drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/timer.h>
35 #include <asm/desc.h>
36 #include <asm/ldt.h>
37
38 #include "perf_event.h"
39
40 struct x86_pmu x86_pmu __read_mostly;
41
42 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
43 .enabled = 1,
44 };
45
46 u64 __read_mostly hw_cache_event_ids
47 [PERF_COUNT_HW_CACHE_MAX]
48 [PERF_COUNT_HW_CACHE_OP_MAX]
49 [PERF_COUNT_HW_CACHE_RESULT_MAX];
50 u64 __read_mostly hw_cache_extra_regs
51 [PERF_COUNT_HW_CACHE_MAX]
52 [PERF_COUNT_HW_CACHE_OP_MAX]
53 [PERF_COUNT_HW_CACHE_RESULT_MAX];
54
55 /*
56 * Propagate event elapsed time into the generic event.
57 * Can only be executed on the CPU where the event is active.
58 * Returns the delta events processed.
59 */
60 u64 x86_perf_event_update(struct perf_event *event)
61 {
62 struct hw_perf_event *hwc = &event->hw;
63 int shift = 64 - x86_pmu.cntval_bits;
64 u64 prev_raw_count, new_raw_count;
65 int idx = hwc->idx;
66 s64 delta;
67
68 if (idx == INTEL_PMC_IDX_FIXED_BTS)
69 return 0;
70
71 /*
72 * Careful: an NMI might modify the previous event value.
73 *
74 * Our tactic to handle this is to first atomically read and
75 * exchange a new raw count - then add that new-prev delta
76 * count to the generic event atomically:
77 */
78 again:
79 prev_raw_count = local64_read(&hwc->prev_count);
80 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
81
82 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
83 new_raw_count) != prev_raw_count)
84 goto again;
85
86 /*
87 * Now we have the new raw value and have updated the prev
88 * timestamp already. We can now calculate the elapsed delta
89 * (event-)time and add that to the generic event.
90 *
91 * Careful, not all hw sign-extends above the physical width
92 * of the count.
93 */
94 delta = (new_raw_count << shift) - (prev_raw_count << shift);
95 delta >>= shift;
96
97 local64_add(delta, &event->count);
98 local64_sub(delta, &hwc->period_left);
99
100 return new_raw_count;
101 }
102
103 /*
104 * Find and validate any extra registers to set up.
105 */
106 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
107 {
108 struct hw_perf_event_extra *reg;
109 struct extra_reg *er;
110
111 reg = &event->hw.extra_reg;
112
113 if (!x86_pmu.extra_regs)
114 return 0;
115
116 for (er = x86_pmu.extra_regs; er->msr; er++) {
117 if (er->event != (config & er->config_mask))
118 continue;
119 if (event->attr.config1 & ~er->valid_mask)
120 return -EINVAL;
121
122 reg->idx = er->idx;
123 reg->config = event->attr.config1;
124 reg->reg = er->msr;
125 break;
126 }
127 return 0;
128 }
129
130 static atomic_t active_events;
131 static DEFINE_MUTEX(pmc_reserve_mutex);
132
133 #ifdef CONFIG_X86_LOCAL_APIC
134
135 static bool reserve_pmc_hardware(void)
136 {
137 int i;
138
139 for (i = 0; i < x86_pmu.num_counters; i++) {
140 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
141 goto perfctr_fail;
142 }
143
144 for (i = 0; i < x86_pmu.num_counters; i++) {
145 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
146 goto eventsel_fail;
147 }
148
149 return true;
150
151 eventsel_fail:
152 for (i--; i >= 0; i--)
153 release_evntsel_nmi(x86_pmu_config_addr(i));
154
155 i = x86_pmu.num_counters;
156
157 perfctr_fail:
158 for (i--; i >= 0; i--)
159 release_perfctr_nmi(x86_pmu_event_addr(i));
160
161 return false;
162 }
163
164 static void release_pmc_hardware(void)
165 {
166 int i;
167
168 for (i = 0; i < x86_pmu.num_counters; i++) {
169 release_perfctr_nmi(x86_pmu_event_addr(i));
170 release_evntsel_nmi(x86_pmu_config_addr(i));
171 }
172 }
173
174 #else
175
176 static bool reserve_pmc_hardware(void) { return true; }
177 static void release_pmc_hardware(void) {}
178
179 #endif
180
181 static bool check_hw_exists(void)
182 {
183 u64 val, val_fail, val_new= ~0;
184 int i, reg, reg_fail, ret = 0;
185 int bios_fail = 0;
186
187 /*
188 * Check to see if the BIOS enabled any of the counters, if so
189 * complain and bail.
190 */
191 for (i = 0; i < x86_pmu.num_counters; i++) {
192 reg = x86_pmu_config_addr(i);
193 ret = rdmsrl_safe(reg, &val);
194 if (ret)
195 goto msr_fail;
196 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
197 bios_fail = 1;
198 val_fail = val;
199 reg_fail = reg;
200 }
201 }
202
203 if (x86_pmu.num_counters_fixed) {
204 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
205 ret = rdmsrl_safe(reg, &val);
206 if (ret)
207 goto msr_fail;
208 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
209 if (val & (0x03 << i*4)) {
210 bios_fail = 1;
211 val_fail = val;
212 reg_fail = reg;
213 }
214 }
215 }
216
217 /*
218 * Read the current value, change it and read it back to see if it
219 * matches, this is needed to detect certain hardware emulators
220 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
221 */
222 reg = x86_pmu_event_addr(0);
223 if (rdmsrl_safe(reg, &val))
224 goto msr_fail;
225 val ^= 0xffffUL;
226 ret = wrmsrl_safe(reg, val);
227 ret |= rdmsrl_safe(reg, &val_new);
228 if (ret || val != val_new)
229 goto msr_fail;
230
231 /*
232 * We still allow the PMU driver to operate:
233 */
234 if (bios_fail) {
235 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
236 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
237 }
238
239 return true;
240
241 msr_fail:
242 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
243 printk(KERN_ERR "Failed to access perfctr msr (MSR %x is %Lx)\n", reg, val_new);
244
245 return false;
246 }
247
248 static void hw_perf_event_destroy(struct perf_event *event)
249 {
250 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
251 release_pmc_hardware();
252 release_ds_buffers();
253 mutex_unlock(&pmc_reserve_mutex);
254 }
255 }
256
257 static inline int x86_pmu_initialized(void)
258 {
259 return x86_pmu.handle_irq != NULL;
260 }
261
262 static inline int
263 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
264 {
265 struct perf_event_attr *attr = &event->attr;
266 unsigned int cache_type, cache_op, cache_result;
267 u64 config, val;
268
269 config = attr->config;
270
271 cache_type = (config >> 0) & 0xff;
272 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
273 return -EINVAL;
274
275 cache_op = (config >> 8) & 0xff;
276 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
277 return -EINVAL;
278
279 cache_result = (config >> 16) & 0xff;
280 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
281 return -EINVAL;
282
283 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
284
285 if (val == 0)
286 return -ENOENT;
287
288 if (val == -1)
289 return -EINVAL;
290
291 hwc->config |= val;
292 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
293 return x86_pmu_extra_regs(val, event);
294 }
295
296 int x86_setup_perfctr(struct perf_event *event)
297 {
298 struct perf_event_attr *attr = &event->attr;
299 struct hw_perf_event *hwc = &event->hw;
300 u64 config;
301
302 if (!is_sampling_event(event)) {
303 hwc->sample_period = x86_pmu.max_period;
304 hwc->last_period = hwc->sample_period;
305 local64_set(&hwc->period_left, hwc->sample_period);
306 } else {
307 /*
308 * If we have a PMU initialized but no APIC
309 * interrupts, we cannot sample hardware
310 * events (user-space has to fall back and
311 * sample via a hrtimer based software event):
312 */
313 if (!x86_pmu.apic)
314 return -EOPNOTSUPP;
315 }
316
317 if (attr->type == PERF_TYPE_RAW)
318 return x86_pmu_extra_regs(event->attr.config, event);
319
320 if (attr->type == PERF_TYPE_HW_CACHE)
321 return set_ext_hw_attr(hwc, event);
322
323 if (attr->config >= x86_pmu.max_events)
324 return -EINVAL;
325
326 /*
327 * The generic map:
328 */
329 config = x86_pmu.event_map(attr->config);
330
331 if (config == 0)
332 return -ENOENT;
333
334 if (config == -1LL)
335 return -EINVAL;
336
337 /*
338 * Branch tracing:
339 */
340 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
341 !attr->freq && hwc->sample_period == 1) {
342 /* BTS is not supported by this architecture. */
343 if (!x86_pmu.bts_active)
344 return -EOPNOTSUPP;
345
346 /* BTS is currently only allowed for user-mode. */
347 if (!attr->exclude_kernel)
348 return -EOPNOTSUPP;
349 }
350
351 hwc->config |= config;
352
353 return 0;
354 }
355
356 /*
357 * check that branch_sample_type is compatible with
358 * settings needed for precise_ip > 1 which implies
359 * using the LBR to capture ALL taken branches at the
360 * priv levels of the measurement
361 */
362 static inline int precise_br_compat(struct perf_event *event)
363 {
364 u64 m = event->attr.branch_sample_type;
365 u64 b = 0;
366
367 /* must capture all branches */
368 if (!(m & PERF_SAMPLE_BRANCH_ANY))
369 return 0;
370
371 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
372
373 if (!event->attr.exclude_user)
374 b |= PERF_SAMPLE_BRANCH_USER;
375
376 if (!event->attr.exclude_kernel)
377 b |= PERF_SAMPLE_BRANCH_KERNEL;
378
379 /*
380 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
381 */
382
383 return m == b;
384 }
385
386 int x86_pmu_hw_config(struct perf_event *event)
387 {
388 if (event->attr.precise_ip) {
389 int precise = 0;
390
391 /* Support for constant skid */
392 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
393 precise++;
394
395 /* Support for IP fixup */
396 if (x86_pmu.lbr_nr)
397 precise++;
398 }
399
400 if (event->attr.precise_ip > precise)
401 return -EOPNOTSUPP;
402 /*
403 * check that PEBS LBR correction does not conflict with
404 * whatever the user is asking with attr->branch_sample_type
405 */
406 if (event->attr.precise_ip > 1) {
407 u64 *br_type = &event->attr.branch_sample_type;
408
409 if (has_branch_stack(event)) {
410 if (!precise_br_compat(event))
411 return -EOPNOTSUPP;
412
413 /* branch_sample_type is compatible */
414
415 } else {
416 /*
417 * user did not specify branch_sample_type
418 *
419 * For PEBS fixups, we capture all
420 * the branches at the priv level of the
421 * event.
422 */
423 *br_type = PERF_SAMPLE_BRANCH_ANY;
424
425 if (!event->attr.exclude_user)
426 *br_type |= PERF_SAMPLE_BRANCH_USER;
427
428 if (!event->attr.exclude_kernel)
429 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
430 }
431 }
432 }
433
434 /*
435 * Generate PMC IRQs:
436 * (keep 'enabled' bit clear for now)
437 */
438 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
439
440 /*
441 * Count user and OS events unless requested not to
442 */
443 if (!event->attr.exclude_user)
444 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
445 if (!event->attr.exclude_kernel)
446 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
447
448 if (event->attr.type == PERF_TYPE_RAW)
449 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
450
451 return x86_setup_perfctr(event);
452 }
453
454 /*
455 * Setup the hardware configuration for a given attr_type
456 */
457 static int __x86_pmu_event_init(struct perf_event *event)
458 {
459 int err;
460
461 if (!x86_pmu_initialized())
462 return -ENODEV;
463
464 err = 0;
465 if (!atomic_inc_not_zero(&active_events)) {
466 mutex_lock(&pmc_reserve_mutex);
467 if (atomic_read(&active_events) == 0) {
468 if (!reserve_pmc_hardware())
469 err = -EBUSY;
470 else
471 reserve_ds_buffers();
472 }
473 if (!err)
474 atomic_inc(&active_events);
475 mutex_unlock(&pmc_reserve_mutex);
476 }
477 if (err)
478 return err;
479
480 event->destroy = hw_perf_event_destroy;
481
482 event->hw.idx = -1;
483 event->hw.last_cpu = -1;
484 event->hw.last_tag = ~0ULL;
485
486 /* mark unused */
487 event->hw.extra_reg.idx = EXTRA_REG_NONE;
488 event->hw.branch_reg.idx = EXTRA_REG_NONE;
489
490 return x86_pmu.hw_config(event);
491 }
492
493 void x86_pmu_disable_all(void)
494 {
495 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
496 int idx;
497
498 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
499 u64 val;
500
501 if (!test_bit(idx, cpuc->active_mask))
502 continue;
503 rdmsrl(x86_pmu_config_addr(idx), val);
504 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
505 continue;
506 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
507 wrmsrl(x86_pmu_config_addr(idx), val);
508 }
509 }
510
511 static void x86_pmu_disable(struct pmu *pmu)
512 {
513 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
514
515 if (!x86_pmu_initialized())
516 return;
517
518 if (!cpuc->enabled)
519 return;
520
521 cpuc->n_added = 0;
522 cpuc->enabled = 0;
523 barrier();
524
525 x86_pmu.disable_all();
526 }
527
528 void x86_pmu_enable_all(int added)
529 {
530 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
531 int idx;
532
533 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
534 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
535
536 if (!test_bit(idx, cpuc->active_mask))
537 continue;
538
539 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
540 }
541 }
542
543 static struct pmu pmu;
544
545 static inline int is_x86_event(struct perf_event *event)
546 {
547 return event->pmu == &pmu;
548 }
549
550 /*
551 * Event scheduler state:
552 *
553 * Assign events iterating over all events and counters, beginning
554 * with events with least weights first. Keep the current iterator
555 * state in struct sched_state.
556 */
557 struct sched_state {
558 int weight;
559 int event; /* event index */
560 int counter; /* counter index */
561 int unassigned; /* number of events to be assigned left */
562 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
563 };
564
565 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
566 #define SCHED_STATES_MAX 2
567
568 struct perf_sched {
569 int max_weight;
570 int max_events;
571 struct event_constraint **constraints;
572 struct sched_state state;
573 int saved_states;
574 struct sched_state saved[SCHED_STATES_MAX];
575 };
576
577 /*
578 * Initialize interator that runs through all events and counters.
579 */
580 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **c,
581 int num, int wmin, int wmax)
582 {
583 int idx;
584
585 memset(sched, 0, sizeof(*sched));
586 sched->max_events = num;
587 sched->max_weight = wmax;
588 sched->constraints = c;
589
590 for (idx = 0; idx < num; idx++) {
591 if (c[idx]->weight == wmin)
592 break;
593 }
594
595 sched->state.event = idx; /* start with min weight */
596 sched->state.weight = wmin;
597 sched->state.unassigned = num;
598 }
599
600 static void perf_sched_save_state(struct perf_sched *sched)
601 {
602 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
603 return;
604
605 sched->saved[sched->saved_states] = sched->state;
606 sched->saved_states++;
607 }
608
609 static bool perf_sched_restore_state(struct perf_sched *sched)
610 {
611 if (!sched->saved_states)
612 return false;
613
614 sched->saved_states--;
615 sched->state = sched->saved[sched->saved_states];
616
617 /* continue with next counter: */
618 clear_bit(sched->state.counter++, sched->state.used);
619
620 return true;
621 }
622
623 /*
624 * Select a counter for the current event to schedule. Return true on
625 * success.
626 */
627 static bool __perf_sched_find_counter(struct perf_sched *sched)
628 {
629 struct event_constraint *c;
630 int idx;
631
632 if (!sched->state.unassigned)
633 return false;
634
635 if (sched->state.event >= sched->max_events)
636 return false;
637
638 c = sched->constraints[sched->state.event];
639
640 /* Prefer fixed purpose counters */
641 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
642 idx = INTEL_PMC_IDX_FIXED;
643 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
644 if (!__test_and_set_bit(idx, sched->state.used))
645 goto done;
646 }
647 }
648 /* Grab the first unused counter starting with idx */
649 idx = sched->state.counter;
650 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
651 if (!__test_and_set_bit(idx, sched->state.used))
652 goto done;
653 }
654
655 return false;
656
657 done:
658 sched->state.counter = idx;
659
660 if (c->overlap)
661 perf_sched_save_state(sched);
662
663 return true;
664 }
665
666 static bool perf_sched_find_counter(struct perf_sched *sched)
667 {
668 while (!__perf_sched_find_counter(sched)) {
669 if (!perf_sched_restore_state(sched))
670 return false;
671 }
672
673 return true;
674 }
675
676 /*
677 * Go through all unassigned events and find the next one to schedule.
678 * Take events with the least weight first. Return true on success.
679 */
680 static bool perf_sched_next_event(struct perf_sched *sched)
681 {
682 struct event_constraint *c;
683
684 if (!sched->state.unassigned || !--sched->state.unassigned)
685 return false;
686
687 do {
688 /* next event */
689 sched->state.event++;
690 if (sched->state.event >= sched->max_events) {
691 /* next weight */
692 sched->state.event = 0;
693 sched->state.weight++;
694 if (sched->state.weight > sched->max_weight)
695 return false;
696 }
697 c = sched->constraints[sched->state.event];
698 } while (c->weight != sched->state.weight);
699
700 sched->state.counter = 0; /* start with first counter */
701
702 return true;
703 }
704
705 /*
706 * Assign a counter for each event.
707 */
708 int perf_assign_events(struct event_constraint **constraints, int n,
709 int wmin, int wmax, int *assign)
710 {
711 struct perf_sched sched;
712
713 perf_sched_init(&sched, constraints, n, wmin, wmax);
714
715 do {
716 if (!perf_sched_find_counter(&sched))
717 break; /* failed */
718 if (assign)
719 assign[sched.state.event] = sched.state.counter;
720 } while (perf_sched_next_event(&sched));
721
722 return sched.state.unassigned;
723 }
724
725 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
726 {
727 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
728 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
729 int i, wmin, wmax, num = 0;
730 struct hw_perf_event *hwc;
731
732 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
733
734 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
735 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
736 constraints[i] = c;
737 wmin = min(wmin, c->weight);
738 wmax = max(wmax, c->weight);
739 }
740
741 /*
742 * fastpath, try to reuse previous register
743 */
744 for (i = 0; i < n; i++) {
745 hwc = &cpuc->event_list[i]->hw;
746 c = constraints[i];
747
748 /* never assigned */
749 if (hwc->idx == -1)
750 break;
751
752 /* constraint still honored */
753 if (!test_bit(hwc->idx, c->idxmsk))
754 break;
755
756 /* not already used */
757 if (test_bit(hwc->idx, used_mask))
758 break;
759
760 __set_bit(hwc->idx, used_mask);
761 if (assign)
762 assign[i] = hwc->idx;
763 }
764
765 /* slow path */
766 if (i != n)
767 num = perf_assign_events(constraints, n, wmin, wmax, assign);
768
769 /*
770 * scheduling failed or is just a simulation,
771 * free resources if necessary
772 */
773 if (!assign || num) {
774 for (i = 0; i < n; i++) {
775 if (x86_pmu.put_event_constraints)
776 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
777 }
778 }
779 return num ? -EINVAL : 0;
780 }
781
782 /*
783 * dogrp: true if must collect siblings events (group)
784 * returns total number of events and error code
785 */
786 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
787 {
788 struct perf_event *event;
789 int n, max_count;
790
791 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
792
793 /* current number of events already accepted */
794 n = cpuc->n_events;
795
796 if (is_x86_event(leader)) {
797 if (n >= max_count)
798 return -EINVAL;
799 cpuc->event_list[n] = leader;
800 n++;
801 }
802 if (!dogrp)
803 return n;
804
805 list_for_each_entry(event, &leader->sibling_list, group_entry) {
806 if (!is_x86_event(event) ||
807 event->state <= PERF_EVENT_STATE_OFF)
808 continue;
809
810 if (n >= max_count)
811 return -EINVAL;
812
813 cpuc->event_list[n] = event;
814 n++;
815 }
816 return n;
817 }
818
819 static inline void x86_assign_hw_event(struct perf_event *event,
820 struct cpu_hw_events *cpuc, int i)
821 {
822 struct hw_perf_event *hwc = &event->hw;
823
824 hwc->idx = cpuc->assign[i];
825 hwc->last_cpu = smp_processor_id();
826 hwc->last_tag = ++cpuc->tags[i];
827
828 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
829 hwc->config_base = 0;
830 hwc->event_base = 0;
831 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
832 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
833 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
834 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
835 } else {
836 hwc->config_base = x86_pmu_config_addr(hwc->idx);
837 hwc->event_base = x86_pmu_event_addr(hwc->idx);
838 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
839 }
840 }
841
842 static inline int match_prev_assignment(struct hw_perf_event *hwc,
843 struct cpu_hw_events *cpuc,
844 int i)
845 {
846 return hwc->idx == cpuc->assign[i] &&
847 hwc->last_cpu == smp_processor_id() &&
848 hwc->last_tag == cpuc->tags[i];
849 }
850
851 static void x86_pmu_start(struct perf_event *event, int flags);
852
853 static void x86_pmu_enable(struct pmu *pmu)
854 {
855 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
856 struct perf_event *event;
857 struct hw_perf_event *hwc;
858 int i, added = cpuc->n_added;
859
860 if (!x86_pmu_initialized())
861 return;
862
863 if (cpuc->enabled)
864 return;
865
866 if (cpuc->n_added) {
867 int n_running = cpuc->n_events - cpuc->n_added;
868 /*
869 * apply assignment obtained either from
870 * hw_perf_group_sched_in() or x86_pmu_enable()
871 *
872 * step1: save events moving to new counters
873 * step2: reprogram moved events into new counters
874 */
875 for (i = 0; i < n_running; i++) {
876 event = cpuc->event_list[i];
877 hwc = &event->hw;
878
879 /*
880 * we can avoid reprogramming counter if:
881 * - assigned same counter as last time
882 * - running on same CPU as last time
883 * - no other event has used the counter since
884 */
885 if (hwc->idx == -1 ||
886 match_prev_assignment(hwc, cpuc, i))
887 continue;
888
889 /*
890 * Ensure we don't accidentally enable a stopped
891 * counter simply because we rescheduled.
892 */
893 if (hwc->state & PERF_HES_STOPPED)
894 hwc->state |= PERF_HES_ARCH;
895
896 x86_pmu_stop(event, PERF_EF_UPDATE);
897 }
898
899 for (i = 0; i < cpuc->n_events; i++) {
900 event = cpuc->event_list[i];
901 hwc = &event->hw;
902
903 if (!match_prev_assignment(hwc, cpuc, i))
904 x86_assign_hw_event(event, cpuc, i);
905 else if (i < n_running)
906 continue;
907
908 if (hwc->state & PERF_HES_ARCH)
909 continue;
910
911 x86_pmu_start(event, PERF_EF_RELOAD);
912 }
913 cpuc->n_added = 0;
914 perf_events_lapic_init();
915 }
916
917 cpuc->enabled = 1;
918 barrier();
919
920 x86_pmu.enable_all(added);
921 }
922
923 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
924
925 /*
926 * Set the next IRQ period, based on the hwc->period_left value.
927 * To be called with the event disabled in hw:
928 */
929 int x86_perf_event_set_period(struct perf_event *event)
930 {
931 struct hw_perf_event *hwc = &event->hw;
932 s64 left = local64_read(&hwc->period_left);
933 s64 period = hwc->sample_period;
934 int ret = 0, idx = hwc->idx;
935
936 if (idx == INTEL_PMC_IDX_FIXED_BTS)
937 return 0;
938
939 /*
940 * If we are way outside a reasonable range then just skip forward:
941 */
942 if (unlikely(left <= -period)) {
943 left = period;
944 local64_set(&hwc->period_left, left);
945 hwc->last_period = period;
946 ret = 1;
947 }
948
949 if (unlikely(left <= 0)) {
950 left += period;
951 local64_set(&hwc->period_left, left);
952 hwc->last_period = period;
953 ret = 1;
954 }
955 /*
956 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
957 */
958 if (unlikely(left < 2))
959 left = 2;
960
961 if (left > x86_pmu.max_period)
962 left = x86_pmu.max_period;
963
964 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
965
966 /*
967 * The hw event starts counting from this event offset,
968 * mark it to be able to extra future deltas:
969 */
970 local64_set(&hwc->prev_count, (u64)-left);
971
972 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
973
974 /*
975 * Due to erratum on certan cpu we need
976 * a second write to be sure the register
977 * is updated properly
978 */
979 if (x86_pmu.perfctr_second_write) {
980 wrmsrl(hwc->event_base,
981 (u64)(-left) & x86_pmu.cntval_mask);
982 }
983
984 perf_event_update_userpage(event);
985
986 return ret;
987 }
988
989 void x86_pmu_enable_event(struct perf_event *event)
990 {
991 if (__this_cpu_read(cpu_hw_events.enabled))
992 __x86_pmu_enable_event(&event->hw,
993 ARCH_PERFMON_EVENTSEL_ENABLE);
994 }
995
996 /*
997 * Add a single event to the PMU.
998 *
999 * The event is added to the group of enabled events
1000 * but only if it can be scehduled with existing events.
1001 */
1002 static int x86_pmu_add(struct perf_event *event, int flags)
1003 {
1004 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1005 struct hw_perf_event *hwc;
1006 int assign[X86_PMC_IDX_MAX];
1007 int n, n0, ret;
1008
1009 hwc = &event->hw;
1010
1011 perf_pmu_disable(event->pmu);
1012 n0 = cpuc->n_events;
1013 ret = n = collect_events(cpuc, event, false);
1014 if (ret < 0)
1015 goto out;
1016
1017 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1018 if (!(flags & PERF_EF_START))
1019 hwc->state |= PERF_HES_ARCH;
1020
1021 /*
1022 * If group events scheduling transaction was started,
1023 * skip the schedulability test here, it will be performed
1024 * at commit time (->commit_txn) as a whole
1025 */
1026 if (cpuc->group_flag & PERF_EVENT_TXN)
1027 goto done_collect;
1028
1029 ret = x86_pmu.schedule_events(cpuc, n, assign);
1030 if (ret)
1031 goto out;
1032 /*
1033 * copy new assignment, now we know it is possible
1034 * will be used by hw_perf_enable()
1035 */
1036 memcpy(cpuc->assign, assign, n*sizeof(int));
1037
1038 done_collect:
1039 cpuc->n_events = n;
1040 cpuc->n_added += n - n0;
1041 cpuc->n_txn += n - n0;
1042
1043 ret = 0;
1044 out:
1045 perf_pmu_enable(event->pmu);
1046 return ret;
1047 }
1048
1049 static void x86_pmu_start(struct perf_event *event, int flags)
1050 {
1051 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1052 int idx = event->hw.idx;
1053
1054 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1055 return;
1056
1057 if (WARN_ON_ONCE(idx == -1))
1058 return;
1059
1060 if (flags & PERF_EF_RELOAD) {
1061 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1062 x86_perf_event_set_period(event);
1063 }
1064
1065 event->hw.state = 0;
1066
1067 cpuc->events[idx] = event;
1068 __set_bit(idx, cpuc->active_mask);
1069 __set_bit(idx, cpuc->running);
1070 x86_pmu.enable(event);
1071 perf_event_update_userpage(event);
1072 }
1073
1074 void perf_event_print_debug(void)
1075 {
1076 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1077 u64 pebs;
1078 struct cpu_hw_events *cpuc;
1079 unsigned long flags;
1080 int cpu, idx;
1081
1082 if (!x86_pmu.num_counters)
1083 return;
1084
1085 local_irq_save(flags);
1086
1087 cpu = smp_processor_id();
1088 cpuc = &per_cpu(cpu_hw_events, cpu);
1089
1090 if (x86_pmu.version >= 2) {
1091 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1092 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1093 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1094 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1095 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1096
1097 pr_info("\n");
1098 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1099 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1100 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1101 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1102 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1103 }
1104 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1105
1106 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1107 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1108 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1109
1110 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1111
1112 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1113 cpu, idx, pmc_ctrl);
1114 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1115 cpu, idx, pmc_count);
1116 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1117 cpu, idx, prev_left);
1118 }
1119 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1120 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1121
1122 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1123 cpu, idx, pmc_count);
1124 }
1125 local_irq_restore(flags);
1126 }
1127
1128 void x86_pmu_stop(struct perf_event *event, int flags)
1129 {
1130 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1131 struct hw_perf_event *hwc = &event->hw;
1132
1133 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1134 x86_pmu.disable(event);
1135 cpuc->events[hwc->idx] = NULL;
1136 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1137 hwc->state |= PERF_HES_STOPPED;
1138 }
1139
1140 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1141 /*
1142 * Drain the remaining delta count out of a event
1143 * that we are disabling:
1144 */
1145 x86_perf_event_update(event);
1146 hwc->state |= PERF_HES_UPTODATE;
1147 }
1148 }
1149
1150 static void x86_pmu_del(struct perf_event *event, int flags)
1151 {
1152 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1153 int i;
1154
1155 /*
1156 * If we're called during a txn, we don't need to do anything.
1157 * The events never got scheduled and ->cancel_txn will truncate
1158 * the event_list.
1159 */
1160 if (cpuc->group_flag & PERF_EVENT_TXN)
1161 return;
1162
1163 x86_pmu_stop(event, PERF_EF_UPDATE);
1164
1165 for (i = 0; i < cpuc->n_events; i++) {
1166 if (event == cpuc->event_list[i]) {
1167
1168 if (i >= cpuc->n_events - cpuc->n_added)
1169 --cpuc->n_added;
1170
1171 if (x86_pmu.put_event_constraints)
1172 x86_pmu.put_event_constraints(cpuc, event);
1173
1174 while (++i < cpuc->n_events)
1175 cpuc->event_list[i-1] = cpuc->event_list[i];
1176
1177 --cpuc->n_events;
1178 break;
1179 }
1180 }
1181 perf_event_update_userpage(event);
1182 }
1183
1184 int x86_pmu_handle_irq(struct pt_regs *regs)
1185 {
1186 struct perf_sample_data data;
1187 struct cpu_hw_events *cpuc;
1188 struct perf_event *event;
1189 int idx, handled = 0;
1190 u64 val;
1191
1192 cpuc = &__get_cpu_var(cpu_hw_events);
1193
1194 /*
1195 * Some chipsets need to unmask the LVTPC in a particular spot
1196 * inside the nmi handler. As a result, the unmasking was pushed
1197 * into all the nmi handlers.
1198 *
1199 * This generic handler doesn't seem to have any issues where the
1200 * unmasking occurs so it was left at the top.
1201 */
1202 apic_write(APIC_LVTPC, APIC_DM_NMI);
1203
1204 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1205 if (!test_bit(idx, cpuc->active_mask)) {
1206 /*
1207 * Though we deactivated the counter some cpus
1208 * might still deliver spurious interrupts still
1209 * in flight. Catch them:
1210 */
1211 if (__test_and_clear_bit(idx, cpuc->running))
1212 handled++;
1213 continue;
1214 }
1215
1216 event = cpuc->events[idx];
1217
1218 val = x86_perf_event_update(event);
1219 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1220 continue;
1221
1222 /*
1223 * event overflow
1224 */
1225 handled++;
1226 perf_sample_data_init(&data, 0, event->hw.last_period);
1227
1228 if (!x86_perf_event_set_period(event))
1229 continue;
1230
1231 if (perf_event_overflow(event, &data, regs))
1232 x86_pmu_stop(event, 0);
1233 }
1234
1235 if (handled)
1236 inc_irq_stat(apic_perf_irqs);
1237
1238 return handled;
1239 }
1240
1241 void perf_events_lapic_init(void)
1242 {
1243 if (!x86_pmu.apic || !x86_pmu_initialized())
1244 return;
1245
1246 /*
1247 * Always use NMI for PMU
1248 */
1249 apic_write(APIC_LVTPC, APIC_DM_NMI);
1250 }
1251
1252 static int __kprobes
1253 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1254 {
1255 int ret;
1256 u64 start_clock;
1257 u64 finish_clock;
1258
1259 if (!atomic_read(&active_events))
1260 return NMI_DONE;
1261
1262 start_clock = local_clock();
1263 ret = x86_pmu.handle_irq(regs);
1264 finish_clock = local_clock();
1265
1266 perf_sample_event_took(finish_clock - start_clock);
1267
1268 return ret;
1269 }
1270
1271 struct event_constraint emptyconstraint;
1272 struct event_constraint unconstrained;
1273
1274 static int __cpuinit
1275 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1276 {
1277 unsigned int cpu = (long)hcpu;
1278 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1279 int ret = NOTIFY_OK;
1280
1281 switch (action & ~CPU_TASKS_FROZEN) {
1282 case CPU_UP_PREPARE:
1283 cpuc->kfree_on_online = NULL;
1284 if (x86_pmu.cpu_prepare)
1285 ret = x86_pmu.cpu_prepare(cpu);
1286 break;
1287
1288 case CPU_STARTING:
1289 if (x86_pmu.attr_rdpmc)
1290 set_in_cr4(X86_CR4_PCE);
1291 if (x86_pmu.cpu_starting)
1292 x86_pmu.cpu_starting(cpu);
1293 break;
1294
1295 case CPU_ONLINE:
1296 kfree(cpuc->kfree_on_online);
1297 break;
1298
1299 case CPU_DYING:
1300 if (x86_pmu.cpu_dying)
1301 x86_pmu.cpu_dying(cpu);
1302 break;
1303
1304 case CPU_UP_CANCELED:
1305 case CPU_DEAD:
1306 if (x86_pmu.cpu_dead)
1307 x86_pmu.cpu_dead(cpu);
1308 break;
1309
1310 default:
1311 break;
1312 }
1313
1314 return ret;
1315 }
1316
1317 static void __init pmu_check_apic(void)
1318 {
1319 if (cpu_has_apic)
1320 return;
1321
1322 x86_pmu.apic = 0;
1323 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1324 pr_info("no hardware sampling interrupt available.\n");
1325 }
1326
1327 static struct attribute_group x86_pmu_format_group = {
1328 .name = "format",
1329 .attrs = NULL,
1330 };
1331
1332 /*
1333 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1334 * out of events_attr attributes.
1335 */
1336 static void __init filter_events(struct attribute **attrs)
1337 {
1338 struct device_attribute *d;
1339 struct perf_pmu_events_attr *pmu_attr;
1340 int i, j;
1341
1342 for (i = 0; attrs[i]; i++) {
1343 d = (struct device_attribute *)attrs[i];
1344 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1345 /* str trumps id */
1346 if (pmu_attr->event_str)
1347 continue;
1348 if (x86_pmu.event_map(i))
1349 continue;
1350
1351 for (j = i; attrs[j]; j++)
1352 attrs[j] = attrs[j + 1];
1353
1354 /* Check the shifted attr. */
1355 i--;
1356 }
1357 }
1358
1359 /* Merge two pointer arrays */
1360 static __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1361 {
1362 struct attribute **new;
1363 int j, i;
1364
1365 for (j = 0; a[j]; j++)
1366 ;
1367 for (i = 0; b[i]; i++)
1368 j++;
1369 j++;
1370
1371 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1372 if (!new)
1373 return NULL;
1374
1375 j = 0;
1376 for (i = 0; a[i]; i++)
1377 new[j++] = a[i];
1378 for (i = 0; b[i]; i++)
1379 new[j++] = b[i];
1380 new[j] = NULL;
1381
1382 return new;
1383 }
1384
1385 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
1386 char *page)
1387 {
1388 struct perf_pmu_events_attr *pmu_attr = \
1389 container_of(attr, struct perf_pmu_events_attr, attr);
1390 u64 config = x86_pmu.event_map(pmu_attr->id);
1391
1392 /* string trumps id */
1393 if (pmu_attr->event_str)
1394 return sprintf(page, "%s", pmu_attr->event_str);
1395
1396 return x86_pmu.events_sysfs_show(page, config);
1397 }
1398
1399 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1400 EVENT_ATTR(instructions, INSTRUCTIONS );
1401 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1402 EVENT_ATTR(cache-misses, CACHE_MISSES );
1403 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1404 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1405 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1406 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1407 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1408 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1409
1410 static struct attribute *empty_attrs;
1411
1412 static struct attribute *events_attr[] = {
1413 EVENT_PTR(CPU_CYCLES),
1414 EVENT_PTR(INSTRUCTIONS),
1415 EVENT_PTR(CACHE_REFERENCES),
1416 EVENT_PTR(CACHE_MISSES),
1417 EVENT_PTR(BRANCH_INSTRUCTIONS),
1418 EVENT_PTR(BRANCH_MISSES),
1419 EVENT_PTR(BUS_CYCLES),
1420 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1421 EVENT_PTR(STALLED_CYCLES_BACKEND),
1422 EVENT_PTR(REF_CPU_CYCLES),
1423 NULL,
1424 };
1425
1426 static struct attribute_group x86_pmu_events_group = {
1427 .name = "events",
1428 .attrs = events_attr,
1429 };
1430
1431 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1432 {
1433 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1434 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1435 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1436 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1437 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1438 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1439 ssize_t ret;
1440
1441 /*
1442 * We have whole page size to spend and just little data
1443 * to write, so we can safely use sprintf.
1444 */
1445 ret = sprintf(page, "event=0x%02llx", event);
1446
1447 if (umask)
1448 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1449
1450 if (edge)
1451 ret += sprintf(page + ret, ",edge");
1452
1453 if (pc)
1454 ret += sprintf(page + ret, ",pc");
1455
1456 if (any)
1457 ret += sprintf(page + ret, ",any");
1458
1459 if (inv)
1460 ret += sprintf(page + ret, ",inv");
1461
1462 if (cmask)
1463 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1464
1465 ret += sprintf(page + ret, "\n");
1466
1467 return ret;
1468 }
1469
1470 static int __init init_hw_perf_events(void)
1471 {
1472 struct x86_pmu_quirk *quirk;
1473 int err;
1474
1475 pr_info("Performance Events: ");
1476
1477 switch (boot_cpu_data.x86_vendor) {
1478 case X86_VENDOR_INTEL:
1479 err = intel_pmu_init();
1480 break;
1481 case X86_VENDOR_AMD:
1482 err = amd_pmu_init();
1483 break;
1484 default:
1485 return 0;
1486 }
1487 if (err != 0) {
1488 pr_cont("no PMU driver, software events only.\n");
1489 return 0;
1490 }
1491
1492 pmu_check_apic();
1493
1494 /* sanity check that the hardware exists or is emulated */
1495 if (!check_hw_exists())
1496 return 0;
1497
1498 pr_cont("%s PMU driver.\n", x86_pmu.name);
1499
1500 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1501 quirk->func();
1502
1503 if (!x86_pmu.intel_ctrl)
1504 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1505
1506 perf_events_lapic_init();
1507 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1508
1509 unconstrained = (struct event_constraint)
1510 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1511 0, x86_pmu.num_counters, 0, 0);
1512
1513 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1514 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1515
1516 if (x86_pmu.event_attrs)
1517 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1518
1519 if (!x86_pmu.events_sysfs_show)
1520 x86_pmu_events_group.attrs = &empty_attrs;
1521 else
1522 filter_events(x86_pmu_events_group.attrs);
1523
1524 if (x86_pmu.cpu_events) {
1525 struct attribute **tmp;
1526
1527 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1528 if (!WARN_ON(!tmp))
1529 x86_pmu_events_group.attrs = tmp;
1530 }
1531
1532 pr_info("... version: %d\n", x86_pmu.version);
1533 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1534 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1535 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1536 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1537 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1538 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1539
1540 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1541 perf_cpu_notifier(x86_pmu_notifier);
1542
1543 return 0;
1544 }
1545 early_initcall(init_hw_perf_events);
1546
1547 static inline void x86_pmu_read(struct perf_event *event)
1548 {
1549 x86_perf_event_update(event);
1550 }
1551
1552 /*
1553 * Start group events scheduling transaction
1554 * Set the flag to make pmu::enable() not perform the
1555 * schedulability test, it will be performed at commit time
1556 */
1557 static void x86_pmu_start_txn(struct pmu *pmu)
1558 {
1559 perf_pmu_disable(pmu);
1560 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1561 __this_cpu_write(cpu_hw_events.n_txn, 0);
1562 }
1563
1564 /*
1565 * Stop group events scheduling transaction
1566 * Clear the flag and pmu::enable() will perform the
1567 * schedulability test.
1568 */
1569 static void x86_pmu_cancel_txn(struct pmu *pmu)
1570 {
1571 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1572 /*
1573 * Truncate the collected events.
1574 */
1575 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1576 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1577 perf_pmu_enable(pmu);
1578 }
1579
1580 /*
1581 * Commit group events scheduling transaction
1582 * Perform the group schedulability test as a whole
1583 * Return 0 if success
1584 */
1585 static int x86_pmu_commit_txn(struct pmu *pmu)
1586 {
1587 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1588 int assign[X86_PMC_IDX_MAX];
1589 int n, ret;
1590
1591 n = cpuc->n_events;
1592
1593 if (!x86_pmu_initialized())
1594 return -EAGAIN;
1595
1596 ret = x86_pmu.schedule_events(cpuc, n, assign);
1597 if (ret)
1598 return ret;
1599
1600 /*
1601 * copy new assignment, now we know it is possible
1602 * will be used by hw_perf_enable()
1603 */
1604 memcpy(cpuc->assign, assign, n*sizeof(int));
1605
1606 cpuc->group_flag &= ~PERF_EVENT_TXN;
1607 perf_pmu_enable(pmu);
1608 return 0;
1609 }
1610 /*
1611 * a fake_cpuc is used to validate event groups. Due to
1612 * the extra reg logic, we need to also allocate a fake
1613 * per_core and per_cpu structure. Otherwise, group events
1614 * using extra reg may conflict without the kernel being
1615 * able to catch this when the last event gets added to
1616 * the group.
1617 */
1618 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1619 {
1620 kfree(cpuc->shared_regs);
1621 kfree(cpuc);
1622 }
1623
1624 static struct cpu_hw_events *allocate_fake_cpuc(void)
1625 {
1626 struct cpu_hw_events *cpuc;
1627 int cpu = raw_smp_processor_id();
1628
1629 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1630 if (!cpuc)
1631 return ERR_PTR(-ENOMEM);
1632
1633 /* only needed, if we have extra_regs */
1634 if (x86_pmu.extra_regs) {
1635 cpuc->shared_regs = allocate_shared_regs(cpu);
1636 if (!cpuc->shared_regs)
1637 goto error;
1638 }
1639 cpuc->is_fake = 1;
1640 return cpuc;
1641 error:
1642 free_fake_cpuc(cpuc);
1643 return ERR_PTR(-ENOMEM);
1644 }
1645
1646 /*
1647 * validate that we can schedule this event
1648 */
1649 static int validate_event(struct perf_event *event)
1650 {
1651 struct cpu_hw_events *fake_cpuc;
1652 struct event_constraint *c;
1653 int ret = 0;
1654
1655 fake_cpuc = allocate_fake_cpuc();
1656 if (IS_ERR(fake_cpuc))
1657 return PTR_ERR(fake_cpuc);
1658
1659 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1660
1661 if (!c || !c->weight)
1662 ret = -EINVAL;
1663
1664 if (x86_pmu.put_event_constraints)
1665 x86_pmu.put_event_constraints(fake_cpuc, event);
1666
1667 free_fake_cpuc(fake_cpuc);
1668
1669 return ret;
1670 }
1671
1672 /*
1673 * validate a single event group
1674 *
1675 * validation include:
1676 * - check events are compatible which each other
1677 * - events do not compete for the same counter
1678 * - number of events <= number of counters
1679 *
1680 * validation ensures the group can be loaded onto the
1681 * PMU if it was the only group available.
1682 */
1683 static int validate_group(struct perf_event *event)
1684 {
1685 struct perf_event *leader = event->group_leader;
1686 struct cpu_hw_events *fake_cpuc;
1687 int ret = -EINVAL, n;
1688
1689 fake_cpuc = allocate_fake_cpuc();
1690 if (IS_ERR(fake_cpuc))
1691 return PTR_ERR(fake_cpuc);
1692 /*
1693 * the event is not yet connected with its
1694 * siblings therefore we must first collect
1695 * existing siblings, then add the new event
1696 * before we can simulate the scheduling
1697 */
1698 n = collect_events(fake_cpuc, leader, true);
1699 if (n < 0)
1700 goto out;
1701
1702 fake_cpuc->n_events = n;
1703 n = collect_events(fake_cpuc, event, false);
1704 if (n < 0)
1705 goto out;
1706
1707 fake_cpuc->n_events = n;
1708
1709 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1710
1711 out:
1712 free_fake_cpuc(fake_cpuc);
1713 return ret;
1714 }
1715
1716 static int x86_pmu_event_init(struct perf_event *event)
1717 {
1718 struct pmu *tmp;
1719 int err;
1720
1721 switch (event->attr.type) {
1722 case PERF_TYPE_RAW:
1723 case PERF_TYPE_HARDWARE:
1724 case PERF_TYPE_HW_CACHE:
1725 break;
1726
1727 default:
1728 return -ENOENT;
1729 }
1730
1731 err = __x86_pmu_event_init(event);
1732 if (!err) {
1733 /*
1734 * we temporarily connect event to its pmu
1735 * such that validate_group() can classify
1736 * it as an x86 event using is_x86_event()
1737 */
1738 tmp = event->pmu;
1739 event->pmu = &pmu;
1740
1741 if (event->group_leader != event)
1742 err = validate_group(event);
1743 else
1744 err = validate_event(event);
1745
1746 event->pmu = tmp;
1747 }
1748 if (err) {
1749 if (event->destroy)
1750 event->destroy(event);
1751 }
1752
1753 return err;
1754 }
1755
1756 static int x86_pmu_event_idx(struct perf_event *event)
1757 {
1758 int idx = event->hw.idx;
1759
1760 if (!x86_pmu.attr_rdpmc)
1761 return 0;
1762
1763 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
1764 idx -= INTEL_PMC_IDX_FIXED;
1765 idx |= 1 << 30;
1766 }
1767
1768 return idx + 1;
1769 }
1770
1771 static ssize_t get_attr_rdpmc(struct device *cdev,
1772 struct device_attribute *attr,
1773 char *buf)
1774 {
1775 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1776 }
1777
1778 static void change_rdpmc(void *info)
1779 {
1780 bool enable = !!(unsigned long)info;
1781
1782 if (enable)
1783 set_in_cr4(X86_CR4_PCE);
1784 else
1785 clear_in_cr4(X86_CR4_PCE);
1786 }
1787
1788 static ssize_t set_attr_rdpmc(struct device *cdev,
1789 struct device_attribute *attr,
1790 const char *buf, size_t count)
1791 {
1792 unsigned long val;
1793 ssize_t ret;
1794
1795 ret = kstrtoul(buf, 0, &val);
1796 if (ret)
1797 return ret;
1798
1799 if (!!val != !!x86_pmu.attr_rdpmc) {
1800 x86_pmu.attr_rdpmc = !!val;
1801 smp_call_function(change_rdpmc, (void *)val, 1);
1802 }
1803
1804 return count;
1805 }
1806
1807 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
1808
1809 static struct attribute *x86_pmu_attrs[] = {
1810 &dev_attr_rdpmc.attr,
1811 NULL,
1812 };
1813
1814 static struct attribute_group x86_pmu_attr_group = {
1815 .attrs = x86_pmu_attrs,
1816 };
1817
1818 static const struct attribute_group *x86_pmu_attr_groups[] = {
1819 &x86_pmu_attr_group,
1820 &x86_pmu_format_group,
1821 &x86_pmu_events_group,
1822 NULL,
1823 };
1824
1825 static void x86_pmu_flush_branch_stack(void)
1826 {
1827 if (x86_pmu.flush_branch_stack)
1828 x86_pmu.flush_branch_stack();
1829 }
1830
1831 void perf_check_microcode(void)
1832 {
1833 if (x86_pmu.check_microcode)
1834 x86_pmu.check_microcode();
1835 }
1836 EXPORT_SYMBOL_GPL(perf_check_microcode);
1837
1838 static struct pmu pmu = {
1839 .pmu_enable = x86_pmu_enable,
1840 .pmu_disable = x86_pmu_disable,
1841
1842 .attr_groups = x86_pmu_attr_groups,
1843
1844 .event_init = x86_pmu_event_init,
1845
1846 .add = x86_pmu_add,
1847 .del = x86_pmu_del,
1848 .start = x86_pmu_start,
1849 .stop = x86_pmu_stop,
1850 .read = x86_pmu_read,
1851
1852 .start_txn = x86_pmu_start_txn,
1853 .cancel_txn = x86_pmu_cancel_txn,
1854 .commit_txn = x86_pmu_commit_txn,
1855
1856 .event_idx = x86_pmu_event_idx,
1857 .flush_branch_stack = x86_pmu_flush_branch_stack,
1858 };
1859
1860 void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
1861 {
1862 userpg->cap_usr_time = 0;
1863 userpg->cap_usr_rdpmc = x86_pmu.attr_rdpmc;
1864 userpg->pmc_width = x86_pmu.cntval_bits;
1865
1866 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1867 return;
1868
1869 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
1870 return;
1871
1872 userpg->cap_usr_time = 1;
1873 userpg->time_mult = this_cpu_read(cyc2ns);
1874 userpg->time_shift = CYC2NS_SCALE_FACTOR;
1875 userpg->time_offset = this_cpu_read(cyc2ns_offset) - now;
1876 }
1877
1878 /*
1879 * callchain support
1880 */
1881
1882 static int backtrace_stack(void *data, char *name)
1883 {
1884 return 0;
1885 }
1886
1887 static void backtrace_address(void *data, unsigned long addr, int reliable)
1888 {
1889 struct perf_callchain_entry *entry = data;
1890
1891 perf_callchain_store(entry, addr);
1892 }
1893
1894 static const struct stacktrace_ops backtrace_ops = {
1895 .stack = backtrace_stack,
1896 .address = backtrace_address,
1897 .walk_stack = print_context_stack_bp,
1898 };
1899
1900 void
1901 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1902 {
1903 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1904 /* TODO: We don't support guest os callchain now */
1905 return;
1906 }
1907
1908 perf_callchain_store(entry, regs->ip);
1909
1910 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1911 }
1912
1913 static inline int
1914 valid_user_frame(const void __user *fp, unsigned long size)
1915 {
1916 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1917 }
1918
1919 static unsigned long get_segment_base(unsigned int segment)
1920 {
1921 struct desc_struct *desc;
1922 int idx = segment >> 3;
1923
1924 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1925 if (idx > LDT_ENTRIES)
1926 return 0;
1927
1928 if (idx > current->active_mm->context.size)
1929 return 0;
1930
1931 desc = current->active_mm->context.ldt;
1932 } else {
1933 if (idx > GDT_ENTRIES)
1934 return 0;
1935
1936 desc = __this_cpu_ptr(&gdt_page.gdt[0]);
1937 }
1938
1939 return get_desc_base(desc + idx);
1940 }
1941
1942 #ifdef CONFIG_COMPAT
1943
1944 #include <asm/compat.h>
1945
1946 static inline int
1947 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1948 {
1949 /* 32-bit process in 64-bit kernel. */
1950 unsigned long ss_base, cs_base;
1951 struct stack_frame_ia32 frame;
1952 const void __user *fp;
1953
1954 if (!test_thread_flag(TIF_IA32))
1955 return 0;
1956
1957 cs_base = get_segment_base(regs->cs);
1958 ss_base = get_segment_base(regs->ss);
1959
1960 fp = compat_ptr(ss_base + regs->bp);
1961 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1962 unsigned long bytes;
1963 frame.next_frame = 0;
1964 frame.return_address = 0;
1965
1966 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1967 if (bytes != sizeof(frame))
1968 break;
1969
1970 if (!valid_user_frame(fp, sizeof(frame)))
1971 break;
1972
1973 perf_callchain_store(entry, cs_base + frame.return_address);
1974 fp = compat_ptr(ss_base + frame.next_frame);
1975 }
1976 return 1;
1977 }
1978 #else
1979 static inline int
1980 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1981 {
1982 return 0;
1983 }
1984 #endif
1985
1986 void
1987 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1988 {
1989 struct stack_frame frame;
1990 const void __user *fp;
1991
1992 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1993 /* TODO: We don't support guest os callchain now */
1994 return;
1995 }
1996
1997 /*
1998 * We don't know what to do with VM86 stacks.. ignore them for now.
1999 */
2000 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2001 return;
2002
2003 fp = (void __user *)regs->bp;
2004
2005 perf_callchain_store(entry, regs->ip);
2006
2007 if (!current->mm)
2008 return;
2009
2010 if (perf_callchain_user32(regs, entry))
2011 return;
2012
2013 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2014 unsigned long bytes;
2015 frame.next_frame = NULL;
2016 frame.return_address = 0;
2017
2018 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2019 if (bytes != sizeof(frame))
2020 break;
2021
2022 if (!valid_user_frame(fp, sizeof(frame)))
2023 break;
2024
2025 perf_callchain_store(entry, frame.return_address);
2026 fp = frame.next_frame;
2027 }
2028 }
2029
2030 /*
2031 * Deal with code segment offsets for the various execution modes:
2032 *
2033 * VM86 - the good olde 16 bit days, where the linear address is
2034 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2035 *
2036 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2037 * to figure out what the 32bit base address is.
2038 *
2039 * X32 - has TIF_X32 set, but is running in x86_64
2040 *
2041 * X86_64 - CS,DS,SS,ES are all zero based.
2042 */
2043 static unsigned long code_segment_base(struct pt_regs *regs)
2044 {
2045 /*
2046 * If we are in VM86 mode, add the segment offset to convert to a
2047 * linear address.
2048 */
2049 if (regs->flags & X86_VM_MASK)
2050 return 0x10 * regs->cs;
2051
2052 /*
2053 * For IA32 we look at the GDT/LDT segment base to convert the
2054 * effective IP to a linear address.
2055 */
2056 #ifdef CONFIG_X86_32
2057 if (user_mode(regs) && regs->cs != __USER_CS)
2058 return get_segment_base(regs->cs);
2059 #else
2060 if (test_thread_flag(TIF_IA32)) {
2061 if (user_mode(regs) && regs->cs != __USER32_CS)
2062 return get_segment_base(regs->cs);
2063 }
2064 #endif
2065 return 0;
2066 }
2067
2068 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2069 {
2070 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2071 return perf_guest_cbs->get_guest_ip();
2072
2073 return regs->ip + code_segment_base(regs);
2074 }
2075
2076 unsigned long perf_misc_flags(struct pt_regs *regs)
2077 {
2078 int misc = 0;
2079
2080 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2081 if (perf_guest_cbs->is_user_mode())
2082 misc |= PERF_RECORD_MISC_GUEST_USER;
2083 else
2084 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2085 } else {
2086 if (user_mode(regs))
2087 misc |= PERF_RECORD_MISC_USER;
2088 else
2089 misc |= PERF_RECORD_MISC_KERNEL;
2090 }
2091
2092 if (regs->flags & PERF_EFLAGS_EXACT)
2093 misc |= PERF_RECORD_MISC_EXACT_IP;
2094
2095 return misc;
2096 }
2097
2098 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2099 {
2100 cap->version = x86_pmu.version;
2101 cap->num_counters_gp = x86_pmu.num_counters;
2102 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2103 cap->bit_width_gp = x86_pmu.cntval_bits;
2104 cap->bit_width_fixed = x86_pmu.cntval_bits;
2105 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2106 cap->events_mask_len = x86_pmu.events_mask_len;
2107 }
2108 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);