then add the new event
1696 * before we can simulate the scheduling
1698 n
= collect_events(fake_cpuc
, leader
, true);
1702 fake_cpuc
->n_events
= n
;
1703 n
= collect_events(fake_cpuc
, event
, false);
1707 fake_cpuc
->n_events
= n
;
1709 ret
= x86_pmu
.schedule_events(fake_cpuc
, n
, NULL
);
1712 free_fake_cpuc(fake_cpuc
);
1716 static int x86_pmu_event_init(struct perf_event
*event
)
1721 switch (event
->attr
.type
) {
1723 case PERF_TYPE_HARDWARE
:
1724 case PERF_TYPE_HW_CACHE
:
1731 err
= __x86_pmu_event_init(event
);
1734 * we temporarily connect event to its pmu
1735 * such that validate_group() can classify
1736 * it as an x86 event using is_x86_event()
1741 if (event
->group_leader
!= event
)
1742 err
= validate_group(event
);
1744 err
= validate_event(event
);
1750 event
->destroy(event
);
1756 static int x86_pmu_event_idx(struct perf_event
*event
)
1758 int idx
= event
->hw
.idx
;
1760 if (!x86_pmu
.attr_rdpmc
)
1763 if (x86_pmu
.num_counters_fixed
&& idx
>= INTEL_PMC_IDX_FIXED
) {
1764 idx
-= INTEL_PMC_IDX_FIXED
;
1771 static ssize_t
get_attr_rdpmc(struct device
*cdev
,
1772 struct device_attribute
*attr
,
1775 return snprintf(buf
, 40, "%d\n", x86_pmu
.attr_rdpmc
);
1778 static void change_rdpmc(void *info
)
1780 bool enable
= !!(unsigned long)info
;
1783 set_in_cr4(X86_CR4_PCE
);
1785 clear_in_cr4(X86_CR4_PCE
);
1788 static ssize_t
set_attr_rdpmc(struct device
*cdev
,
1789 struct device_attribute
*attr
,
1790 const char *buf
, size_t count
)
1795 ret
= kstrtoul(buf
, 0, &val
);
1799 if (!!val
!= !!x86_pmu
.attr_rdpmc
) {
1800 x86_pmu
.attr_rdpmc
= !!val
;
1801 smp_call_function(change_rdpmc
, (void *)val
, 1);
1807 static DEVICE_ATTR(rdpmc
, S_IRUSR
| S_IWUSR
, get_attr_rdpmc
, set_attr_rdpmc
);
1809 static struct attribute
*x86_pmu_attrs
[] = {
1810 &dev_attr_rdpmc
.attr
,
1814 static struct attribute_group x86_pmu_attr_group
= {
1815 .attrs
= x86_pmu_attrs
,
1818 static const struct attribute_group
*x86_pmu_attr_groups
[] = {
1819 &x86_pmu_attr_group
,
1820 &x86_pmu_format_group
,
1821 &x86_pmu_events_group
,
1825 static void x86_pmu_flush_branch_stack(void)
1827 if (x86_pmu
.flush_branch_stack
)
1828 x86_pmu
.flush_branch_stack();
1831 void perf_check_microcode(void)
1833 if (x86_pmu
.check_microcode
)
1834 x86_pmu
.check_microcode();
1836 EXPORT_SYMBOL_GPL(perf_check_microcode
);
1838 static struct pmu pmu
= {
1839 .pmu_enable
= x86_pmu_enable
,
1840 .pmu_disable
= x86_pmu_disable
,
1842 .attr_groups
= x86_pmu_attr_groups
,
1844 .event_init
= x86_pmu_event_init
,
1848 .start
= x86_pmu_start
,
1849 .stop
= x86_pmu_stop
,
1850 .read
= x86_pmu_read
,
1852 .start_txn
= x86_pmu_start_txn
,
1853 .cancel_txn
= x86_pmu_cancel_txn
,
1854 .commit_txn
= x86_pmu_commit_txn
,
1856 .event_idx
= x86_pmu_event_idx
,
1857 .flush_branch_stack
= x86_pmu_flush_branch_stack
,
1860 void arch_perf_update_userpage(struct perf_event_mmap_page
*userpg
, u64 now
)
1862 userpg
->cap_usr_time
= 0;
1863 userpg
->cap_usr_rdpmc
= x86_pmu
.attr_rdpmc
;
1864 userpg
->pmc_width
= x86_pmu
.cntval_bits
;
1866 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
1869 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC
))
1872 userpg
->cap_usr_time
= 1;
1873 userpg
->time_mult
= this_cpu_read(cyc2ns
);
1874 userpg
->time_shift
= CYC2NS_SCALE_FACTOR
;
1875 userpg
->time_offset
= this_cpu_read(cyc2ns_offset
) - now
;
1882 static int backtrace_stack(void *data
, char *name
)
1887 static void backtrace_address(void *data
, unsigned long addr
, int reliable
)
1889 struct perf_callchain_entry
*entry
= data
;
1891 perf_callchain_store(entry
, addr
);
1894 static const struct stacktrace_ops backtrace_ops
= {
1895 .stack
= backtrace_stack
,
1896 .address
= backtrace_address
,
1897 .walk_stack
= print_context_stack_bp
,
1901 perf_callchain_kernel(struct perf_callchain_entry
*entry
, struct pt_regs
*regs
)
1903 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
1904 /* TODO: We don't support guest os callchain now */
1908 perf_callchain_store(entry
, regs
->ip
);
1910 dump_trace(NULL
, regs
, NULL
, 0, &backtrace_ops
, entry
);
1914 valid_user_frame(const void __user
*fp
, unsigned long size
)
1916 return (__range_not_ok(fp
, size
, TASK_SIZE
) == 0);
1919 static unsigned long get_segment_base(unsigned int segment
)
1921 struct desc_struct
*desc
;
1922 int idx
= segment
>> 3;
1924 if ((segment
& SEGMENT_TI_MASK
) == SEGMENT_LDT
) {
1925 if (idx
> LDT_ENTRIES
)
1928 if (idx
> current
->active_mm
->context
.size
)
1931 desc
= current
->active_mm
->context
.ldt
;
1933 if (idx
> GDT_ENTRIES
)
1936 desc
= __this_cpu_ptr(&gdt_page
.gdt
[0]);
1939 return get_desc_base(desc
+ idx
);
1942 #ifdef CONFIG_COMPAT
1944 #include <asm/compat.h>
1947 perf_callchain_user32(struct pt_regs
*regs
, struct perf_callchain_entry
*entry
)
1949 /* 32-bit process in 64-bit kernel. */
1950 unsigned long ss_base
, cs_base
;
1951 struct stack_frame_ia32 frame
;
1952 const void __user
*fp
;
1954 if (!test_thread_flag(TIF_IA32
))
1957 cs_base
= get_segment_base(regs
->cs
);
1958 ss_base
= get_segment_base(regs
->ss
);
1960 fp
= compat_ptr(ss_base
+ regs
->bp
);
1961 while (entry
->nr
< PERF_MAX_STACK_DEPTH
) {
1962 unsigned long bytes
;
1963 frame
.next_frame
= 0;
1964 frame
.return_address
= 0;
1966 bytes
= copy_from_user_nmi(&frame
, fp
, sizeof(frame
));
1967 if (bytes
!= sizeof(frame
))
1970 if (!valid_user_frame(fp
, sizeof(frame
)))
1973 perf_callchain_store(entry
, cs_base
+ frame
.return_address
);
1974 fp
= compat_ptr(ss_base
+ frame
.next_frame
);
1980 perf_callchain_user32(struct pt_regs
*regs
, struct perf_callchain_entry
*entry
)
1987 perf_callchain_user(struct perf_callchain_entry
*entry
, struct pt_regs
*regs
)
1989 struct stack_frame frame
;
1990 const void __user
*fp
;
1992 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
1993 /* TODO: We don't support guest os callchain now */
1998 * We don't know what to do with VM86 stacks.. ignore them for now.
2000 if (regs
->flags
& (X86_VM_MASK
| PERF_EFLAGS_VM
))
2003 fp
= (void __user
*)regs
->bp
;
2005 perf_callchain_store(entry
, regs
->ip
);
2010 if (perf_callchain_user32(regs
, entry
))
2013 while (entry
->nr
< PERF_MAX_STACK_DEPTH
) {
2014 unsigned long bytes
;
2015 frame
.next_frame
= NULL
;
2016 frame
.return_address
= 0;
2018 bytes
= copy_from_user_nmi(&frame
, fp
, sizeof(frame
));
2019 if (bytes
!= sizeof(frame
))
2022 if (!valid_user_frame(fp
, sizeof(frame
)))
2025 perf_callchain_store(entry
, frame
.return_address
);
2026 fp
= frame
.next_frame
;
2031 * Deal with code segment offsets for the various execution modes:
2033 * VM86 - the good olde 16 bit days, where the linear address is
2034 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2036 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2037 * to figure out what the 32bit base address is.
2039 * X32 - has TIF_X32 set, but is running in x86_64
2041 * X86_64 - CS,DS,SS,ES are all zero based.
2043 static unsigned long code_segment_base(struct pt_regs
*regs
)
2046 * If we are in VM86 mode, add the segment offset to convert to a
2049 if (regs
->flags
& X86_VM_MASK
)
2050 return 0x10 * regs
->cs
;
2053 * For IA32 we look at the GDT/LDT segment base to convert the
2054 * effective IP to a linear address.
2056 #ifdef CONFIG_X86_32
2057 if (user_mode(regs
) && regs
->cs
!= __USER_CS
)
2058 return get_segment_base(regs
->cs
);
2060 if (test_thread_flag(TIF_IA32
)) {
2061 if (user_mode(regs
) && regs
->cs
!= __USER32_CS
)
2062 return get_segment_base(regs
->cs
);
2068 unsigned long perf_instruction_pointer(struct pt_regs
*regs
)
2070 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest())
2071 return perf_guest_cbs
->get_guest_ip();
2073 return regs
->ip
+ code_segment_base(regs
);
2076 unsigned long perf_misc_flags(struct pt_regs
*regs
)
2080 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
2081 if (perf_guest_cbs
->is_user_mode())
2082 misc
|= PERF_RECORD_MISC_GUEST_USER
;
2084 misc
|= PERF_RECORD_MISC_GUEST_KERNEL
;
2086 if (user_mode(regs
))
2087 misc
|= PERF_RECORD_MISC_USER
;
2089 misc
|= PERF_RECORD_MISC_KERNEL
;
2092 if (regs
->flags
& PERF_EFLAGS_EXACT
)
2093 misc
|= PERF_RECORD_MISC_EXACT_IP
;
2098 void perf_get_x86_pmu_capability(struct x86_pmu_capability
*cap
)
2100 cap
->version
= x86_pmu
.version
;
2101 cap
->num_counters_gp
= x86_pmu
.num_counters
;
2102 cap
->num_counters_fixed
= x86_pmu
.num_counters_fixed
;
2103 cap
->bit_width_gp
= x86_pmu
.cntval_bits
;
2104 cap
->bit_width_fixed
= x86_pmu
.cntval_bits
;
2105 cap
->events_mask
= (unsigned int)x86_pmu
.events_maskl
;
2106 cap
->events_mask_len
= x86_pmu
.events_mask_len
;
2108 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability
);