Merge branch 'linux_next' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / cpu / mcheck / mce.c
1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10 #include <linux/thread_info.h>
11 #include <linux/capability.h>
12 #include <linux/miscdevice.h>
13 #include <linux/interrupt.h>
14 #include <linux/ratelimit.h>
15 #include <linux/kallsyms.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/sysdev.h>
24 #include <linux/delay.h>
25 #include <linux/ctype.h>
26 #include <linux/sched.h>
27 #include <linux/sysfs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/kmod.h>
32 #include <linux/poll.h>
33 #include <linux/nmi.h>
34 #include <linux/cpu.h>
35 #include <linux/smp.h>
36 #include <linux/fs.h>
37 #include <linux/mm.h>
38 #include <linux/debugfs.h>
39 #include <linux/edac_mce.h>
40
41 #include <asm/processor.h>
42 #include <asm/hw_irq.h>
43 #include <asm/apic.h>
44 #include <asm/idle.h>
45 #include <asm/ipi.h>
46 #include <asm/mce.h>
47 #include <asm/msr.h>
48
49 #include "mce-internal.h"
50
51 static DEFINE_MUTEX(mce_read_mutex);
52
53 #define rcu_dereference_check_mce(p) \
54 rcu_dereference_check((p), \
55 rcu_read_lock_sched_held() || \
56 lockdep_is_held(&mce_read_mutex))
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/mce.h>
60
61 int mce_disabled __read_mostly;
62
63 #define MISC_MCELOG_MINOR 227
64
65 #define SPINUNIT 100 /* 100ns */
66
67 atomic_t mce_entry;
68
69 DEFINE_PER_CPU(unsigned, mce_exception_count);
70
71 /*
72 * Tolerant levels:
73 * 0: always panic on uncorrected errors, log corrected errors
74 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
75 * 2: SIGBUS or log uncorrected errors (if possible), log corrected errors
76 * 3: never panic or SIGBUS, log all errors (for testing only)
77 */
78 static int tolerant __read_mostly = 1;
79 static int banks __read_mostly;
80 static int rip_msr __read_mostly;
81 static int mce_bootlog __read_mostly = -1;
82 static int monarch_timeout __read_mostly = -1;
83 static int mce_panic_timeout __read_mostly;
84 static int mce_dont_log_ce __read_mostly;
85 int mce_cmci_disabled __read_mostly;
86 int mce_ignore_ce __read_mostly;
87 int mce_ser __read_mostly;
88
89 struct mce_bank *mce_banks __read_mostly;
90
91 /* User mode helper program triggered by machine check event */
92 static unsigned long mce_need_notify;
93 static char mce_helper[128];
94 static char *mce_helper_argv[2] = { mce_helper, NULL };
95
96 static DECLARE_WAIT_QUEUE_HEAD(mce_wait);
97 static DEFINE_PER_CPU(struct mce, mces_seen);
98 static int cpu_missing;
99
100 /*
101 * CPU/chipset specific EDAC code can register a notifier call here to print
102 * MCE errors in a human-readable form.
103 */
104 ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
105 EXPORT_SYMBOL_GPL(x86_mce_decoder_chain);
106
107 static int default_decode_mce(struct notifier_block *nb, unsigned long val,
108 void *data)
109 {
110 pr_emerg("No human readable MCE decoding support on this CPU type.\n");
111 pr_emerg("Run the message through 'mcelog --ascii' to decode.\n");
112
113 return NOTIFY_STOP;
114 }
115
116 static struct notifier_block mce_dec_nb = {
117 .notifier_call = default_decode_mce,
118 .priority = -1,
119 };
120
121 /* MCA banks polled by the period polling timer for corrected events */
122 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
123 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
124 };
125
126 static DEFINE_PER_CPU(struct work_struct, mce_work);
127
128 /* Do initial initialization of a struct mce */
129 void mce_setup(struct mce *m)
130 {
131 memset(m, 0, sizeof(struct mce));
132 m->cpu = m->extcpu = smp_processor_id();
133 rdtscll(m->tsc);
134 /* We hope get_seconds stays lockless */
135 m->time = get_seconds();
136 m->cpuvendor = boot_cpu_data.x86_vendor;
137 m->cpuid = cpuid_eax(1);
138 #ifdef CONFIG_SMP
139 m->socketid = cpu_data(m->extcpu).phys_proc_id;
140 #endif
141 m->apicid = cpu_data(m->extcpu).initial_apicid;
142 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
143 }
144
145 DEFINE_PER_CPU(struct mce, injectm);
146 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
147
148 /*
149 * Lockless MCE logging infrastructure.
150 * This avoids deadlocks on printk locks without having to break locks. Also
151 * separate MCEs from kernel messages to avoid bogus bug reports.
152 */
153
154 static struct mce_log mcelog = {
155 .signature = MCE_LOG_SIGNATURE,
156 .len = MCE_LOG_LEN,
157 .recordlen = sizeof(struct mce),
158 };
159
160 void mce_log(struct mce *mce)
161 {
162 unsigned next, entry;
163
164 /* Emit the trace record: */
165 trace_mce_record(mce);
166
167 mce->finished = 0;
168 wmb();
169 for (;;) {
170 entry = rcu_dereference_check_mce(mcelog.next);
171 for (;;) {
172 /*
173 * If edac_mce is enabled, it will check the error type
174 * and will process it, if it is a known error.
175 * Otherwise, the error will be sent through mcelog
176 * interface
177 */
178 if (edac_mce_parse(mce))
179 return;
180
181 /*
182 * When the buffer fills up discard new entries.
183 * Assume that the earlier errors are the more
184 * interesting ones:
185 */
186 if (entry >= MCE_LOG_LEN) {
187 set_bit(MCE_OVERFLOW,
188 (unsigned long *)&mcelog.flags);
189 return;
190 }
191 /* Old left over entry. Skip: */
192 if (mcelog.entry[entry].finished) {
193 entry++;
194 continue;
195 }
196 break;
197 }
198 smp_rmb();
199 next = entry + 1;
200 if (cmpxchg(&mcelog.next, entry, next) == entry)
201 break;
202 }
203 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
204 wmb();
205 mcelog.entry[entry].finished = 1;
206 wmb();
207
208 mce->finished = 1;
209 set_bit(0, &mce_need_notify);
210 }
211
212 static void print_mce(struct mce *m)
213 {
214 pr_emerg("CPU %d: Machine Check Exception: %16Lx Bank %d: %016Lx\n",
215 m->extcpu, m->mcgstatus, m->bank, m->status);
216
217 if (m->ip) {
218 pr_emerg("RIP%s %02x:<%016Lx> ",
219 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
220 m->cs, m->ip);
221
222 if (m->cs == __KERNEL_CS)
223 print_symbol("{%s}", m->ip);
224 pr_cont("\n");
225 }
226
227 pr_emerg("TSC %llx ", m->tsc);
228 if (m->addr)
229 pr_cont("ADDR %llx ", m->addr);
230 if (m->misc)
231 pr_cont("MISC %llx ", m->misc);
232
233 pr_cont("\n");
234 pr_emerg("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
235 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid);
236
237 /*
238 * Print out human-readable details about the MCE error,
239 * (if the CPU has an implementation for that)
240 */
241 atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
242 }
243
244 static void print_mce_head(void)
245 {
246 pr_emerg("\nHARDWARE ERROR\n");
247 }
248
249 static void print_mce_tail(void)
250 {
251 pr_emerg("This is not a software problem!\n");
252 }
253
254 #define PANIC_TIMEOUT 5 /* 5 seconds */
255
256 static atomic_t mce_paniced;
257
258 static int fake_panic;
259 static atomic_t mce_fake_paniced;
260
261 /* Panic in progress. Enable interrupts and wait for final IPI */
262 static void wait_for_panic(void)
263 {
264 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
265
266 preempt_disable();
267 local_irq_enable();
268 while (timeout-- > 0)
269 udelay(1);
270 if (panic_timeout == 0)
271 panic_timeout = mce_panic_timeout;
272 panic("Panicing machine check CPU died");
273 }
274
275 static void mce_panic(char *msg, struct mce *final, char *exp)
276 {
277 int i, apei_err = 0;
278
279 if (!fake_panic) {
280 /*
281 * Make sure only one CPU runs in machine check panic
282 */
283 if (atomic_inc_return(&mce_paniced) > 1)
284 wait_for_panic();
285 barrier();
286
287 bust_spinlocks(1);
288 console_verbose();
289 } else {
290 /* Don't log too much for fake panic */
291 if (atomic_inc_return(&mce_fake_paniced) > 1)
292 return;
293 }
294 print_mce_head();
295 /* First print corrected ones that are still unlogged */
296 for (i = 0; i < MCE_LOG_LEN; i++) {
297 struct mce *m = &mcelog.entry[i];
298 if (!(m->status & MCI_STATUS_VAL))
299 continue;
300 if (!(m->status & MCI_STATUS_UC)) {
301 print_mce(m);
302 if (!apei_err)
303 apei_err = apei_write_mce(m);
304 }
305 }
306 /* Now print uncorrected but with the final one last */
307 for (i = 0; i < MCE_LOG_LEN; i++) {
308 struct mce *m = &mcelog.entry[i];
309 if (!(m->status & MCI_STATUS_VAL))
310 continue;
311 if (!(m->status & MCI_STATUS_UC))
312 continue;
313 if (!final || memcmp(m, final, sizeof(struct mce))) {
314 print_mce(m);
315 if (!apei_err)
316 apei_err = apei_write_mce(m);
317 }
318 }
319 if (final) {
320 print_mce(final);
321 if (!apei_err)
322 apei_err = apei_write_mce(final);
323 }
324 if (cpu_missing)
325 printk(KERN_EMERG "Some CPUs didn't answer in synchronization\n");
326 print_mce_tail();
327 if (exp)
328 printk(KERN_EMERG "Machine check: %s\n", exp);
329 if (!fake_panic) {
330 if (panic_timeout == 0)
331 panic_timeout = mce_panic_timeout;
332 panic(msg);
333 } else
334 printk(KERN_EMERG "Fake kernel panic: %s\n", msg);
335 }
336
337 /* Support code for software error injection */
338
339 static int msr_to_offset(u32 msr)
340 {
341 unsigned bank = __get_cpu_var(injectm.bank);
342
343 if (msr == rip_msr)
344 return offsetof(struct mce, ip);
345 if (msr == MSR_IA32_MCx_STATUS(bank))
346 return offsetof(struct mce, status);
347 if (msr == MSR_IA32_MCx_ADDR(bank))
348 return offsetof(struct mce, addr);
349 if (msr == MSR_IA32_MCx_MISC(bank))
350 return offsetof(struct mce, misc);
351 if (msr == MSR_IA32_MCG_STATUS)
352 return offsetof(struct mce, mcgstatus);
353 return -1;
354 }
355
356 /* MSR access wrappers used for error injection */
357 static u64 mce_rdmsrl(u32 msr)
358 {
359 u64 v;
360
361 if (__get_cpu_var(injectm).finished) {
362 int offset = msr_to_offset(msr);
363
364 if (offset < 0)
365 return 0;
366 return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
367 }
368
369 if (rdmsrl_safe(msr, &v)) {
370 WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
371 /*
372 * Return zero in case the access faulted. This should
373 * not happen normally but can happen if the CPU does
374 * something weird, or if the code is buggy.
375 */
376 v = 0;
377 }
378
379 return v;
380 }
381
382 static void mce_wrmsrl(u32 msr, u64 v)
383 {
384 if (__get_cpu_var(injectm).finished) {
385 int offset = msr_to_offset(msr);
386
387 if (offset >= 0)
388 *(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
389 return;
390 }
391 wrmsrl(msr, v);
392 }
393
394 /*
395 * Simple lockless ring to communicate PFNs from the exception handler with the
396 * process context work function. This is vastly simplified because there's
397 * only a single reader and a single writer.
398 */
399 #define MCE_RING_SIZE 16 /* we use one entry less */
400
401 struct mce_ring {
402 unsigned short start;
403 unsigned short end;
404 unsigned long ring[MCE_RING_SIZE];
405 };
406 static DEFINE_PER_CPU(struct mce_ring, mce_ring);
407
408 /* Runs with CPU affinity in workqueue */
409 static int mce_ring_empty(void)
410 {
411 struct mce_ring *r = &__get_cpu_var(mce_ring);
412
413 return r->start == r->end;
414 }
415
416 static int mce_ring_get(unsigned long *pfn)
417 {
418 struct mce_ring *r;
419 int ret = 0;
420
421 *pfn = 0;
422 get_cpu();
423 r = &__get_cpu_var(mce_ring);
424 if (r->start == r->end)
425 goto out;
426 *pfn = r->ring[r->start];
427 r->start = (r->start + 1) % MCE_RING_SIZE;
428 ret = 1;
429 out:
430 put_cpu();
431 return ret;
432 }
433
434 /* Always runs in MCE context with preempt off */
435 static int mce_ring_add(unsigned long pfn)
436 {
437 struct mce_ring *r = &__get_cpu_var(mce_ring);
438 unsigned next;
439
440 next = (r->end + 1) % MCE_RING_SIZE;
441 if (next == r->start)
442 return -1;
443 r->ring[r->end] = pfn;
444 wmb();
445 r->end = next;
446 return 0;
447 }
448
449 int mce_available(struct cpuinfo_x86 *c)
450 {
451 if (mce_disabled)
452 return 0;
453 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
454 }
455
456 static void mce_schedule_work(void)
457 {
458 if (!mce_ring_empty()) {
459 struct work_struct *work = &__get_cpu_var(mce_work);
460 if (!work_pending(work))
461 schedule_work(work);
462 }
463 }
464
465 /*
466 * Get the address of the instruction at the time of the machine check
467 * error.
468 */
469 static inline void mce_get_rip(struct mce *m, struct pt_regs *regs)
470 {
471
472 if (regs && (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV))) {
473 m->ip = regs->ip;
474 m->cs = regs->cs;
475 } else {
476 m->ip = 0;
477 m->cs = 0;
478 }
479 if (rip_msr)
480 m->ip = mce_rdmsrl(rip_msr);
481 }
482
483 #ifdef CONFIG_X86_LOCAL_APIC
484 /*
485 * Called after interrupts have been reenabled again
486 * when a MCE happened during an interrupts off region
487 * in the kernel.
488 */
489 asmlinkage void smp_mce_self_interrupt(struct pt_regs *regs)
490 {
491 ack_APIC_irq();
492 exit_idle();
493 irq_enter();
494 mce_notify_irq();
495 mce_schedule_work();
496 irq_exit();
497 }
498 #endif
499
500 static void mce_report_event(struct pt_regs *regs)
501 {
502 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
503 mce_notify_irq();
504 /*
505 * Triggering the work queue here is just an insurance
506 * policy in case the syscall exit notify handler
507 * doesn't run soon enough or ends up running on the
508 * wrong CPU (can happen when audit sleeps)
509 */
510 mce_schedule_work();
511 return;
512 }
513
514 #ifdef CONFIG_X86_LOCAL_APIC
515 /*
516 * Without APIC do not notify. The event will be picked
517 * up eventually.
518 */
519 if (!cpu_has_apic)
520 return;
521
522 /*
523 * When interrupts are disabled we cannot use
524 * kernel services safely. Trigger an self interrupt
525 * through the APIC to instead do the notification
526 * after interrupts are reenabled again.
527 */
528 apic->send_IPI_self(MCE_SELF_VECTOR);
529
530 /*
531 * Wait for idle afterwards again so that we don't leave the
532 * APIC in a non idle state because the normal APIC writes
533 * cannot exclude us.
534 */
535 apic_wait_icr_idle();
536 #endif
537 }
538
539 DEFINE_PER_CPU(unsigned, mce_poll_count);
540
541 /*
542 * Poll for corrected events or events that happened before reset.
543 * Those are just logged through /dev/mcelog.
544 *
545 * This is executed in standard interrupt context.
546 *
547 * Note: spec recommends to panic for fatal unsignalled
548 * errors here. However this would be quite problematic --
549 * we would need to reimplement the Monarch handling and
550 * it would mess up the exclusion between exception handler
551 * and poll hander -- * so we skip this for now.
552 * These cases should not happen anyways, or only when the CPU
553 * is already totally * confused. In this case it's likely it will
554 * not fully execute the machine check handler either.
555 */
556 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
557 {
558 struct mce m;
559 int i;
560
561 percpu_inc(mce_poll_count);
562
563 mce_setup(&m);
564
565 m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
566 for (i = 0; i < banks; i++) {
567 if (!mce_banks[i].ctl || !test_bit(i, *b))
568 continue;
569
570 m.misc = 0;
571 m.addr = 0;
572 m.bank = i;
573 m.tsc = 0;
574
575 barrier();
576 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
577 if (!(m.status & MCI_STATUS_VAL))
578 continue;
579
580 /*
581 * Uncorrected or signalled events are handled by the exception
582 * handler when it is enabled, so don't process those here.
583 *
584 * TBD do the same check for MCI_STATUS_EN here?
585 */
586 if (!(flags & MCP_UC) &&
587 (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
588 continue;
589
590 if (m.status & MCI_STATUS_MISCV)
591 m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
592 if (m.status & MCI_STATUS_ADDRV)
593 m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
594
595 if (!(flags & MCP_TIMESTAMP))
596 m.tsc = 0;
597 /*
598 * Don't get the IP here because it's unlikely to
599 * have anything to do with the actual error location.
600 */
601 if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce) {
602 mce_log(&m);
603 add_taint(TAINT_MACHINE_CHECK);
604 }
605
606 /*
607 * Clear state for this bank.
608 */
609 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
610 }
611
612 /*
613 * Don't clear MCG_STATUS here because it's only defined for
614 * exceptions.
615 */
616
617 sync_core();
618 }
619 EXPORT_SYMBOL_GPL(machine_check_poll);
620
621 /*
622 * Do a quick check if any of the events requires a panic.
623 * This decides if we keep the events around or clear them.
624 */
625 static int mce_no_way_out(struct mce *m, char **msg)
626 {
627 int i;
628
629 for (i = 0; i < banks; i++) {
630 m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
631 if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
632 return 1;
633 }
634 return 0;
635 }
636
637 /*
638 * Variable to establish order between CPUs while scanning.
639 * Each CPU spins initially until executing is equal its number.
640 */
641 static atomic_t mce_executing;
642
643 /*
644 * Defines order of CPUs on entry. First CPU becomes Monarch.
645 */
646 static atomic_t mce_callin;
647
648 /*
649 * Check if a timeout waiting for other CPUs happened.
650 */
651 static int mce_timed_out(u64 *t)
652 {
653 /*
654 * The others already did panic for some reason.
655 * Bail out like in a timeout.
656 * rmb() to tell the compiler that system_state
657 * might have been modified by someone else.
658 */
659 rmb();
660 if (atomic_read(&mce_paniced))
661 wait_for_panic();
662 if (!monarch_timeout)
663 goto out;
664 if ((s64)*t < SPINUNIT) {
665 /* CHECKME: Make panic default for 1 too? */
666 if (tolerant < 1)
667 mce_panic("Timeout synchronizing machine check over CPUs",
668 NULL, NULL);
669 cpu_missing = 1;
670 return 1;
671 }
672 *t -= SPINUNIT;
673 out:
674 touch_nmi_watchdog();
675 return 0;
676 }
677
678 /*
679 * The Monarch's reign. The Monarch is the CPU who entered
680 * the machine check handler first. It waits for the others to
681 * raise the exception too and then grades them. When any
682 * error is fatal panic. Only then let the others continue.
683 *
684 * The other CPUs entering the MCE handler will be controlled by the
685 * Monarch. They are called Subjects.
686 *
687 * This way we prevent any potential data corruption in a unrecoverable case
688 * and also makes sure always all CPU's errors are examined.
689 *
690 * Also this detects the case of a machine check event coming from outer
691 * space (not detected by any CPUs) In this case some external agent wants
692 * us to shut down, so panic too.
693 *
694 * The other CPUs might still decide to panic if the handler happens
695 * in a unrecoverable place, but in this case the system is in a semi-stable
696 * state and won't corrupt anything by itself. It's ok to let the others
697 * continue for a bit first.
698 *
699 * All the spin loops have timeouts; when a timeout happens a CPU
700 * typically elects itself to be Monarch.
701 */
702 static void mce_reign(void)
703 {
704 int cpu;
705 struct mce *m = NULL;
706 int global_worst = 0;
707 char *msg = NULL;
708 char *nmsg = NULL;
709
710 /*
711 * This CPU is the Monarch and the other CPUs have run
712 * through their handlers.
713 * Grade the severity of the errors of all the CPUs.
714 */
715 for_each_possible_cpu(cpu) {
716 int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
717 &nmsg);
718 if (severity > global_worst) {
719 msg = nmsg;
720 global_worst = severity;
721 m = &per_cpu(mces_seen, cpu);
722 }
723 }
724
725 /*
726 * Cannot recover? Panic here then.
727 * This dumps all the mces in the log buffer and stops the
728 * other CPUs.
729 */
730 if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
731 mce_panic("Fatal Machine check", m, msg);
732
733 /*
734 * For UC somewhere we let the CPU who detects it handle it.
735 * Also must let continue the others, otherwise the handling
736 * CPU could deadlock on a lock.
737 */
738
739 /*
740 * No machine check event found. Must be some external
741 * source or one CPU is hung. Panic.
742 */
743 if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
744 mce_panic("Machine check from unknown source", NULL, NULL);
745
746 /*
747 * Now clear all the mces_seen so that they don't reappear on
748 * the next mce.
749 */
750 for_each_possible_cpu(cpu)
751 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
752 }
753
754 static atomic_t global_nwo;
755
756 /*
757 * Start of Monarch synchronization. This waits until all CPUs have
758 * entered the exception handler and then determines if any of them
759 * saw a fatal event that requires panic. Then it executes them
760 * in the entry order.
761 * TBD double check parallel CPU hotunplug
762 */
763 static int mce_start(int *no_way_out)
764 {
765 int order;
766 int cpus = num_online_cpus();
767 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
768
769 if (!timeout)
770 return -1;
771
772 atomic_add(*no_way_out, &global_nwo);
773 /*
774 * global_nwo should be updated before mce_callin
775 */
776 smp_wmb();
777 order = atomic_inc_return(&mce_callin);
778
779 /*
780 * Wait for everyone.
781 */
782 while (atomic_read(&mce_callin) != cpus) {
783 if (mce_timed_out(&timeout)) {
784 atomic_set(&global_nwo, 0);
785 return -1;
786 }
787 ndelay(SPINUNIT);
788 }
789
790 /*
791 * mce_callin should be read before global_nwo
792 */
793 smp_rmb();
794
795 if (order == 1) {
796 /*
797 * Monarch: Starts executing now, the others wait.
798 */
799 atomic_set(&mce_executing, 1);
800 } else {
801 /*
802 * Subject: Now start the scanning loop one by one in
803 * the original callin order.
804 * This way when there are any shared banks it will be
805 * only seen by one CPU before cleared, avoiding duplicates.
806 */
807 while (atomic_read(&mce_executing) < order) {
808 if (mce_timed_out(&timeout)) {
809 atomic_set(&global_nwo, 0);
810 return -1;
811 }
812 ndelay(SPINUNIT);
813 }
814 }
815
816 /*
817 * Cache the global no_way_out state.
818 */
819 *no_way_out = atomic_read(&global_nwo);
820
821 return order;
822 }
823
824 /*
825 * Synchronize between CPUs after main scanning loop.
826 * This invokes the bulk of the Monarch processing.
827 */
828 static int mce_end(int order)
829 {
830 int ret = -1;
831 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
832
833 if (!timeout)
834 goto reset;
835 if (order < 0)
836 goto reset;
837
838 /*
839 * Allow others to run.
840 */
841 atomic_inc(&mce_executing);
842
843 if (order == 1) {
844 /* CHECKME: Can this race with a parallel hotplug? */
845 int cpus = num_online_cpus();
846
847 /*
848 * Monarch: Wait for everyone to go through their scanning
849 * loops.
850 */
851 while (atomic_read(&mce_executing) <= cpus) {
852 if (mce_timed_out(&timeout))
853 goto reset;
854 ndelay(SPINUNIT);
855 }
856
857 mce_reign();
858 barrier();
859 ret = 0;
860 } else {
861 /*
862 * Subject: Wait for Monarch to finish.
863 */
864 while (atomic_read(&mce_executing) != 0) {
865 if (mce_timed_out(&timeout))
866 goto reset;
867 ndelay(SPINUNIT);
868 }
869
870 /*
871 * Don't reset anything. That's done by the Monarch.
872 */
873 return 0;
874 }
875
876 /*
877 * Reset all global state.
878 */
879 reset:
880 atomic_set(&global_nwo, 0);
881 atomic_set(&mce_callin, 0);
882 barrier();
883
884 /*
885 * Let others run again.
886 */
887 atomic_set(&mce_executing, 0);
888 return ret;
889 }
890
891 /*
892 * Check if the address reported by the CPU is in a format we can parse.
893 * It would be possible to add code for most other cases, but all would
894 * be somewhat complicated (e.g. segment offset would require an instruction
895 * parser). So only support physical addresses upto page granuality for now.
896 */
897 static int mce_usable_address(struct mce *m)
898 {
899 if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
900 return 0;
901 if ((m->misc & 0x3f) > PAGE_SHIFT)
902 return 0;
903 if (((m->misc >> 6) & 7) != MCM_ADDR_PHYS)
904 return 0;
905 return 1;
906 }
907
908 static void mce_clear_state(unsigned long *toclear)
909 {
910 int i;
911
912 for (i = 0; i < banks; i++) {
913 if (test_bit(i, toclear))
914 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
915 }
916 }
917
918 /*
919 * The actual machine check handler. This only handles real
920 * exceptions when something got corrupted coming in through int 18.
921 *
922 * This is executed in NMI context not subject to normal locking rules. This
923 * implies that most kernel services cannot be safely used. Don't even
924 * think about putting a printk in there!
925 *
926 * On Intel systems this is entered on all CPUs in parallel through
927 * MCE broadcast. However some CPUs might be broken beyond repair,
928 * so be always careful when synchronizing with others.
929 */
930 void do_machine_check(struct pt_regs *regs, long error_code)
931 {
932 struct mce m, *final;
933 int i;
934 int worst = 0;
935 int severity;
936 /*
937 * Establish sequential order between the CPUs entering the machine
938 * check handler.
939 */
940 int order;
941 /*
942 * If no_way_out gets set, there is no safe way to recover from this
943 * MCE. If tolerant is cranked up, we'll try anyway.
944 */
945 int no_way_out = 0;
946 /*
947 * If kill_it gets set, there might be a way to recover from this
948 * error.
949 */
950 int kill_it = 0;
951 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
952 char *msg = "Unknown";
953
954 atomic_inc(&mce_entry);
955
956 percpu_inc(mce_exception_count);
957
958 if (notify_die(DIE_NMI, "machine check", regs, error_code,
959 18, SIGKILL) == NOTIFY_STOP)
960 goto out;
961 if (!banks)
962 goto out;
963
964 mce_setup(&m);
965
966 m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
967 final = &__get_cpu_var(mces_seen);
968 *final = m;
969
970 no_way_out = mce_no_way_out(&m, &msg);
971
972 barrier();
973
974 /*
975 * When no restart IP must always kill or panic.
976 */
977 if (!(m.mcgstatus & MCG_STATUS_RIPV))
978 kill_it = 1;
979
980 /*
981 * Go through all the banks in exclusion of the other CPUs.
982 * This way we don't report duplicated events on shared banks
983 * because the first one to see it will clear it.
984 */
985 order = mce_start(&no_way_out);
986 for (i = 0; i < banks; i++) {
987 __clear_bit(i, toclear);
988 if (!mce_banks[i].ctl)
989 continue;
990
991 m.misc = 0;
992 m.addr = 0;
993 m.bank = i;
994
995 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
996 if ((m.status & MCI_STATUS_VAL) == 0)
997 continue;
998
999 /*
1000 * Non uncorrected or non signaled errors are handled by
1001 * machine_check_poll. Leave them alone, unless this panics.
1002 */
1003 if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1004 !no_way_out)
1005 continue;
1006
1007 /*
1008 * Set taint even when machine check was not enabled.
1009 */
1010 add_taint(TAINT_MACHINE_CHECK);
1011
1012 severity = mce_severity(&m, tolerant, NULL);
1013
1014 /*
1015 * When machine check was for corrected handler don't touch,
1016 * unless we're panicing.
1017 */
1018 if (severity == MCE_KEEP_SEVERITY && !no_way_out)
1019 continue;
1020 __set_bit(i, toclear);
1021 if (severity == MCE_NO_SEVERITY) {
1022 /*
1023 * Machine check event was not enabled. Clear, but
1024 * ignore.
1025 */
1026 continue;
1027 }
1028
1029 /*
1030 * Kill on action required.
1031 */
1032 if (severity == MCE_AR_SEVERITY)
1033 kill_it = 1;
1034
1035 if (m.status & MCI_STATUS_MISCV)
1036 m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
1037 if (m.status & MCI_STATUS_ADDRV)
1038 m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
1039
1040 /*
1041 * Action optional error. Queue address for later processing.
1042 * When the ring overflows we just ignore the AO error.
1043 * RED-PEN add some logging mechanism when
1044 * usable_address or mce_add_ring fails.
1045 * RED-PEN don't ignore overflow for tolerant == 0
1046 */
1047 if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1048 mce_ring_add(m.addr >> PAGE_SHIFT);
1049
1050 mce_get_rip(&m, regs);
1051 mce_log(&m);
1052
1053 if (severity > worst) {
1054 *final = m;
1055 worst = severity;
1056 }
1057 }
1058
1059 if (!no_way_out)
1060 mce_clear_state(toclear);
1061
1062 /*
1063 * Do most of the synchronization with other CPUs.
1064 * When there's any problem use only local no_way_out state.
1065 */
1066 if (mce_end(order) < 0)
1067 no_way_out = worst >= MCE_PANIC_SEVERITY;
1068
1069 /*
1070 * If we have decided that we just CAN'T continue, and the user
1071 * has not set tolerant to an insane level, give up and die.
1072 *
1073 * This is mainly used in the case when the system doesn't
1074 * support MCE broadcasting or it has been disabled.
1075 */
1076 if (no_way_out && tolerant < 3)
1077 mce_panic("Fatal machine check on current CPU", final, msg);
1078
1079 /*
1080 * If the error seems to be unrecoverable, something should be
1081 * done. Try to kill as little as possible. If we can kill just
1082 * one task, do that. If the user has set the tolerance very
1083 * high, don't try to do anything at all.
1084 */
1085
1086 if (kill_it && tolerant < 3)
1087 force_sig(SIGBUS, current);
1088
1089 /* notify userspace ASAP */
1090 set_thread_flag(TIF_MCE_NOTIFY);
1091
1092 if (worst > 0)
1093 mce_report_event(regs);
1094 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1095 out:
1096 atomic_dec(&mce_entry);
1097 sync_core();
1098 }
1099 EXPORT_SYMBOL_GPL(do_machine_check);
1100
1101 /* dummy to break dependency. actual code is in mm/memory-failure.c */
1102 void __attribute__((weak)) memory_failure(unsigned long pfn, int vector)
1103 {
1104 printk(KERN_ERR "Action optional memory failure at %lx ignored\n", pfn);
1105 }
1106
1107 /*
1108 * Called after mce notification in process context. This code
1109 * is allowed to sleep. Call the high level VM handler to process
1110 * any corrupted pages.
1111 * Assume that the work queue code only calls this one at a time
1112 * per CPU.
1113 * Note we don't disable preemption, so this code might run on the wrong
1114 * CPU. In this case the event is picked up by the scheduled work queue.
1115 * This is merely a fast path to expedite processing in some common
1116 * cases.
1117 */
1118 void mce_notify_process(void)
1119 {
1120 unsigned long pfn;
1121 mce_notify_irq();
1122 while (mce_ring_get(&pfn))
1123 memory_failure(pfn, MCE_VECTOR);
1124 }
1125
1126 static void mce_process_work(struct work_struct *dummy)
1127 {
1128 mce_notify_process();
1129 }
1130
1131 #ifdef CONFIG_X86_MCE_INTEL
1132 /***
1133 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1134 * @cpu: The CPU on which the event occurred.
1135 * @status: Event status information
1136 *
1137 * This function should be called by the thermal interrupt after the
1138 * event has been processed and the decision was made to log the event
1139 * further.
1140 *
1141 * The status parameter will be saved to the 'status' field of 'struct mce'
1142 * and historically has been the register value of the
1143 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1144 */
1145 void mce_log_therm_throt_event(__u64 status)
1146 {
1147 struct mce m;
1148
1149 mce_setup(&m);
1150 m.bank = MCE_THERMAL_BANK;
1151 m.status = status;
1152 mce_log(&m);
1153 }
1154 #endif /* CONFIG_X86_MCE_INTEL */
1155
1156 /*
1157 * Periodic polling timer for "silent" machine check errors. If the
1158 * poller finds an MCE, poll 2x faster. When the poller finds no more
1159 * errors, poll 2x slower (up to check_interval seconds).
1160 */
1161 static int check_interval = 5 * 60; /* 5 minutes */
1162
1163 static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1164 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1165
1166 static void mce_start_timer(unsigned long data)
1167 {
1168 struct timer_list *t = &per_cpu(mce_timer, data);
1169 int *n;
1170
1171 WARN_ON(smp_processor_id() != data);
1172
1173 if (mce_available(&current_cpu_data)) {
1174 machine_check_poll(MCP_TIMESTAMP,
1175 &__get_cpu_var(mce_poll_banks));
1176 }
1177
1178 /*
1179 * Alert userspace if needed. If we logged an MCE, reduce the
1180 * polling interval, otherwise increase the polling interval.
1181 */
1182 n = &__get_cpu_var(mce_next_interval);
1183 if (mce_notify_irq())
1184 *n = max(*n/2, HZ/100);
1185 else
1186 *n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1187
1188 t->expires = jiffies + *n;
1189 add_timer_on(t, smp_processor_id());
1190 }
1191
1192 static void mce_do_trigger(struct work_struct *work)
1193 {
1194 call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1195 }
1196
1197 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1198
1199 /*
1200 * Notify the user(s) about new machine check events.
1201 * Can be called from interrupt context, but not from machine check/NMI
1202 * context.
1203 */
1204 int mce_notify_irq(void)
1205 {
1206 /* Not more than two messages every minute */
1207 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1208
1209 clear_thread_flag(TIF_MCE_NOTIFY);
1210
1211 if (test_and_clear_bit(0, &mce_need_notify)) {
1212 wake_up_interruptible(&mce_wait);
1213
1214 /*
1215 * There is no risk of missing notifications because
1216 * work_pending is always cleared before the function is
1217 * executed.
1218 */
1219 if (mce_helper[0] && !work_pending(&mce_trigger_work))
1220 schedule_work(&mce_trigger_work);
1221
1222 if (__ratelimit(&ratelimit))
1223 printk(KERN_INFO "Machine check events logged\n");
1224
1225 return 1;
1226 }
1227 return 0;
1228 }
1229 EXPORT_SYMBOL_GPL(mce_notify_irq);
1230
1231 static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1232 {
1233 int i;
1234
1235 mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1236 if (!mce_banks)
1237 return -ENOMEM;
1238 for (i = 0; i < banks; i++) {
1239 struct mce_bank *b = &mce_banks[i];
1240
1241 b->ctl = -1ULL;
1242 b->init = 1;
1243 }
1244 return 0;
1245 }
1246
1247 /*
1248 * Initialize Machine Checks for a CPU.
1249 */
1250 static int __cpuinit __mcheck_cpu_cap_init(void)
1251 {
1252 unsigned b;
1253 u64 cap;
1254
1255 rdmsrl(MSR_IA32_MCG_CAP, cap);
1256
1257 b = cap & MCG_BANKCNT_MASK;
1258 if (!banks)
1259 printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1260
1261 if (b > MAX_NR_BANKS) {
1262 printk(KERN_WARNING
1263 "MCE: Using only %u machine check banks out of %u\n",
1264 MAX_NR_BANKS, b);
1265 b = MAX_NR_BANKS;
1266 }
1267
1268 /* Don't support asymmetric configurations today */
1269 WARN_ON(banks != 0 && b != banks);
1270 banks = b;
1271 if (!mce_banks) {
1272 int err = __mcheck_cpu_mce_banks_init();
1273
1274 if (err)
1275 return err;
1276 }
1277
1278 /* Use accurate RIP reporting if available. */
1279 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1280 rip_msr = MSR_IA32_MCG_EIP;
1281
1282 if (cap & MCG_SER_P)
1283 mce_ser = 1;
1284
1285 return 0;
1286 }
1287
1288 static void __mcheck_cpu_init_generic(void)
1289 {
1290 mce_banks_t all_banks;
1291 u64 cap;
1292 int i;
1293
1294 /*
1295 * Log the machine checks left over from the previous reset.
1296 */
1297 bitmap_fill(all_banks, MAX_NR_BANKS);
1298 machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1299
1300 set_in_cr4(X86_CR4_MCE);
1301
1302 rdmsrl(MSR_IA32_MCG_CAP, cap);
1303 if (cap & MCG_CTL_P)
1304 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1305
1306 for (i = 0; i < banks; i++) {
1307 struct mce_bank *b = &mce_banks[i];
1308
1309 if (!b->init)
1310 continue;
1311 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1312 wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1313 }
1314 }
1315
1316 /* Add per CPU specific workarounds here */
1317 static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1318 {
1319 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1320 pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1321 return -EOPNOTSUPP;
1322 }
1323
1324 /* This should be disabled by the BIOS, but isn't always */
1325 if (c->x86_vendor == X86_VENDOR_AMD) {
1326 if (c->x86 == 15 && banks > 4) {
1327 /*
1328 * disable GART TBL walk error reporting, which
1329 * trips off incorrectly with the IOMMU & 3ware
1330 * & Cerberus:
1331 */
1332 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1333 }
1334 if (c->x86 <= 17 && mce_bootlog < 0) {
1335 /*
1336 * Lots of broken BIOS around that don't clear them
1337 * by default and leave crap in there. Don't log:
1338 */
1339 mce_bootlog = 0;
1340 }
1341 /*
1342 * Various K7s with broken bank 0 around. Always disable
1343 * by default.
1344 */
1345 if (c->x86 == 6 && banks > 0)
1346 mce_banks[0].ctl = 0;
1347 }
1348
1349 if (c->x86_vendor == X86_VENDOR_INTEL) {
1350 /*
1351 * SDM documents that on family 6 bank 0 should not be written
1352 * because it aliases to another special BIOS controlled
1353 * register.
1354 * But it's not aliased anymore on model 0x1a+
1355 * Don't ignore bank 0 completely because there could be a
1356 * valid event later, merely don't write CTL0.
1357 */
1358
1359 if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1360 mce_banks[0].init = 0;
1361
1362 /*
1363 * All newer Intel systems support MCE broadcasting. Enable
1364 * synchronization with a one second timeout.
1365 */
1366 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1367 monarch_timeout < 0)
1368 monarch_timeout = USEC_PER_SEC;
1369
1370 /*
1371 * There are also broken BIOSes on some Pentium M and
1372 * earlier systems:
1373 */
1374 if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1375 mce_bootlog = 0;
1376 }
1377 if (monarch_timeout < 0)
1378 monarch_timeout = 0;
1379 if (mce_bootlog != 0)
1380 mce_panic_timeout = 30;
1381
1382 return 0;
1383 }
1384
1385 static void __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1386 {
1387 if (c->x86 != 5)
1388 return;
1389 switch (c->x86_vendor) {
1390 case X86_VENDOR_INTEL:
1391 intel_p5_mcheck_init(c);
1392 break;
1393 case X86_VENDOR_CENTAUR:
1394 winchip_mcheck_init(c);
1395 break;
1396 }
1397 }
1398
1399 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1400 {
1401 switch (c->x86_vendor) {
1402 case X86_VENDOR_INTEL:
1403 mce_intel_feature_init(c);
1404 break;
1405 case X86_VENDOR_AMD:
1406 mce_amd_feature_init(c);
1407 break;
1408 default:
1409 break;
1410 }
1411 }
1412
1413 static void __mcheck_cpu_init_timer(void)
1414 {
1415 struct timer_list *t = &__get_cpu_var(mce_timer);
1416 int *n = &__get_cpu_var(mce_next_interval);
1417
1418 setup_timer(t, mce_start_timer, smp_processor_id());
1419
1420 if (mce_ignore_ce)
1421 return;
1422
1423 *n = check_interval * HZ;
1424 if (!*n)
1425 return;
1426 t->expires = round_jiffies(jiffies + *n);
1427 add_timer_on(t, smp_processor_id());
1428 }
1429
1430 /* Handle unconfigured int18 (should never happen) */
1431 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1432 {
1433 printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1434 smp_processor_id());
1435 }
1436
1437 /* Call the installed machine check handler for this CPU setup. */
1438 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1439 unexpected_machine_check;
1440
1441 /*
1442 * Called for each booted CPU to set up machine checks.
1443 * Must be called with preempt off:
1444 */
1445 void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1446 {
1447 if (mce_disabled)
1448 return;
1449
1450 __mcheck_cpu_ancient_init(c);
1451
1452 if (!mce_available(c))
1453 return;
1454
1455 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1456 mce_disabled = 1;
1457 return;
1458 }
1459
1460 machine_check_vector = do_machine_check;
1461
1462 __mcheck_cpu_init_generic();
1463 __mcheck_cpu_init_vendor(c);
1464 __mcheck_cpu_init_timer();
1465 INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1466
1467 }
1468
1469 /*
1470 * Character device to read and clear the MCE log.
1471 */
1472
1473 static DEFINE_SPINLOCK(mce_state_lock);
1474 static int open_count; /* #times opened */
1475 static int open_exclu; /* already open exclusive? */
1476
1477 static int mce_open(struct inode *inode, struct file *file)
1478 {
1479 spin_lock(&mce_state_lock);
1480
1481 if (open_exclu || (open_count && (file->f_flags & O_EXCL))) {
1482 spin_unlock(&mce_state_lock);
1483
1484 return -EBUSY;
1485 }
1486
1487 if (file->f_flags & O_EXCL)
1488 open_exclu = 1;
1489 open_count++;
1490
1491 spin_unlock(&mce_state_lock);
1492
1493 return nonseekable_open(inode, file);
1494 }
1495
1496 static int mce_release(struct inode *inode, struct file *file)
1497 {
1498 spin_lock(&mce_state_lock);
1499
1500 open_count--;
1501 open_exclu = 0;
1502
1503 spin_unlock(&mce_state_lock);
1504
1505 return 0;
1506 }
1507
1508 static void collect_tscs(void *data)
1509 {
1510 unsigned long *cpu_tsc = (unsigned long *)data;
1511
1512 rdtscll(cpu_tsc[smp_processor_id()]);
1513 }
1514
1515 static int mce_apei_read_done;
1516
1517 /* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1518 static int __mce_read_apei(char __user **ubuf, size_t usize)
1519 {
1520 int rc;
1521 u64 record_id;
1522 struct mce m;
1523
1524 if (usize < sizeof(struct mce))
1525 return -EINVAL;
1526
1527 rc = apei_read_mce(&m, &record_id);
1528 /* Error or no more MCE record */
1529 if (rc <= 0) {
1530 mce_apei_read_done = 1;
1531 return rc;
1532 }
1533 rc = -EFAULT;
1534 if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1535 return rc;
1536 /*
1537 * In fact, we should have cleared the record after that has
1538 * been flushed to the disk or sent to network in
1539 * /sbin/mcelog, but we have no interface to support that now,
1540 * so just clear it to avoid duplication.
1541 */
1542 rc = apei_clear_mce(record_id);
1543 if (rc) {
1544 mce_apei_read_done = 1;
1545 return rc;
1546 }
1547 *ubuf += sizeof(struct mce);
1548
1549 return 0;
1550 }
1551
1552 static ssize_t mce_read(struct file *filp, char __user *ubuf, size_t usize,
1553 loff_t *off)
1554 {
1555 char __user *buf = ubuf;
1556 unsigned long *cpu_tsc;
1557 unsigned prev, next;
1558 int i, err;
1559
1560 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1561 if (!cpu_tsc)
1562 return -ENOMEM;
1563
1564 mutex_lock(&mce_read_mutex);
1565
1566 if (!mce_apei_read_done) {
1567 err = __mce_read_apei(&buf, usize);
1568 if (err || buf != ubuf)
1569 goto out;
1570 }
1571
1572 next = rcu_dereference_check_mce(mcelog.next);
1573
1574 /* Only supports full reads right now */
1575 err = -EINVAL;
1576 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1577 goto out;
1578
1579 err = 0;
1580 prev = 0;
1581 do {
1582 for (i = prev; i < next; i++) {
1583 unsigned long start = jiffies;
1584
1585 while (!mcelog.entry[i].finished) {
1586 if (time_after_eq(jiffies, start + 2)) {
1587 memset(mcelog.entry + i, 0,
1588 sizeof(struct mce));
1589 goto timeout;
1590 }
1591 cpu_relax();
1592 }
1593 smp_rmb();
1594 err |= copy_to_user(buf, mcelog.entry + i,
1595 sizeof(struct mce));
1596 buf += sizeof(struct mce);
1597 timeout:
1598 ;
1599 }
1600
1601 memset(mcelog.entry + prev, 0,
1602 (next - prev) * sizeof(struct mce));
1603 prev = next;
1604 next = cmpxchg(&mcelog.next, prev, 0);
1605 } while (next != prev);
1606
1607 synchronize_sched();
1608
1609 /*
1610 * Collect entries that were still getting written before the
1611 * synchronize.
1612 */
1613 on_each_cpu(collect_tscs, cpu_tsc, 1);
1614
1615 for (i = next; i < MCE_LOG_LEN; i++) {
1616 if (mcelog.entry[i].finished &&
1617 mcelog.entry[i].tsc < cpu_tsc[mcelog.entry[i].cpu]) {
1618 err |= copy_to_user(buf, mcelog.entry+i,
1619 sizeof(struct mce));
1620 smp_rmb();
1621 buf += sizeof(struct mce);
1622 memset(&mcelog.entry[i], 0, sizeof(struct mce));
1623 }
1624 }
1625
1626 if (err)
1627 err = -EFAULT;
1628
1629 out:
1630 mutex_unlock(&mce_read_mutex);
1631 kfree(cpu_tsc);
1632
1633 return err ? err : buf - ubuf;
1634 }
1635
1636 static unsigned int mce_poll(struct file *file, poll_table *wait)
1637 {
1638 poll_wait(file, &mce_wait, wait);
1639 if (rcu_dereference_check_mce(mcelog.next))
1640 return POLLIN | POLLRDNORM;
1641 if (!mce_apei_read_done && apei_check_mce())
1642 return POLLIN | POLLRDNORM;
1643 return 0;
1644 }
1645
1646 static long mce_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1647 {
1648 int __user *p = (int __user *)arg;
1649
1650 if (!capable(CAP_SYS_ADMIN))
1651 return -EPERM;
1652
1653 switch (cmd) {
1654 case MCE_GET_RECORD_LEN:
1655 return put_user(sizeof(struct mce), p);
1656 case MCE_GET_LOG_LEN:
1657 return put_user(MCE_LOG_LEN, p);
1658 case MCE_GETCLEAR_FLAGS: {
1659 unsigned flags;
1660
1661 do {
1662 flags = mcelog.flags;
1663 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1664
1665 return put_user(flags, p);
1666 }
1667 default:
1668 return -ENOTTY;
1669 }
1670 }
1671
1672 /* Modified in mce-inject.c, so not static or const */
1673 struct file_operations mce_chrdev_ops = {
1674 .open = mce_open,
1675 .release = mce_release,
1676 .read = mce_read,
1677 .poll = mce_poll,
1678 .unlocked_ioctl = mce_ioctl,
1679 };
1680 EXPORT_SYMBOL_GPL(mce_chrdev_ops);
1681
1682 static struct miscdevice mce_log_device = {
1683 MISC_MCELOG_MINOR,
1684 "mcelog",
1685 &mce_chrdev_ops,
1686 };
1687
1688 /*
1689 * mce=off Disables machine check
1690 * mce=no_cmci Disables CMCI
1691 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1692 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1693 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1694 * monarchtimeout is how long to wait for other CPUs on machine
1695 * check, or 0 to not wait
1696 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1697 * mce=nobootlog Don't log MCEs from before booting.
1698 */
1699 static int __init mcheck_enable(char *str)
1700 {
1701 if (*str == 0) {
1702 enable_p5_mce();
1703 return 1;
1704 }
1705 if (*str == '=')
1706 str++;
1707 if (!strcmp(str, "off"))
1708 mce_disabled = 1;
1709 else if (!strcmp(str, "no_cmci"))
1710 mce_cmci_disabled = 1;
1711 else if (!strcmp(str, "dont_log_ce"))
1712 mce_dont_log_ce = 1;
1713 else if (!strcmp(str, "ignore_ce"))
1714 mce_ignore_ce = 1;
1715 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1716 mce_bootlog = (str[0] == 'b');
1717 else if (isdigit(str[0])) {
1718 get_option(&str, &tolerant);
1719 if (*str == ',') {
1720 ++str;
1721 get_option(&str, &monarch_timeout);
1722 }
1723 } else {
1724 printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1725 str);
1726 return 0;
1727 }
1728 return 1;
1729 }
1730 __setup("mce", mcheck_enable);
1731
1732 int __init mcheck_init(void)
1733 {
1734 atomic_notifier_chain_register(&x86_mce_decoder_chain, &mce_dec_nb);
1735
1736 mcheck_intel_therm_init();
1737
1738 return 0;
1739 }
1740
1741 /*
1742 * Sysfs support
1743 */
1744
1745 /*
1746 * Disable machine checks on suspend and shutdown. We can't really handle
1747 * them later.
1748 */
1749 static int mce_disable_error_reporting(void)
1750 {
1751 int i;
1752
1753 for (i = 0; i < banks; i++) {
1754 struct mce_bank *b = &mce_banks[i];
1755
1756 if (b->init)
1757 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1758 }
1759 return 0;
1760 }
1761
1762 static int mce_suspend(struct sys_device *dev, pm_message_t state)
1763 {
1764 return mce_disable_error_reporting();
1765 }
1766
1767 static int mce_shutdown(struct sys_device *dev)
1768 {
1769 return mce_disable_error_reporting();
1770 }
1771
1772 /*
1773 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1774 * Only one CPU is active at this time, the others get re-added later using
1775 * CPU hotplug:
1776 */
1777 static int mce_resume(struct sys_device *dev)
1778 {
1779 __mcheck_cpu_init_generic();
1780 __mcheck_cpu_init_vendor(&current_cpu_data);
1781
1782 return 0;
1783 }
1784
1785 static void mce_cpu_restart(void *data)
1786 {
1787 del_timer_sync(&__get_cpu_var(mce_timer));
1788 if (!mce_available(&current_cpu_data))
1789 return;
1790 __mcheck_cpu_init_generic();
1791 __mcheck_cpu_init_timer();
1792 }
1793
1794 /* Reinit MCEs after user configuration changes */
1795 static void mce_restart(void)
1796 {
1797 on_each_cpu(mce_cpu_restart, NULL, 1);
1798 }
1799
1800 /* Toggle features for corrected errors */
1801 static void mce_disable_ce(void *all)
1802 {
1803 if (!mce_available(&current_cpu_data))
1804 return;
1805 if (all)
1806 del_timer_sync(&__get_cpu_var(mce_timer));
1807 cmci_clear();
1808 }
1809
1810 static void mce_enable_ce(void *all)
1811 {
1812 if (!mce_available(&current_cpu_data))
1813 return;
1814 cmci_reenable();
1815 cmci_recheck();
1816 if (all)
1817 __mcheck_cpu_init_timer();
1818 }
1819
1820 static struct sysdev_class mce_sysclass = {
1821 .suspend = mce_suspend,
1822 .shutdown = mce_shutdown,
1823 .resume = mce_resume,
1824 .name = "machinecheck",
1825 };
1826
1827 DEFINE_PER_CPU(struct sys_device, mce_dev);
1828
1829 __cpuinitdata
1830 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1831
1832 static inline struct mce_bank *attr_to_bank(struct sysdev_attribute *attr)
1833 {
1834 return container_of(attr, struct mce_bank, attr);
1835 }
1836
1837 static ssize_t show_bank(struct sys_device *s, struct sysdev_attribute *attr,
1838 char *buf)
1839 {
1840 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
1841 }
1842
1843 static ssize_t set_bank(struct sys_device *s, struct sysdev_attribute *attr,
1844 const char *buf, size_t size)
1845 {
1846 u64 new;
1847
1848 if (strict_strtoull(buf, 0, &new) < 0)
1849 return -EINVAL;
1850
1851 attr_to_bank(attr)->ctl = new;
1852 mce_restart();
1853
1854 return size;
1855 }
1856
1857 static ssize_t
1858 show_trigger(struct sys_device *s, struct sysdev_attribute *attr, char *buf)
1859 {
1860 strcpy(buf, mce_helper);
1861 strcat(buf, "\n");
1862 return strlen(mce_helper) + 1;
1863 }
1864
1865 static ssize_t set_trigger(struct sys_device *s, struct sysdev_attribute *attr,
1866 const char *buf, size_t siz)
1867 {
1868 char *p;
1869
1870 strncpy(mce_helper, buf, sizeof(mce_helper));
1871 mce_helper[sizeof(mce_helper)-1] = 0;
1872 p = strchr(mce_helper, '\n');
1873
1874 if (p)
1875 *p = 0;
1876
1877 return strlen(mce_helper) + !!p;
1878 }
1879
1880 static ssize_t set_ignore_ce(struct sys_device *s,
1881 struct sysdev_attribute *attr,
1882 const char *buf, size_t size)
1883 {
1884 u64 new;
1885
1886 if (strict_strtoull(buf, 0, &new) < 0)
1887 return -EINVAL;
1888
1889 if (mce_ignore_ce ^ !!new) {
1890 if (new) {
1891 /* disable ce features */
1892 on_each_cpu(mce_disable_ce, (void *)1, 1);
1893 mce_ignore_ce = 1;
1894 } else {
1895 /* enable ce features */
1896 mce_ignore_ce = 0;
1897 on_each_cpu(mce_enable_ce, (void *)1, 1);
1898 }
1899 }
1900 return size;
1901 }
1902
1903 static ssize_t set_cmci_disabled(struct sys_device *s,
1904 struct sysdev_attribute *attr,
1905 const char *buf, size_t size)
1906 {
1907 u64 new;
1908
1909 if (strict_strtoull(buf, 0, &new) < 0)
1910 return -EINVAL;
1911
1912 if (mce_cmci_disabled ^ !!new) {
1913 if (new) {
1914 /* disable cmci */
1915 on_each_cpu(mce_disable_ce, NULL, 1);
1916 mce_cmci_disabled = 1;
1917 } else {
1918 /* enable cmci */
1919 mce_cmci_disabled = 0;
1920 on_each_cpu(mce_enable_ce, NULL, 1);
1921 }
1922 }
1923 return size;
1924 }
1925
1926 static ssize_t store_int_with_restart(struct sys_device *s,
1927 struct sysdev_attribute *attr,
1928 const char *buf, size_t size)
1929 {
1930 ssize_t ret = sysdev_store_int(s, attr, buf, size);
1931 mce_restart();
1932 return ret;
1933 }
1934
1935 static SYSDEV_ATTR(trigger, 0644, show_trigger, set_trigger);
1936 static SYSDEV_INT_ATTR(tolerant, 0644, tolerant);
1937 static SYSDEV_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
1938 static SYSDEV_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
1939
1940 static struct sysdev_ext_attribute attr_check_interval = {
1941 _SYSDEV_ATTR(check_interval, 0644, sysdev_show_int,
1942 store_int_with_restart),
1943 &check_interval
1944 };
1945
1946 static struct sysdev_ext_attribute attr_ignore_ce = {
1947 _SYSDEV_ATTR(ignore_ce, 0644, sysdev_show_int, set_ignore_ce),
1948 &mce_ignore_ce
1949 };
1950
1951 static struct sysdev_ext_attribute attr_cmci_disabled = {
1952 _SYSDEV_ATTR(cmci_disabled, 0644, sysdev_show_int, set_cmci_disabled),
1953 &mce_cmci_disabled
1954 };
1955
1956 static struct sysdev_attribute *mce_attrs[] = {
1957 &attr_tolerant.attr,
1958 &attr_check_interval.attr,
1959 &attr_trigger,
1960 &attr_monarch_timeout.attr,
1961 &attr_dont_log_ce.attr,
1962 &attr_ignore_ce.attr,
1963 &attr_cmci_disabled.attr,
1964 NULL
1965 };
1966
1967 static cpumask_var_t mce_dev_initialized;
1968
1969 /* Per cpu sysdev init. All of the cpus still share the same ctrl bank: */
1970 static __cpuinit int mce_create_device(unsigned int cpu)
1971 {
1972 int err;
1973 int i, j;
1974
1975 if (!mce_available(&boot_cpu_data))
1976 return -EIO;
1977
1978 memset(&per_cpu(mce_dev, cpu).kobj, 0, sizeof(struct kobject));
1979 per_cpu(mce_dev, cpu).id = cpu;
1980 per_cpu(mce_dev, cpu).cls = &mce_sysclass;
1981
1982 err = sysdev_register(&per_cpu(mce_dev, cpu));
1983 if (err)
1984 return err;
1985
1986 for (i = 0; mce_attrs[i]; i++) {
1987 err = sysdev_create_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1988 if (err)
1989 goto error;
1990 }
1991 for (j = 0; j < banks; j++) {
1992 err = sysdev_create_file(&per_cpu(mce_dev, cpu),
1993 &mce_banks[j].attr);
1994 if (err)
1995 goto error2;
1996 }
1997 cpumask_set_cpu(cpu, mce_dev_initialized);
1998
1999 return 0;
2000 error2:
2001 while (--j >= 0)
2002 sysdev_remove_file(&per_cpu(mce_dev, cpu), &mce_banks[j].attr);
2003 error:
2004 while (--i >= 0)
2005 sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
2006
2007 sysdev_unregister(&per_cpu(mce_dev, cpu));
2008
2009 return err;
2010 }
2011
2012 static __cpuinit void mce_remove_device(unsigned int cpu)
2013 {
2014 int i;
2015
2016 if (!cpumask_test_cpu(cpu, mce_dev_initialized))
2017 return;
2018
2019 for (i = 0; mce_attrs[i]; i++)
2020 sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
2021
2022 for (i = 0; i < banks; i++)
2023 sysdev_remove_file(&per_cpu(mce_dev, cpu), &mce_banks[i].attr);
2024
2025 sysdev_unregister(&per_cpu(mce_dev, cpu));
2026 cpumask_clear_cpu(cpu, mce_dev_initialized);
2027 }
2028
2029 /* Make sure there are no machine checks on offlined CPUs. */
2030 static void __cpuinit mce_disable_cpu(void *h)
2031 {
2032 unsigned long action = *(unsigned long *)h;
2033 int i;
2034
2035 if (!mce_available(&current_cpu_data))
2036 return;
2037
2038 if (!(action & CPU_TASKS_FROZEN))
2039 cmci_clear();
2040 for (i = 0; i < banks; i++) {
2041 struct mce_bank *b = &mce_banks[i];
2042
2043 if (b->init)
2044 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2045 }
2046 }
2047
2048 static void __cpuinit mce_reenable_cpu(void *h)
2049 {
2050 unsigned long action = *(unsigned long *)h;
2051 int i;
2052
2053 if (!mce_available(&current_cpu_data))
2054 return;
2055
2056 if (!(action & CPU_TASKS_FROZEN))
2057 cmci_reenable();
2058 for (i = 0; i < banks; i++) {
2059 struct mce_bank *b = &mce_banks[i];
2060
2061 if (b->init)
2062 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2063 }
2064 }
2065
2066 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
2067 static int __cpuinit
2068 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2069 {
2070 unsigned int cpu = (unsigned long)hcpu;
2071 struct timer_list *t = &per_cpu(mce_timer, cpu);
2072
2073 switch (action) {
2074 case CPU_ONLINE:
2075 case CPU_ONLINE_FROZEN:
2076 mce_create_device(cpu);
2077 if (threshold_cpu_callback)
2078 threshold_cpu_callback(action, cpu);
2079 break;
2080 case CPU_DEAD:
2081 case CPU_DEAD_FROZEN:
2082 if (threshold_cpu_callback)
2083 threshold_cpu_callback(action, cpu);
2084 mce_remove_device(cpu);
2085 break;
2086 case CPU_DOWN_PREPARE:
2087 case CPU_DOWN_PREPARE_FROZEN:
2088 del_timer_sync(t);
2089 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2090 break;
2091 case CPU_DOWN_FAILED:
2092 case CPU_DOWN_FAILED_FROZEN:
2093 if (!mce_ignore_ce && check_interval) {
2094 t->expires = round_jiffies(jiffies +
2095 __get_cpu_var(mce_next_interval));
2096 add_timer_on(t, cpu);
2097 }
2098 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2099 break;
2100 case CPU_POST_DEAD:
2101 /* intentionally ignoring frozen here */
2102 cmci_rediscover(cpu);
2103 break;
2104 }
2105 return NOTIFY_OK;
2106 }
2107
2108 static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2109 .notifier_call = mce_cpu_callback,
2110 };
2111
2112 static __init void mce_init_banks(void)
2113 {
2114 int i;
2115
2116 for (i = 0; i < banks; i++) {
2117 struct mce_bank *b = &mce_banks[i];
2118 struct sysdev_attribute *a = &b->attr;
2119
2120 sysfs_attr_init(&a->attr);
2121 a->attr.name = b->attrname;
2122 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2123
2124 a->attr.mode = 0644;
2125 a->show = show_bank;
2126 a->store = set_bank;
2127 }
2128 }
2129
2130 static __init int mcheck_init_device(void)
2131 {
2132 int err;
2133 int i = 0;
2134
2135 if (!mce_available(&boot_cpu_data))
2136 return -EIO;
2137
2138 zalloc_cpumask_var(&mce_dev_initialized, GFP_KERNEL);
2139
2140 mce_init_banks();
2141
2142 err = sysdev_class_register(&mce_sysclass);
2143 if (err)
2144 return err;
2145
2146 for_each_online_cpu(i) {
2147 err = mce_create_device(i);
2148 if (err)
2149 return err;
2150 }
2151
2152 register_hotcpu_notifier(&mce_cpu_notifier);
2153 misc_register(&mce_log_device);
2154
2155 return err;
2156 }
2157
2158 device_initcall(mcheck_init_device);
2159
2160 /*
2161 * Old style boot options parsing. Only for compatibility.
2162 */
2163 static int __init mcheck_disable(char *str)
2164 {
2165 mce_disabled = 1;
2166 return 1;
2167 }
2168 __setup("nomce", mcheck_disable);
2169
2170 #ifdef CONFIG_DEBUG_FS
2171 struct dentry *mce_get_debugfs_dir(void)
2172 {
2173 static struct dentry *dmce;
2174
2175 if (!dmce)
2176 dmce = debugfs_create_dir("mce", NULL);
2177
2178 return dmce;
2179 }
2180
2181 static void mce_reset(void)
2182 {
2183 cpu_missing = 0;
2184 atomic_set(&mce_fake_paniced, 0);
2185 atomic_set(&mce_executing, 0);
2186 atomic_set(&mce_callin, 0);
2187 atomic_set(&global_nwo, 0);
2188 }
2189
2190 static int fake_panic_get(void *data, u64 *val)
2191 {
2192 *val = fake_panic;
2193 return 0;
2194 }
2195
2196 static int fake_panic_set(void *data, u64 val)
2197 {
2198 mce_reset();
2199 fake_panic = val;
2200 return 0;
2201 }
2202
2203 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2204 fake_panic_set, "%llu\n");
2205
2206 static int __init mcheck_debugfs_init(void)
2207 {
2208 struct dentry *dmce, *ffake_panic;
2209
2210 dmce = mce_get_debugfs_dir();
2211 if (!dmce)
2212 return -ENOMEM;
2213 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2214 &fake_panic_fops);
2215 if (!ffake_panic)
2216 return -ENOMEM;
2217
2218 return 0;
2219 }
2220 late_initcall(mcheck_debugfs_init);
2221 #endif