3ff289f422e635cdf74280f86488733c0f88c55f
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / tile / mm / fault.c
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 *
14 * From i386 code copyright (C) 1995 Linus Torvalds
15 */
16
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/string.h>
22 #include <linux/types.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
25 #include <linux/mm.h>
26 #include <linux/smp.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/tty.h>
30 #include <linux/vt_kern.h> /* For unblank_screen() */
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/kprobes.h>
34 #include <linux/hugetlb.h>
35 #include <linux/syscalls.h>
36 #include <linux/uaccess.h>
37
38 #include <asm/pgalloc.h>
39 #include <asm/sections.h>
40 #include <asm/traps.h>
41 #include <asm/syscalls.h>
42
43 #include <arch/interrupts.h>
44
45 static noinline void force_sig_info_fault(const char *type, int si_signo,
46 int si_code, unsigned long address,
47 int fault_num,
48 struct task_struct *tsk,
49 struct pt_regs *regs)
50 {
51 siginfo_t info;
52
53 if (unlikely(tsk->pid < 2)) {
54 panic("Signal %d (code %d) at %#lx sent to %s!",
55 si_signo, si_code & 0xffff, address,
56 is_idle_task(tsk) ? "the idle task" : "init");
57 }
58
59 info.si_signo = si_signo;
60 info.si_errno = 0;
61 info.si_code = si_code;
62 info.si_addr = (void __user *)address;
63 info.si_trapno = fault_num;
64 trace_unhandled_signal(type, regs, address, si_signo);
65 force_sig_info(si_signo, &info, tsk);
66 }
67
68 #ifndef __tilegx__
69 /*
70 * Synthesize the fault a PL0 process would get by doing a word-load of
71 * an unaligned address or a high kernel address.
72 */
73 SYSCALL_DEFINE1(cmpxchg_badaddr, unsigned long, address)
74 {
75 struct pt_regs *regs = current_pt_regs();
76
77 if (address >= PAGE_OFFSET)
78 force_sig_info_fault("atomic segfault", SIGSEGV, SEGV_MAPERR,
79 address, INT_DTLB_MISS, current, regs);
80 else
81 force_sig_info_fault("atomic alignment fault", SIGBUS,
82 BUS_ADRALN, address,
83 INT_UNALIGN_DATA, current, regs);
84
85 /*
86 * Adjust pc to point at the actual instruction, which is unusual
87 * for syscalls normally, but is appropriate when we are claiming
88 * that a syscall swint1 caused a page fault or bus error.
89 */
90 regs->pc -= 8;
91
92 /*
93 * Mark this as a caller-save interrupt, like a normal page fault,
94 * so that when we go through the signal handler path we will
95 * properly restore r0, r1, and r2 for the signal handler arguments.
96 */
97 regs->flags |= PT_FLAGS_CALLER_SAVES;
98
99 return 0;
100 }
101 #endif
102
103 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
104 {
105 unsigned index = pgd_index(address);
106 pgd_t *pgd_k;
107 pud_t *pud, *pud_k;
108 pmd_t *pmd, *pmd_k;
109
110 pgd += index;
111 pgd_k = init_mm.pgd + index;
112
113 if (!pgd_present(*pgd_k))
114 return NULL;
115
116 pud = pud_offset(pgd, address);
117 pud_k = pud_offset(pgd_k, address);
118 if (!pud_present(*pud_k))
119 return NULL;
120
121 pmd = pmd_offset(pud, address);
122 pmd_k = pmd_offset(pud_k, address);
123 if (!pmd_present(*pmd_k))
124 return NULL;
125 if (!pmd_present(*pmd)) {
126 set_pmd(pmd, *pmd_k);
127 arch_flush_lazy_mmu_mode();
128 } else
129 BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k));
130 return pmd_k;
131 }
132
133 /*
134 * Handle a fault on the vmalloc area.
135 */
136 static inline int vmalloc_fault(pgd_t *pgd, unsigned long address)
137 {
138 pmd_t *pmd_k;
139 pte_t *pte_k;
140
141 /* Make sure we are in vmalloc area */
142 if (!(address >= VMALLOC_START && address < VMALLOC_END))
143 return -1;
144
145 /*
146 * Synchronize this task's top level page-table
147 * with the 'reference' page table.
148 */
149 pmd_k = vmalloc_sync_one(pgd, address);
150 if (!pmd_k)
151 return -1;
152 if (pmd_huge(*pmd_k))
153 return 0; /* support TILE huge_vmap() API */
154 pte_k = pte_offset_kernel(pmd_k, address);
155 if (!pte_present(*pte_k))
156 return -1;
157 return 0;
158 }
159
160 /* Wait until this PTE has completed migration. */
161 static void wait_for_migration(pte_t *pte)
162 {
163 if (pte_migrating(*pte)) {
164 /*
165 * Wait until the migrater fixes up this pte.
166 * We scale the loop count by the clock rate so we'll wait for
167 * a few seconds here.
168 */
169 int retries = 0;
170 int bound = get_clock_rate();
171 while (pte_migrating(*pte)) {
172 barrier();
173 if (++retries > bound)
174 panic("Hit migrating PTE (%#llx) and"
175 " page PFN %#lx still migrating",
176 pte->val, pte_pfn(*pte));
177 }
178 }
179 }
180
181 /*
182 * It's not generally safe to use "current" to get the page table pointer,
183 * since we might be running an oprofile interrupt in the middle of a
184 * task switch.
185 */
186 static pgd_t *get_current_pgd(void)
187 {
188 HV_Context ctx = hv_inquire_context();
189 unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT;
190 struct page *pgd_page = pfn_to_page(pgd_pfn);
191 BUG_ON(PageHighMem(pgd_page));
192 return (pgd_t *) __va(ctx.page_table);
193 }
194
195 /*
196 * We can receive a page fault from a migrating PTE at any time.
197 * Handle it by just waiting until the fault resolves.
198 *
199 * It's also possible to get a migrating kernel PTE that resolves
200 * itself during the downcall from hypervisor to Linux. We just check
201 * here to see if the PTE seems valid, and if so we retry it.
202 *
203 * NOTE! We MUST NOT take any locks for this case. We may be in an
204 * interrupt or a critical region, and must do as little as possible.
205 * Similarly, we can't use atomic ops here, since we may be handling a
206 * fault caused by an atomic op access.
207 *
208 * If we find a migrating PTE while we're in an NMI context, and we're
209 * at a PC that has a registered exception handler, we don't wait,
210 * since this thread may (e.g.) have been interrupted while migrating
211 * its own stack, which would then cause us to self-deadlock.
212 */
213 static int handle_migrating_pte(pgd_t *pgd, int fault_num,
214 unsigned long address, unsigned long pc,
215 int is_kernel_mode, int write)
216 {
217 pud_t *pud;
218 pmd_t *pmd;
219 pte_t *pte;
220 pte_t pteval;
221
222 if (pgd_addr_invalid(address))
223 return 0;
224
225 pgd += pgd_index(address);
226 pud = pud_offset(pgd, address);
227 if (!pud || !pud_present(*pud))
228 return 0;
229 pmd = pmd_offset(pud, address);
230 if (!pmd || !pmd_present(*pmd))
231 return 0;
232 pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) :
233 pte_offset_kernel(pmd, address);
234 pteval = *pte;
235 if (pte_migrating(pteval)) {
236 if (in_nmi() && search_exception_tables(pc))
237 return 0;
238 wait_for_migration(pte);
239 return 1;
240 }
241
242 if (!is_kernel_mode || !pte_present(pteval))
243 return 0;
244 if (fault_num == INT_ITLB_MISS) {
245 if (pte_exec(pteval))
246 return 1;
247 } else if (write) {
248 if (pte_write(pteval))
249 return 1;
250 } else {
251 if (pte_read(pteval))
252 return 1;
253 }
254
255 return 0;
256 }
257
258 /*
259 * This routine is responsible for faulting in user pages.
260 * It passes the work off to one of the appropriate routines.
261 * It returns true if the fault was successfully handled.
262 */
263 static int handle_page_fault(struct pt_regs *regs,
264 int fault_num,
265 int is_page_fault,
266 unsigned long address,
267 int write)
268 {
269 struct task_struct *tsk;
270 struct mm_struct *mm;
271 struct vm_area_struct *vma;
272 unsigned long stack_offset;
273 int fault;
274 int si_code;
275 int is_kernel_mode;
276 pgd_t *pgd;
277 unsigned int flags;
278
279 /* on TILE, protection faults are always writes */
280 if (!is_page_fault)
281 write = 1;
282
283 flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
284
285 is_kernel_mode = (EX1_PL(regs->ex1) != USER_PL);
286
287 tsk = validate_current();
288
289 /*
290 * Check to see if we might be overwriting the stack, and bail
291 * out if so. The page fault code is a relatively likely
292 * place to get trapped in an infinite regress, and once we
293 * overwrite the whole stack, it becomes very hard to recover.
294 */
295 stack_offset = stack_pointer & (THREAD_SIZE-1);
296 if (stack_offset < THREAD_SIZE / 8) {
297 pr_alert("Potential stack overrun: sp %#lx\n",
298 stack_pointer);
299 show_regs(regs);
300 pr_alert("Killing current process %d/%s\n",
301 tsk->pid, tsk->comm);
302 do_group_exit(SIGKILL);
303 }
304
305 /*
306 * Early on, we need to check for migrating PTE entries;
307 * see homecache.c. If we find a migrating PTE, we wait until
308 * the backing page claims to be done migrating, then we proceed.
309 * For kernel PTEs, we rewrite the PTE and return and retry.
310 * Otherwise, we treat the fault like a normal "no PTE" fault,
311 * rather than trying to patch up the existing PTE.
312 */
313 pgd = get_current_pgd();
314 if (handle_migrating_pte(pgd, fault_num, address, regs->pc,
315 is_kernel_mode, write))
316 return 1;
317
318 si_code = SEGV_MAPERR;
319
320 /*
321 * We fault-in kernel-space virtual memory on-demand. The
322 * 'reference' page table is init_mm.pgd.
323 *
324 * NOTE! We MUST NOT take any locks for this case. We may
325 * be in an interrupt or a critical region, and should
326 * only copy the information from the master page table,
327 * nothing more.
328 *
329 * This verifies that the fault happens in kernel space
330 * and that the fault was not a protection fault.
331 */
332 if (unlikely(address >= TASK_SIZE &&
333 !is_arch_mappable_range(address, 0))) {
334 if (is_kernel_mode && is_page_fault &&
335 vmalloc_fault(pgd, address) >= 0)
336 return 1;
337 /*
338 * Don't take the mm semaphore here. If we fixup a prefetch
339 * fault we could otherwise deadlock.
340 */
341 mm = NULL; /* happy compiler */
342 vma = NULL;
343 goto bad_area_nosemaphore;
344 }
345
346 /*
347 * If we're trying to touch user-space addresses, we must
348 * be either at PL0, or else with interrupts enabled in the
349 * kernel, so either way we can re-enable interrupts here
350 * unless we are doing atomic access to user space with
351 * interrupts disabled.
352 */
353 if (!(regs->flags & PT_FLAGS_DISABLE_IRQ))
354 local_irq_enable();
355
356 mm = tsk->mm;
357
358 /*
359 * If we're in an interrupt, have no user context or are running in an
360 * atomic region then we must not take the fault.
361 */
362 if (in_atomic() || !mm) {
363 vma = NULL; /* happy compiler */
364 goto bad_area_nosemaphore;
365 }
366
367 if (!is_kernel_mode)
368 flags |= FAULT_FLAG_USER;
369
370 /*
371 * When running in the kernel we expect faults to occur only to
372 * addresses in user space. All other faults represent errors in the
373 * kernel and should generate an OOPS. Unfortunately, in the case of an
374 * erroneous fault occurring in a code path which already holds mmap_sem
375 * we will deadlock attempting to validate the fault against the
376 * address space. Luckily the kernel only validly references user
377 * space from well defined areas of code, which are listed in the
378 * exceptions table.
379 *
380 * As the vast majority of faults will be valid we will only perform
381 * the source reference check when there is a possibility of a deadlock.
382 * Attempt to lock the address space, if we cannot we then validate the
383 * source. If this is invalid we can skip the address space check,
384 * thus avoiding the deadlock.
385 */
386 if (!down_read_trylock(&mm->mmap_sem)) {
387 if (is_kernel_mode &&
388 !search_exception_tables(regs->pc)) {
389 vma = NULL; /* happy compiler */
390 goto bad_area_nosemaphore;
391 }
392
393 retry:
394 down_read(&mm->mmap_sem);
395 }
396
397 vma = find_vma(mm, address);
398 if (!vma)
399 goto bad_area;
400 if (vma->vm_start <= address)
401 goto good_area;
402 if (!(vma->vm_flags & VM_GROWSDOWN))
403 goto bad_area;
404 if (regs->sp < PAGE_OFFSET) {
405 /*
406 * accessing the stack below sp is always a bug.
407 */
408 if (address < regs->sp)
409 goto bad_area;
410 }
411 if (expand_stack(vma, address))
412 goto bad_area;
413
414 /*
415 * Ok, we have a good vm_area for this memory access, so
416 * we can handle it..
417 */
418 good_area:
419 si_code = SEGV_ACCERR;
420 if (fault_num == INT_ITLB_MISS) {
421 if (!(vma->vm_flags & VM_EXEC))
422 goto bad_area;
423 } else if (write) {
424 #ifdef TEST_VERIFY_AREA
425 if (!is_page_fault && regs->cs == KERNEL_CS)
426 pr_err("WP fault at "REGFMT"\n", regs->eip);
427 #endif
428 if (!(vma->vm_flags & VM_WRITE))
429 goto bad_area;
430 flags |= FAULT_FLAG_WRITE;
431 } else {
432 if (!is_page_fault || !(vma->vm_flags & VM_READ))
433 goto bad_area;
434 }
435
436 /*
437 * If for any reason at all we couldn't handle the fault,
438 * make sure we exit gracefully rather than endlessly redo
439 * the fault.
440 */
441 fault = handle_mm_fault(mm, vma, address, flags);
442
443 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
444 return 0;
445
446 if (unlikely(fault & VM_FAULT_ERROR)) {
447 if (fault & VM_FAULT_OOM)
448 goto out_of_memory;
449 else if (fault & VM_FAULT_SIGBUS)
450 goto do_sigbus;
451 BUG();
452 }
453 if (flags & FAULT_FLAG_ALLOW_RETRY) {
454 if (fault & VM_FAULT_MAJOR)
455 tsk->maj_flt++;
456 else
457 tsk->min_flt++;
458 if (fault & VM_FAULT_RETRY) {
459 flags &= ~FAULT_FLAG_ALLOW_RETRY;
460 flags |= FAULT_FLAG_TRIED;
461
462 /*
463 * No need to up_read(&mm->mmap_sem) as we would
464 * have already released it in __lock_page_or_retry
465 * in mm/filemap.c.
466 */
467 goto retry;
468 }
469 }
470
471 #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
472 /*
473 * If this was an asynchronous fault,
474 * restart the appropriate engine.
475 */
476 switch (fault_num) {
477 #if CHIP_HAS_TILE_DMA()
478 case INT_DMATLB_MISS:
479 case INT_DMATLB_MISS_DWNCL:
480 case INT_DMATLB_ACCESS:
481 case INT_DMATLB_ACCESS_DWNCL:
482 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
483 break;
484 #endif
485 #if CHIP_HAS_SN_PROC()
486 case INT_SNITLB_MISS:
487 case INT_SNITLB_MISS_DWNCL:
488 __insn_mtspr(SPR_SNCTL,
489 __insn_mfspr(SPR_SNCTL) &
490 ~SPR_SNCTL__FRZPROC_MASK);
491 break;
492 #endif
493 }
494 #endif
495
496 up_read(&mm->mmap_sem);
497 return 1;
498
499 /*
500 * Something tried to access memory that isn't in our memory map..
501 * Fix it, but check if it's kernel or user first..
502 */
503 bad_area:
504 up_read(&mm->mmap_sem);
505
506 bad_area_nosemaphore:
507 /* User mode accesses just cause a SIGSEGV */
508 if (!is_kernel_mode) {
509 /*
510 * It's possible to have interrupts off here.
511 */
512 local_irq_enable();
513
514 force_sig_info_fault("segfault", SIGSEGV, si_code, address,
515 fault_num, tsk, regs);
516 return 0;
517 }
518
519 no_context:
520 /* Are we prepared to handle this kernel fault? */
521 if (fixup_exception(regs))
522 return 0;
523
524 /*
525 * Oops. The kernel tried to access some bad page. We'll have to
526 * terminate things with extreme prejudice.
527 */
528
529 bust_spinlocks(1);
530
531 /* FIXME: no lookup_address() yet */
532 #ifdef SUPPORT_LOOKUP_ADDRESS
533 if (fault_num == INT_ITLB_MISS) {
534 pte_t *pte = lookup_address(address);
535
536 if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
537 pr_crit("kernel tried to execute"
538 " non-executable page - exploit attempt?"
539 " (uid: %d)\n", current->uid);
540 }
541 #endif
542 if (address < PAGE_SIZE)
543 pr_alert("Unable to handle kernel NULL pointer dereference\n");
544 else
545 pr_alert("Unable to handle kernel paging request\n");
546 pr_alert(" at virtual address "REGFMT", pc "REGFMT"\n",
547 address, regs->pc);
548
549 show_regs(regs);
550
551 if (unlikely(tsk->pid < 2)) {
552 panic("Kernel page fault running %s!",
553 is_idle_task(tsk) ? "the idle task" : "init");
554 }
555
556 /*
557 * More FIXME: we should probably copy the i386 here and
558 * implement a generic die() routine. Not today.
559 */
560 #ifdef SUPPORT_DIE
561 die("Oops", regs);
562 #endif
563 bust_spinlocks(1);
564
565 do_group_exit(SIGKILL);
566
567 /*
568 * We ran out of memory, or some other thing happened to us that made
569 * us unable to handle the page fault gracefully.
570 */
571 out_of_memory:
572 up_read(&mm->mmap_sem);
573 if (is_kernel_mode)
574 goto no_context;
575 pagefault_out_of_memory();
576 return 0;
577
578 do_sigbus:
579 up_read(&mm->mmap_sem);
580
581 /* Kernel mode? Handle exceptions or die */
582 if (is_kernel_mode)
583 goto no_context;
584
585 force_sig_info_fault("bus error", SIGBUS, BUS_ADRERR, address,
586 fault_num, tsk, regs);
587 return 0;
588 }
589
590 #ifndef __tilegx__
591
592 /* We must release ICS before panicking or we won't get anywhere. */
593 #define ics_panic(fmt, ...) do { \
594 __insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \
595 panic(fmt, __VA_ARGS__); \
596 } while (0)
597
598 /*
599 * When we take an ITLB or DTLB fault or access violation in the
600 * supervisor while the critical section bit is set, the hypervisor is
601 * reluctant to write new values into the EX_CONTEXT_K_x registers,
602 * since that might indicate we have not yet squirreled the SPR
603 * contents away and can thus safely take a recursive interrupt.
604 * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2.
605 *
606 * Note that this routine is called before homecache_tlb_defer_enter(),
607 * which means that we can properly unlock any atomics that might
608 * be used there (good), but also means we must be very sensitive
609 * to not touch any data structures that might be located in memory
610 * that could migrate, as we could be entering the kernel on a dataplane
611 * cpu that has been deferring kernel TLB updates. This means, for
612 * example, that we can't migrate init_mm or its pgd.
613 */
614 struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
615 unsigned long address,
616 unsigned long info)
617 {
618 unsigned long pc = info & ~1;
619 int write = info & 1;
620 pgd_t *pgd = get_current_pgd();
621
622 /* Retval is 1 at first since we will handle the fault fully. */
623 struct intvec_state state = {
624 do_page_fault, fault_num, address, write, 1
625 };
626
627 /* Validate that we are plausibly in the right routine. */
628 if ((pc & 0x7) != 0 || pc < PAGE_OFFSET ||
629 (fault_num != INT_DTLB_MISS &&
630 fault_num != INT_DTLB_ACCESS)) {
631 unsigned long old_pc = regs->pc;
632 regs->pc = pc;
633 ics_panic("Bad ICS page fault args:"
634 " old PC %#lx, fault %d/%d at %#lx\n",
635 old_pc, fault_num, write, address);
636 }
637
638 /* We might be faulting on a vmalloc page, so check that first. */
639 if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0)
640 return state;
641
642 /*
643 * If we faulted with ICS set in sys_cmpxchg, we are providing
644 * a user syscall service that should generate a signal on
645 * fault. We didn't set up a kernel stack on initial entry to
646 * sys_cmpxchg, but instead had one set up by the fault, which
647 * (because sys_cmpxchg never releases ICS) came to us via the
648 * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are
649 * still referencing the original user code. We release the
650 * atomic lock and rewrite pt_regs so that it appears that we
651 * came from user-space directly, and after we finish the
652 * fault we'll go back to user space and re-issue the swint.
653 * This way the backtrace information is correct if we need to
654 * emit a stack dump at any point while handling this.
655 *
656 * Must match register use in sys_cmpxchg().
657 */
658 if (pc >= (unsigned long) sys_cmpxchg &&
659 pc < (unsigned long) __sys_cmpxchg_end) {
660 #ifdef CONFIG_SMP
661 /* Don't unlock before we could have locked. */
662 if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) {
663 int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
664 __atomic_fault_unlock(lock_ptr);
665 }
666 #endif
667 regs->sp = regs->regs[27];
668 }
669
670 /*
671 * We can also fault in the atomic assembly, in which
672 * case we use the exception table to do the first-level fixup.
673 * We may re-fixup again in the real fault handler if it
674 * turns out the faulting address is just bad, and not,
675 * for example, migrating.
676 */
677 else if (pc >= (unsigned long) __start_atomic_asm_code &&
678 pc < (unsigned long) __end_atomic_asm_code) {
679 const struct exception_table_entry *fixup;
680 #ifdef CONFIG_SMP
681 /* Unlock the atomic lock. */
682 int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
683 __atomic_fault_unlock(lock_ptr);
684 #endif
685 fixup = search_exception_tables(pc);
686 if (!fixup)
687 ics_panic("ICS atomic fault not in table:"
688 " PC %#lx, fault %d", pc, fault_num);
689 regs->pc = fixup->fixup;
690 regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
691 }
692
693 /*
694 * Now that we have released the atomic lock (if necessary),
695 * it's safe to spin if the PTE that caused the fault was migrating.
696 */
697 if (fault_num == INT_DTLB_ACCESS)
698 write = 1;
699 if (handle_migrating_pte(pgd, fault_num, address, pc, 1, write))
700 return state;
701
702 /* Return zero so that we continue on with normal fault handling. */
703 state.retval = 0;
704 return state;
705 }
706
707 #endif /* !__tilegx__ */
708
709 /*
710 * This routine handles page faults. It determines the address, and the
711 * problem, and then passes it handle_page_fault() for normal DTLB and
712 * ITLB issues, and for DMA or SN processor faults when we are in user
713 * space. For the latter, if we're in kernel mode, we just save the
714 * interrupt away appropriately and return immediately. We can't do
715 * page faults for user code while in kernel mode.
716 */
717 void do_page_fault(struct pt_regs *regs, int fault_num,
718 unsigned long address, unsigned long write)
719 {
720 int is_page_fault;
721
722 /* This case should have been handled by do_page_fault_ics(). */
723 BUG_ON(write & ~1);
724
725 #if CHIP_HAS_TILE_DMA()
726 /*
727 * If it's a DMA fault, suspend the transfer while we're
728 * handling the miss; we'll restart after it's handled. If we
729 * don't suspend, it's possible that this process could swap
730 * out and back in, and restart the engine since the DMA is
731 * still 'running'.
732 */
733 if (fault_num == INT_DMATLB_MISS ||
734 fault_num == INT_DMATLB_ACCESS ||
735 fault_num == INT_DMATLB_MISS_DWNCL ||
736 fault_num == INT_DMATLB_ACCESS_DWNCL) {
737 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
738 while (__insn_mfspr(SPR_DMA_USER_STATUS) &
739 SPR_DMA_STATUS__BUSY_MASK)
740 ;
741 }
742 #endif
743
744 /* Validate fault num and decide if this is a first-time page fault. */
745 switch (fault_num) {
746 case INT_ITLB_MISS:
747 case INT_DTLB_MISS:
748 #if CHIP_HAS_TILE_DMA()
749 case INT_DMATLB_MISS:
750 case INT_DMATLB_MISS_DWNCL:
751 #endif
752 #if CHIP_HAS_SN_PROC()
753 case INT_SNITLB_MISS:
754 case INT_SNITLB_MISS_DWNCL:
755 #endif
756 is_page_fault = 1;
757 break;
758
759 case INT_DTLB_ACCESS:
760 #if CHIP_HAS_TILE_DMA()
761 case INT_DMATLB_ACCESS:
762 case INT_DMATLB_ACCESS_DWNCL:
763 #endif
764 is_page_fault = 0;
765 break;
766
767 default:
768 panic("Bad fault number %d in do_page_fault", fault_num);
769 }
770
771 #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
772 if (EX1_PL(regs->ex1) != USER_PL) {
773 struct async_tlb *async;
774 switch (fault_num) {
775 #if CHIP_HAS_TILE_DMA()
776 case INT_DMATLB_MISS:
777 case INT_DMATLB_ACCESS:
778 case INT_DMATLB_MISS_DWNCL:
779 case INT_DMATLB_ACCESS_DWNCL:
780 async = &current->thread.dma_async_tlb;
781 break;
782 #endif
783 #if CHIP_HAS_SN_PROC()
784 case INT_SNITLB_MISS:
785 case INT_SNITLB_MISS_DWNCL:
786 async = &current->thread.sn_async_tlb;
787 break;
788 #endif
789 default:
790 async = NULL;
791 }
792 if (async) {
793
794 /*
795 * No vmalloc check required, so we can allow
796 * interrupts immediately at this point.
797 */
798 local_irq_enable();
799
800 set_thread_flag(TIF_ASYNC_TLB);
801 if (async->fault_num != 0) {
802 panic("Second async fault %d;"
803 " old fault was %d (%#lx/%ld)",
804 fault_num, async->fault_num,
805 address, write);
806 }
807 BUG_ON(fault_num == 0);
808 async->fault_num = fault_num;
809 async->is_fault = is_page_fault;
810 async->is_write = write;
811 async->address = address;
812 return;
813 }
814 }
815 #endif
816
817 handle_page_fault(regs, fault_num, is_page_fault, address, write);
818 }
819
820
821 #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
822 /*
823 * Check an async_tlb structure to see if a deferred fault is waiting,
824 * and if so pass it to the page-fault code.
825 */
826 static void handle_async_page_fault(struct pt_regs *regs,
827 struct async_tlb *async)
828 {
829 if (async->fault_num) {
830 /*
831 * Clear async->fault_num before calling the page-fault
832 * handler so that if we re-interrupt before returning
833 * from the function we have somewhere to put the
834 * information from the new interrupt.
835 */
836 int fault_num = async->fault_num;
837 async->fault_num = 0;
838 handle_page_fault(regs, fault_num, async->is_fault,
839 async->address, async->is_write);
840 }
841 }
842
843 /*
844 * This routine effectively re-issues asynchronous page faults
845 * when we are returning to user space.
846 */
847 void do_async_page_fault(struct pt_regs *regs)
848 {
849 /*
850 * Clear thread flag early. If we re-interrupt while processing
851 * code here, we will reset it and recall this routine before
852 * returning to user space.
853 */
854 clear_thread_flag(TIF_ASYNC_TLB);
855
856 #if CHIP_HAS_TILE_DMA()
857 handle_async_page_fault(regs, &current->thread.dma_async_tlb);
858 #endif
859 #if CHIP_HAS_SN_PROC()
860 handle_async_page_fault(regs, &current->thread.sn_async_tlb);
861 #endif
862 }
863 #endif /* CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() */
864
865
866 void vmalloc_sync_all(void)
867 {
868 #ifdef __tilegx__
869 /* Currently all L1 kernel pmd's are static and shared. */
870 BUG_ON(pgd_index(VMALLOC_END) != pgd_index(VMALLOC_START));
871 #else
872 /*
873 * Note that races in the updates of insync and start aren't
874 * problematic: insync can only get set bits added, and updates to
875 * start are only improving performance (without affecting correctness
876 * if undone).
877 */
878 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
879 static unsigned long start = PAGE_OFFSET;
880 unsigned long address;
881
882 BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK);
883 for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) {
884 if (!test_bit(pgd_index(address), insync)) {
885 unsigned long flags;
886 struct list_head *pos;
887
888 spin_lock_irqsave(&pgd_lock, flags);
889 list_for_each(pos, &pgd_list)
890 if (!vmalloc_sync_one(list_to_pgd(pos),
891 address)) {
892 /* Must be at first entry in list. */
893 BUG_ON(pos != pgd_list.next);
894 break;
895 }
896 spin_unlock_irqrestore(&pgd_lock, flags);
897 if (pos != pgd_list.next)
898 set_bit(pgd_index(address), insync);
899 }
900 if (address == start && test_bit(pgd_index(address), insync))
901 start = address + PGDIR_SIZE;
902 }
903 #endif
904 }