x86 setup: fix asm constraints in vesa_store_edid
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / include / asm / spinlock.h
1 #ifndef _ASM_X86_SPINLOCK_H
2 #define _ASM_X86_SPINLOCK_H
3
4 #include <asm/atomic.h>
5 #include <asm/rwlock.h>
6 #include <asm/page.h>
7 #include <asm/processor.h>
8 #include <linux/compiler.h>
9 #include <asm/paravirt.h>
10 /*
11 * Your basic SMP spinlocks, allowing only a single CPU anywhere
12 *
13 * Simple spin lock operations. There are two variants, one clears IRQ's
14 * on the local processor, one does not.
15 *
16 * These are fair FIFO ticket locks, which are currently limited to 256
17 * CPUs.
18 *
19 * (the type definitions are in asm/spinlock_types.h)
20 */
21
22 #ifdef CONFIG_X86_32
23 # define LOCK_PTR_REG "a"
24 # define REG_PTR_MODE "k"
25 #else
26 # define LOCK_PTR_REG "D"
27 # define REG_PTR_MODE "q"
28 #endif
29
30 #if defined(CONFIG_X86_32) && \
31 (defined(CONFIG_X86_OOSTORE) || defined(CONFIG_X86_PPRO_FENCE))
32 /*
33 * On PPro SMP or if we are using OOSTORE, we use a locked operation to unlock
34 * (PPro errata 66, 92)
35 */
36 # define UNLOCK_LOCK_PREFIX LOCK_PREFIX
37 #else
38 # define UNLOCK_LOCK_PREFIX
39 #endif
40
41 /*
42 * Ticket locks are conceptually two parts, one indicating the current head of
43 * the queue, and the other indicating the current tail. The lock is acquired
44 * by atomically noting the tail and incrementing it by one (thus adding
45 * ourself to the queue and noting our position), then waiting until the head
46 * becomes equal to the the initial value of the tail.
47 *
48 * We use an xadd covering *both* parts of the lock, to increment the tail and
49 * also load the position of the head, which takes care of memory ordering
50 * issues and should be optimal for the uncontended case. Note the tail must be
51 * in the high part, because a wide xadd increment of the low part would carry
52 * up and contaminate the high part.
53 *
54 * With fewer than 2^8 possible CPUs, we can use x86's partial registers to
55 * save some instructions and make the code more elegant. There really isn't
56 * much between them in performance though, especially as locks are out of line.
57 */
58 #if (NR_CPUS < 256)
59 #define TICKET_SHIFT 8
60
61 static __always_inline void __ticket_spin_lock(raw_spinlock_t *lock)
62 {
63 short inc = 0x0100;
64
65 asm volatile (
66 LOCK_PREFIX "xaddw %w0, %1\n"
67 "1:\t"
68 "cmpb %h0, %b0\n\t"
69 "je 2f\n\t"
70 "rep ; nop\n\t"
71 "movb %1, %b0\n\t"
72 /* don't need lfence here, because loads are in-order */
73 "jmp 1b\n"
74 "2:"
75 : "+Q" (inc), "+m" (lock->slock)
76 :
77 : "memory", "cc");
78 }
79
80 static __always_inline int __ticket_spin_trylock(raw_spinlock_t *lock)
81 {
82 int tmp, new;
83
84 asm volatile("movzwl %2, %0\n\t"
85 "cmpb %h0,%b0\n\t"
86 "leal 0x100(%" REG_PTR_MODE "0), %1\n\t"
87 "jne 1f\n\t"
88 LOCK_PREFIX "cmpxchgw %w1,%2\n\t"
89 "1:"
90 "sete %b1\n\t"
91 "movzbl %b1,%0\n\t"
92 : "=&a" (tmp), "=&q" (new), "+m" (lock->slock)
93 :
94 : "memory", "cc");
95
96 return tmp;
97 }
98
99 static __always_inline void __ticket_spin_unlock(raw_spinlock_t *lock)
100 {
101 asm volatile(UNLOCK_LOCK_PREFIX "incb %0"
102 : "+m" (lock->slock)
103 :
104 : "memory", "cc");
105 }
106 #else
107 #define TICKET_SHIFT 16
108
109 static __always_inline void __ticket_spin_lock(raw_spinlock_t *lock)
110 {
111 int inc = 0x00010000;
112 int tmp;
113
114 asm volatile(LOCK_PREFIX "xaddl %0, %1\n"
115 "movzwl %w0, %2\n\t"
116 "shrl $16, %0\n\t"
117 "1:\t"
118 "cmpl %0, %2\n\t"
119 "je 2f\n\t"
120 "rep ; nop\n\t"
121 "movzwl %1, %2\n\t"
122 /* don't need lfence here, because loads are in-order */
123 "jmp 1b\n"
124 "2:"
125 : "+r" (inc), "+m" (lock->slock), "=&r" (tmp)
126 :
127 : "memory", "cc");
128 }
129
130 static __always_inline int __ticket_spin_trylock(raw_spinlock_t *lock)
131 {
132 int tmp;
133 int new;
134
135 asm volatile("movl %2,%0\n\t"
136 "movl %0,%1\n\t"
137 "roll $16, %0\n\t"
138 "cmpl %0,%1\n\t"
139 "leal 0x00010000(%" REG_PTR_MODE "0), %1\n\t"
140 "jne 1f\n\t"
141 LOCK_PREFIX "cmpxchgl %1,%2\n\t"
142 "1:"
143 "sete %b1\n\t"
144 "movzbl %b1,%0\n\t"
145 : "=&a" (tmp), "=&q" (new), "+m" (lock->slock)
146 :
147 : "memory", "cc");
148
149 return tmp;
150 }
151
152 static __always_inline void __ticket_spin_unlock(raw_spinlock_t *lock)
153 {
154 asm volatile(UNLOCK_LOCK_PREFIX "incw %0"
155 : "+m" (lock->slock)
156 :
157 : "memory", "cc");
158 }
159 #endif
160
161 static inline int __ticket_spin_is_locked(raw_spinlock_t *lock)
162 {
163 int tmp = ACCESS_ONCE(lock->slock);
164
165 return !!(((tmp >> TICKET_SHIFT) ^ tmp) & ((1 << TICKET_SHIFT) - 1));
166 }
167
168 static inline int __ticket_spin_is_contended(raw_spinlock_t *lock)
169 {
170 int tmp = ACCESS_ONCE(lock->slock);
171
172 return (((tmp >> TICKET_SHIFT) - tmp) & ((1 << TICKET_SHIFT) - 1)) > 1;
173 }
174
175 #ifdef CONFIG_PARAVIRT
176 /*
177 * Define virtualization-friendly old-style lock byte lock, for use in
178 * pv_lock_ops if desired.
179 *
180 * This differs from the pre-2.6.24 spinlock by always using xchgb
181 * rather than decb to take the lock; this allows it to use a
182 * zero-initialized lock structure. It also maintains a 1-byte
183 * contention counter, so that we can implement
184 * __byte_spin_is_contended.
185 */
186 struct __byte_spinlock {
187 s8 lock;
188 s8 spinners;
189 };
190
191 static inline int __byte_spin_is_locked(raw_spinlock_t *lock)
192 {
193 struct __byte_spinlock *bl = (struct __byte_spinlock *)lock;
194 return bl->lock != 0;
195 }
196
197 static inline int __byte_spin_is_contended(raw_spinlock_t *lock)
198 {
199 struct __byte_spinlock *bl = (struct __byte_spinlock *)lock;
200 return bl->spinners != 0;
201 }
202
203 static inline void __byte_spin_lock(raw_spinlock_t *lock)
204 {
205 struct __byte_spinlock *bl = (struct __byte_spinlock *)lock;
206 s8 val = 1;
207
208 asm("1: xchgb %1, %0\n"
209 " test %1,%1\n"
210 " jz 3f\n"
211 " " LOCK_PREFIX "incb %2\n"
212 "2: rep;nop\n"
213 " cmpb $1, %0\n"
214 " je 2b\n"
215 " " LOCK_PREFIX "decb %2\n"
216 " jmp 1b\n"
217 "3:"
218 : "+m" (bl->lock), "+q" (val), "+m" (bl->spinners): : "memory");
219 }
220
221 static inline int __byte_spin_trylock(raw_spinlock_t *lock)
222 {
223 struct __byte_spinlock *bl = (struct __byte_spinlock *)lock;
224 u8 old = 1;
225
226 asm("xchgb %1,%0"
227 : "+m" (bl->lock), "+q" (old) : : "memory");
228
229 return old == 0;
230 }
231
232 static inline void __byte_spin_unlock(raw_spinlock_t *lock)
233 {
234 struct __byte_spinlock *bl = (struct __byte_spinlock *)lock;
235 smp_wmb();
236 bl->lock = 0;
237 }
238 #else /* !CONFIG_PARAVIRT */
239 static inline int __raw_spin_is_locked(raw_spinlock_t *lock)
240 {
241 return __ticket_spin_is_locked(lock);
242 }
243
244 static inline int __raw_spin_is_contended(raw_spinlock_t *lock)
245 {
246 return __ticket_spin_is_contended(lock);
247 }
248
249 static __always_inline void __raw_spin_lock(raw_spinlock_t *lock)
250 {
251 __ticket_spin_lock(lock);
252 }
253
254 static __always_inline int __raw_spin_trylock(raw_spinlock_t *lock)
255 {
256 return __ticket_spin_trylock(lock);
257 }
258
259 static __always_inline void __raw_spin_unlock(raw_spinlock_t *lock)
260 {
261 __ticket_spin_unlock(lock);
262 }
263
264 static __always_inline void __raw_spin_lock_flags(raw_spinlock_t *lock,
265 unsigned long flags)
266 {
267 __raw_spin_lock(lock);
268 }
269
270 #endif /* CONFIG_PARAVIRT */
271
272 static inline void __raw_spin_unlock_wait(raw_spinlock_t *lock)
273 {
274 while (__raw_spin_is_locked(lock))
275 cpu_relax();
276 }
277
278 /*
279 * Read-write spinlocks, allowing multiple readers
280 * but only one writer.
281 *
282 * NOTE! it is quite common to have readers in interrupts
283 * but no interrupt writers. For those circumstances we
284 * can "mix" irq-safe locks - any writer needs to get a
285 * irq-safe write-lock, but readers can get non-irqsafe
286 * read-locks.
287 *
288 * On x86, we implement read-write locks as a 32-bit counter
289 * with the high bit (sign) being the "contended" bit.
290 */
291
292 /**
293 * read_can_lock - would read_trylock() succeed?
294 * @lock: the rwlock in question.
295 */
296 static inline int __raw_read_can_lock(raw_rwlock_t *lock)
297 {
298 return (int)(lock)->lock > 0;
299 }
300
301 /**
302 * write_can_lock - would write_trylock() succeed?
303 * @lock: the rwlock in question.
304 */
305 static inline int __raw_write_can_lock(raw_rwlock_t *lock)
306 {
307 return (lock)->lock == RW_LOCK_BIAS;
308 }
309
310 static inline void __raw_read_lock(raw_rwlock_t *rw)
311 {
312 asm volatile(LOCK_PREFIX " subl $1,(%0)\n\t"
313 "jns 1f\n"
314 "call __read_lock_failed\n\t"
315 "1:\n"
316 ::LOCK_PTR_REG (rw) : "memory");
317 }
318
319 static inline void __raw_write_lock(raw_rwlock_t *rw)
320 {
321 asm volatile(LOCK_PREFIX " subl %1,(%0)\n\t"
322 "jz 1f\n"
323 "call __write_lock_failed\n\t"
324 "1:\n"
325 ::LOCK_PTR_REG (rw), "i" (RW_LOCK_BIAS) : "memory");
326 }
327
328 static inline int __raw_read_trylock(raw_rwlock_t *lock)
329 {
330 atomic_t *count = (atomic_t *)lock;
331
332 atomic_dec(count);
333 if (atomic_read(count) >= 0)
334 return 1;
335 atomic_inc(count);
336 return 0;
337 }
338
339 static inline int __raw_write_trylock(raw_rwlock_t *lock)
340 {
341 atomic_t *count = (atomic_t *)lock;
342
343 if (atomic_sub_and_test(RW_LOCK_BIAS, count))
344 return 1;
345 atomic_add(RW_LOCK_BIAS, count);
346 return 0;
347 }
348
349 static inline void __raw_read_unlock(raw_rwlock_t *rw)
350 {
351 asm volatile(LOCK_PREFIX "incl %0" :"+m" (rw->lock) : : "memory");
352 }
353
354 static inline void __raw_write_unlock(raw_rwlock_t *rw)
355 {
356 asm volatile(LOCK_PREFIX "addl %1, %0"
357 : "+m" (rw->lock) : "i" (RW_LOCK_BIAS) : "memory");
358 }
359
360 #define _raw_spin_relax(lock) cpu_relax()
361 #define _raw_read_relax(lock) cpu_relax()
362 #define _raw_write_relax(lock) cpu_relax()
363
364 #endif /* _ASM_X86_SPINLOCK_H */