vm: add VM_FAULT_SIGSEGV handling support
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / tile / mm / fault.c
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 *
14 * From i386 code copyright (C) 1995 Linus Torvalds
15 */
16
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/string.h>
22 #include <linux/types.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
25 #include <linux/mm.h>
26 #include <linux/smp.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/tty.h>
30 #include <linux/vt_kern.h> /* For unblank_screen() */
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/kprobes.h>
34 #include <linux/hugetlb.h>
35 #include <linux/syscalls.h>
36 #include <linux/uaccess.h>
37
38 #include <asm/pgalloc.h>
39 #include <asm/sections.h>
40 #include <asm/traps.h>
41 #include <asm/syscalls.h>
42
43 #include <arch/interrupts.h>
44
45 static noinline void force_sig_info_fault(const char *type, int si_signo,
46 int si_code, unsigned long address,
47 int fault_num,
48 struct task_struct *tsk,
49 struct pt_regs *regs)
50 {
51 siginfo_t info;
52
53 if (unlikely(tsk->pid < 2)) {
54 panic("Signal %d (code %d) at %#lx sent to %s!",
55 si_signo, si_code & 0xffff, address,
56 is_idle_task(tsk) ? "the idle task" : "init");
57 }
58
59 info.si_signo = si_signo;
60 info.si_errno = 0;
61 info.si_code = si_code;
62 info.si_addr = (void __user *)address;
63 info.si_trapno = fault_num;
64 trace_unhandled_signal(type, regs, address, si_signo);
65 force_sig_info(si_signo, &info, tsk);
66 }
67
68 #ifndef __tilegx__
69 /*
70 * Synthesize the fault a PL0 process would get by doing a word-load of
71 * an unaligned address or a high kernel address.
72 */
73 SYSCALL_DEFINE1(cmpxchg_badaddr, unsigned long, address)
74 {
75 struct pt_regs *regs = current_pt_regs();
76
77 if (address >= PAGE_OFFSET)
78 force_sig_info_fault("atomic segfault", SIGSEGV, SEGV_MAPERR,
79 address, INT_DTLB_MISS, current, regs);
80 else
81 force_sig_info_fault("atomic alignment fault", SIGBUS,
82 BUS_ADRALN, address,
83 INT_UNALIGN_DATA, current, regs);
84
85 /*
86 * Adjust pc to point at the actual instruction, which is unusual
87 * for syscalls normally, but is appropriate when we are claiming
88 * that a syscall swint1 caused a page fault or bus error.
89 */
90 regs->pc -= 8;
91
92 /*
93 * Mark this as a caller-save interrupt, like a normal page fault,
94 * so that when we go through the signal handler path we will
95 * properly restore r0, r1, and r2 for the signal handler arguments.
96 */
97 regs->flags |= PT_FLAGS_CALLER_SAVES;
98
99 return 0;
100 }
101 #endif
102
103 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
104 {
105 unsigned index = pgd_index(address);
106 pgd_t *pgd_k;
107 pud_t *pud, *pud_k;
108 pmd_t *pmd, *pmd_k;
109
110 pgd += index;
111 pgd_k = init_mm.pgd + index;
112
113 if (!pgd_present(*pgd_k))
114 return NULL;
115
116 pud = pud_offset(pgd, address);
117 pud_k = pud_offset(pgd_k, address);
118 if (!pud_present(*pud_k))
119 return NULL;
120
121 pmd = pmd_offset(pud, address);
122 pmd_k = pmd_offset(pud_k, address);
123 if (!pmd_present(*pmd_k))
124 return NULL;
125 if (!pmd_present(*pmd)) {
126 set_pmd(pmd, *pmd_k);
127 arch_flush_lazy_mmu_mode();
128 } else
129 BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k));
130 return pmd_k;
131 }
132
133 /*
134 * Handle a fault on the vmalloc area.
135 */
136 static inline int vmalloc_fault(pgd_t *pgd, unsigned long address)
137 {
138 pmd_t *pmd_k;
139 pte_t *pte_k;
140
141 /* Make sure we are in vmalloc area */
142 if (!(address >= VMALLOC_START && address < VMALLOC_END))
143 return -1;
144
145 /*
146 * Synchronize this task's top level page-table
147 * with the 'reference' page table.
148 */
149 pmd_k = vmalloc_sync_one(pgd, address);
150 if (!pmd_k)
151 return -1;
152 if (pmd_huge(*pmd_k))
153 return 0; /* support TILE huge_vmap() API */
154 pte_k = pte_offset_kernel(pmd_k, address);
155 if (!pte_present(*pte_k))
156 return -1;
157 return 0;
158 }
159
160 /* Wait until this PTE has completed migration. */
161 static void wait_for_migration(pte_t *pte)
162 {
163 if (pte_migrating(*pte)) {
164 /*
165 * Wait until the migrater fixes up this pte.
166 * We scale the loop count by the clock rate so we'll wait for
167 * a few seconds here.
168 */
169 int retries = 0;
170 int bound = get_clock_rate();
171 while (pte_migrating(*pte)) {
172 barrier();
173 if (++retries > bound)
174 panic("Hit migrating PTE (%#llx) and"
175 " page PFN %#lx still migrating",
176 pte->val, pte_pfn(*pte));
177 }
178 }
179 }
180
181 /*
182 * It's not generally safe to use "current" to get the page table pointer,
183 * since we might be running an oprofile interrupt in the middle of a
184 * task switch.
185 */
186 static pgd_t *get_current_pgd(void)
187 {
188 HV_Context ctx = hv_inquire_context();
189 unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT;
190 struct page *pgd_page = pfn_to_page(pgd_pfn);
191 BUG_ON(PageHighMem(pgd_page));
192 return (pgd_t *) __va(ctx.page_table);
193 }
194
195 /*
196 * We can receive a page fault from a migrating PTE at any time.
197 * Handle it by just waiting until the fault resolves.
198 *
199 * It's also possible to get a migrating kernel PTE that resolves
200 * itself during the downcall from hypervisor to Linux. We just check
201 * here to see if the PTE seems valid, and if so we retry it.
202 *
203 * NOTE! We MUST NOT take any locks for this case. We may be in an
204 * interrupt or a critical region, and must do as little as possible.
205 * Similarly, we can't use atomic ops here, since we may be handling a
206 * fault caused by an atomic op access.
207 *
208 * If we find a migrating PTE while we're in an NMI context, and we're
209 * at a PC that has a registered exception handler, we don't wait,
210 * since this thread may (e.g.) have been interrupted while migrating
211 * its own stack, which would then cause us to self-deadlock.
212 */
213 static int handle_migrating_pte(pgd_t *pgd, int fault_num,
214 unsigned long address, unsigned long pc,
215 int is_kernel_mode, int write)
216 {
217 pud_t *pud;
218 pmd_t *pmd;
219 pte_t *pte;
220 pte_t pteval;
221
222 if (pgd_addr_invalid(address))
223 return 0;
224
225 pgd += pgd_index(address);
226 pud = pud_offset(pgd, address);
227 if (!pud || !pud_present(*pud))
228 return 0;
229 pmd = pmd_offset(pud, address);
230 if (!pmd || !pmd_present(*pmd))
231 return 0;
232 pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) :
233 pte_offset_kernel(pmd, address);
234 pteval = *pte;
235 if (pte_migrating(pteval)) {
236 if (in_nmi() && search_exception_tables(pc))
237 return 0;
238 wait_for_migration(pte);
239 return 1;
240 }
241
242 if (!is_kernel_mode || !pte_present(pteval))
243 return 0;
244 if (fault_num == INT_ITLB_MISS) {
245 if (pte_exec(pteval))
246 return 1;
247 } else if (write) {
248 if (pte_write(pteval))
249 return 1;
250 } else {
251 if (pte_read(pteval))
252 return 1;
253 }
254
255 return 0;
256 }
257
258 /*
259 * This routine is responsible for faulting in user pages.
260 * It passes the work off to one of the appropriate routines.
261 * It returns true if the fault was successfully handled.
262 */
263 static int handle_page_fault(struct pt_regs *regs,
264 int fault_num,
265 int is_page_fault,
266 unsigned long address,
267 int write)
268 {
269 struct task_struct *tsk;
270 struct mm_struct *mm;
271 struct vm_area_struct *vma;
272 unsigned long stack_offset;
273 int fault;
274 int si_code;
275 int is_kernel_mode;
276 pgd_t *pgd;
277 unsigned int flags;
278
279 /* on TILE, protection faults are always writes */
280 if (!is_page_fault)
281 write = 1;
282
283 flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
284
285 is_kernel_mode = (EX1_PL(regs->ex1) != USER_PL);
286
287 tsk = validate_current();
288
289 /*
290 * Check to see if we might be overwriting the stack, and bail
291 * out if so. The page fault code is a relatively likely
292 * place to get trapped in an infinite regress, and once we
293 * overwrite the whole stack, it becomes very hard to recover.
294 */
295 stack_offset = stack_pointer & (THREAD_SIZE-1);
296 if (stack_offset < THREAD_SIZE / 8) {
297 pr_alert("Potential stack overrun: sp %#lx\n",
298 stack_pointer);
299 show_regs(regs);
300 pr_alert("Killing current process %d/%s\n",
301 tsk->pid, tsk->comm);
302 do_group_exit(SIGKILL);
303 }
304
305 /*
306 * Early on, we need to check for migrating PTE entries;
307 * see homecache.c. If we find a migrating PTE, we wait until
308 * the backing page claims to be done migrating, then we proceed.
309 * For kernel PTEs, we rewrite the PTE and return and retry.
310 * Otherwise, we treat the fault like a normal "no PTE" fault,
311 * rather than trying to patch up the existing PTE.
312 */
313 pgd = get_current_pgd();
314 if (handle_migrating_pte(pgd, fault_num, address, regs->pc,
315 is_kernel_mode, write))
316 return 1;
317
318 si_code = SEGV_MAPERR;
319
320 /*
321 * We fault-in kernel-space virtual memory on-demand. The
322 * 'reference' page table is init_mm.pgd.
323 *
324 * NOTE! We MUST NOT take any locks for this case. We may
325 * be in an interrupt or a critical region, and should
326 * only copy the information from the master page table,
327 * nothing more.
328 *
329 * This verifies that the fault happens in kernel space
330 * and that the fault was not a protection fault.
331 */
332 if (unlikely(address >= TASK_SIZE &&
333 !is_arch_mappable_range(address, 0))) {
334 if (is_kernel_mode && is_page_fault &&
335 vmalloc_fault(pgd, address) >= 0)
336 return 1;
337 /*
338 * Don't take the mm semaphore here. If we fixup a prefetch
339 * fault we could otherwise deadlock.
340 */
341 mm = NULL; /* happy compiler */
342 vma = NULL;
343 goto bad_area_nosemaphore;
344 }
345
346 /*
347 * If we're trying to touch user-space addresses, we must
348 * be either at PL0, or else with interrupts enabled in the
349 * kernel, so either way we can re-enable interrupts here
350 * unless we are doing atomic access to user space with
351 * interrupts disabled.
352 */
353 if (!(regs->flags & PT_FLAGS_DISABLE_IRQ))
354 local_irq_enable();
355
356 mm = tsk->mm;
357
358 /*
359 * If we're in an interrupt, have no user context or are running in an
360 * atomic region then we must not take the fault.
361 */
362 if (in_atomic() || !mm) {
363 vma = NULL; /* happy compiler */
364 goto bad_area_nosemaphore;
365 }
366
367 if (!is_kernel_mode)
368 flags |= FAULT_FLAG_USER;
369
370 /*
371 * When running in the kernel we expect faults to occur only to
372 * addresses in user space. All other faults represent errors in the
373 * kernel and should generate an OOPS. Unfortunately, in the case of an
374 * erroneous fault occurring in a code path which already holds mmap_sem
375 * we will deadlock attempting to validate the fault against the
376 * address space. Luckily the kernel only validly references user
377 * space from well defined areas of code, which are listed in the
378 * exceptions table.
379 *
380 * As the vast majority of faults will be valid we will only perform
381 * the source reference check when there is a possibility of a deadlock.
382 * Attempt to lock the address space, if we cannot we then validate the
383 * source. If this is invalid we can skip the address space check,
384 * thus avoiding the deadlock.
385 */
386 if (!down_read_trylock(&mm->mmap_sem)) {
387 if (is_kernel_mode &&
388 !search_exception_tables(regs->pc)) {
389 vma = NULL; /* happy compiler */
390 goto bad_area_nosemaphore;
391 }
392
393 retry:
394 down_read(&mm->mmap_sem);
395 }
396
397 vma = find_vma(mm, address);
398 if (!vma)
399 goto bad_area;
400 if (vma->vm_start <= address)
401 goto good_area;
402 if (!(vma->vm_flags & VM_GROWSDOWN))
403 goto bad_area;
404 if (regs->sp < PAGE_OFFSET) {
405 /*
406 * accessing the stack below sp is always a bug.
407 */
408 if (address < regs->sp)
409 goto bad_area;
410 }
411 if (expand_stack(vma, address))
412 goto bad_area;
413
414 /*
415 * Ok, we have a good vm_area for this memory access, so
416 * we can handle it..
417 */
418 good_area:
419 si_code = SEGV_ACCERR;
420 if (fault_num == INT_ITLB_MISS) {
421 if (!(vma->vm_flags & VM_EXEC))
422 goto bad_area;
423 } else if (write) {
424 #ifdef TEST_VERIFY_AREA
425 if (!is_page_fault && regs->cs == KERNEL_CS)
426 pr_err("WP fault at "REGFMT"\n", regs->eip);
427 #endif
428 if (!(vma->vm_flags & VM_WRITE))
429 goto bad_area;
430 flags |= FAULT_FLAG_WRITE;
431 } else {
432 if (!is_page_fault || !(vma->vm_flags & VM_READ))
433 goto bad_area;
434 }
435
436 /*
437 * If for any reason at all we couldn't handle the fault,
438 * make sure we exit gracefully rather than endlessly redo
439 * the fault.
440 */
441 fault = handle_mm_fault(mm, vma, address, flags);
442
443 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
444 return 0;
445
446 if (unlikely(fault & VM_FAULT_ERROR)) {
447 if (fault & VM_FAULT_OOM)
448 goto out_of_memory;
449 else if (fault & VM_FAULT_SIGSEGV)
450 goto bad_area;
451 else if (fault & VM_FAULT_SIGBUS)
452 goto do_sigbus;
453 BUG();
454 }
455 if (flags & FAULT_FLAG_ALLOW_RETRY) {
456 if (fault & VM_FAULT_MAJOR)
457 tsk->maj_flt++;
458 else
459 tsk->min_flt++;
460 if (fault & VM_FAULT_RETRY) {
461 flags &= ~FAULT_FLAG_ALLOW_RETRY;
462 flags |= FAULT_FLAG_TRIED;
463
464 /*
465 * No need to up_read(&mm->mmap_sem) as we would
466 * have already released it in __lock_page_or_retry
467 * in mm/filemap.c.
468 */
469 goto retry;
470 }
471 }
472
473 #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
474 /*
475 * If this was an asynchronous fault,
476 * restart the appropriate engine.
477 */
478 switch (fault_num) {
479 #if CHIP_HAS_TILE_DMA()
480 case INT_DMATLB_MISS:
481 case INT_DMATLB_MISS_DWNCL:
482 case INT_DMATLB_ACCESS:
483 case INT_DMATLB_ACCESS_DWNCL:
484 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
485 break;
486 #endif
487 #if CHIP_HAS_SN_PROC()
488 case INT_SNITLB_MISS:
489 case INT_SNITLB_MISS_DWNCL:
490 __insn_mtspr(SPR_SNCTL,
491 __insn_mfspr(SPR_SNCTL) &
492 ~SPR_SNCTL__FRZPROC_MASK);
493 break;
494 #endif
495 }
496 #endif
497
498 up_read(&mm->mmap_sem);
499 return 1;
500
501 /*
502 * Something tried to access memory that isn't in our memory map..
503 * Fix it, but check if it's kernel or user first..
504 */
505 bad_area:
506 up_read(&mm->mmap_sem);
507
508 bad_area_nosemaphore:
509 /* User mode accesses just cause a SIGSEGV */
510 if (!is_kernel_mode) {
511 /*
512 * It's possible to have interrupts off here.
513 */
514 local_irq_enable();
515
516 force_sig_info_fault("segfault", SIGSEGV, si_code, address,
517 fault_num, tsk, regs);
518 return 0;
519 }
520
521 no_context:
522 /* Are we prepared to handle this kernel fault? */
523 if (fixup_exception(regs))
524 return 0;
525
526 /*
527 * Oops. The kernel tried to access some bad page. We'll have to
528 * terminate things with extreme prejudice.
529 */
530
531 bust_spinlocks(1);
532
533 /* FIXME: no lookup_address() yet */
534 #ifdef SUPPORT_LOOKUP_ADDRESS
535 if (fault_num == INT_ITLB_MISS) {
536 pte_t *pte = lookup_address(address);
537
538 if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
539 pr_crit("kernel tried to execute"
540 " non-executable page - exploit attempt?"
541 " (uid: %d)\n", current->uid);
542 }
543 #endif
544 if (address < PAGE_SIZE)
545 pr_alert("Unable to handle kernel NULL pointer dereference\n");
546 else
547 pr_alert("Unable to handle kernel paging request\n");
548 pr_alert(" at virtual address "REGFMT", pc "REGFMT"\n",
549 address, regs->pc);
550
551 show_regs(regs);
552
553 if (unlikely(tsk->pid < 2)) {
554 panic("Kernel page fault running %s!",
555 is_idle_task(tsk) ? "the idle task" : "init");
556 }
557
558 /*
559 * More FIXME: we should probably copy the i386 here and
560 * implement a generic die() routine. Not today.
561 */
562 #ifdef SUPPORT_DIE
563 die("Oops", regs);
564 #endif
565 bust_spinlocks(1);
566
567 do_group_exit(SIGKILL);
568
569 /*
570 * We ran out of memory, or some other thing happened to us that made
571 * us unable to handle the page fault gracefully.
572 */
573 out_of_memory:
574 up_read(&mm->mmap_sem);
575 if (is_kernel_mode)
576 goto no_context;
577 pagefault_out_of_memory();
578 return 0;
579
580 do_sigbus:
581 up_read(&mm->mmap_sem);
582
583 /* Kernel mode? Handle exceptions or die */
584 if (is_kernel_mode)
585 goto no_context;
586
587 force_sig_info_fault("bus error", SIGBUS, BUS_ADRERR, address,
588 fault_num, tsk, regs);
589 return 0;
590 }
591
592 #ifndef __tilegx__
593
594 /* We must release ICS before panicking or we won't get anywhere. */
595 #define ics_panic(fmt, ...) do { \
596 __insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \
597 panic(fmt, __VA_ARGS__); \
598 } while (0)
599
600 /*
601 * When we take an ITLB or DTLB fault or access violation in the
602 * supervisor while the critical section bit is set, the hypervisor is
603 * reluctant to write new values into the EX_CONTEXT_K_x registers,
604 * since that might indicate we have not yet squirreled the SPR
605 * contents away and can thus safely take a recursive interrupt.
606 * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2.
607 *
608 * Note that this routine is called before homecache_tlb_defer_enter(),
609 * which means that we can properly unlock any atomics that might
610 * be used there (good), but also means we must be very sensitive
611 * to not touch any data structures that might be located in memory
612 * that could migrate, as we could be entering the kernel on a dataplane
613 * cpu that has been deferring kernel TLB updates. This means, for
614 * example, that we can't migrate init_mm or its pgd.
615 */
616 struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
617 unsigned long address,
618 unsigned long info)
619 {
620 unsigned long pc = info & ~1;
621 int write = info & 1;
622 pgd_t *pgd = get_current_pgd();
623
624 /* Retval is 1 at first since we will handle the fault fully. */
625 struct intvec_state state = {
626 do_page_fault, fault_num, address, write, 1
627 };
628
629 /* Validate that we are plausibly in the right routine. */
630 if ((pc & 0x7) != 0 || pc < PAGE_OFFSET ||
631 (fault_num != INT_DTLB_MISS &&
632 fault_num != INT_DTLB_ACCESS)) {
633 unsigned long old_pc = regs->pc;
634 regs->pc = pc;
635 ics_panic("Bad ICS page fault args:"
636 " old PC %#lx, fault %d/%d at %#lx\n",
637 old_pc, fault_num, write, address);
638 }
639
640 /* We might be faulting on a vmalloc page, so check that first. */
641 if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0)
642 return state;
643
644 /*
645 * If we faulted with ICS set in sys_cmpxchg, we are providing
646 * a user syscall service that should generate a signal on
647 * fault. We didn't set up a kernel stack on initial entry to
648 * sys_cmpxchg, but instead had one set up by the fault, which
649 * (because sys_cmpxchg never releases ICS) came to us via the
650 * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are
651 * still referencing the original user code. We release the
652 * atomic lock and rewrite pt_regs so that it appears that we
653 * came from user-space directly, and after we finish the
654 * fault we'll go back to user space and re-issue the swint.
655 * This way the backtrace information is correct if we need to
656 * emit a stack dump at any point while handling this.
657 *
658 * Must match register use in sys_cmpxchg().
659 */
660 if (pc >= (unsigned long) sys_cmpxchg &&
661 pc < (unsigned long) __sys_cmpxchg_end) {
662 #ifdef CONFIG_SMP
663 /* Don't unlock before we could have locked. */
664 if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) {
665 int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
666 __atomic_fault_unlock(lock_ptr);
667 }
668 #endif
669 regs->sp = regs->regs[27];
670 }
671
672 /*
673 * We can also fault in the atomic assembly, in which
674 * case we use the exception table to do the first-level fixup.
675 * We may re-fixup again in the real fault handler if it
676 * turns out the faulting address is just bad, and not,
677 * for example, migrating.
678 */
679 else if (pc >= (unsigned long) __start_atomic_asm_code &&
680 pc < (unsigned long) __end_atomic_asm_code) {
681 const struct exception_table_entry *fixup;
682 #ifdef CONFIG_SMP
683 /* Unlock the atomic lock. */
684 int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
685 __atomic_fault_unlock(lock_ptr);
686 #endif
687 fixup = search_exception_tables(pc);
688 if (!fixup)
689 ics_panic("ICS atomic fault not in table:"
690 " PC %#lx, fault %d", pc, fault_num);
691 regs->pc = fixup->fixup;
692 regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
693 }
694
695 /*
696 * Now that we have released the atomic lock (if necessary),
697 * it's safe to spin if the PTE that caused the fault was migrating.
698 */
699 if (fault_num == INT_DTLB_ACCESS)
700 write = 1;
701 if (handle_migrating_pte(pgd, fault_num, address, pc, 1, write))
702 return state;
703
704 /* Return zero so that we continue on with normal fault handling. */
705 state.retval = 0;
706 return state;
707 }
708
709 #endif /* !__tilegx__ */
710
711 /*
712 * This routine handles page faults. It determines the address, and the
713 * problem, and then passes it handle_page_fault() for normal DTLB and
714 * ITLB issues, and for DMA or SN processor faults when we are in user
715 * space. For the latter, if we're in kernel mode, we just save the
716 * interrupt away appropriately and return immediately. We can't do
717 * page faults for user code while in kernel mode.
718 */
719 void do_page_fault(struct pt_regs *regs, int fault_num,
720 unsigned long address, unsigned long write)
721 {
722 int is_page_fault;
723
724 /* This case should have been handled by do_page_fault_ics(). */
725 BUG_ON(write & ~1);
726
727 #if CHIP_HAS_TILE_DMA()
728 /*
729 * If it's a DMA fault, suspend the transfer while we're
730 * handling the miss; we'll restart after it's handled. If we
731 * don't suspend, it's possible that this process could swap
732 * out and back in, and restart the engine since the DMA is
733 * still 'running'.
734 */
735 if (fault_num == INT_DMATLB_MISS ||
736 fault_num == INT_DMATLB_ACCESS ||
737 fault_num == INT_DMATLB_MISS_DWNCL ||
738 fault_num == INT_DMATLB_ACCESS_DWNCL) {
739 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
740 while (__insn_mfspr(SPR_DMA_USER_STATUS) &
741 SPR_DMA_STATUS__BUSY_MASK)
742 ;
743 }
744 #endif
745
746 /* Validate fault num and decide if this is a first-time page fault. */
747 switch (fault_num) {
748 case INT_ITLB_MISS:
749 case INT_DTLB_MISS:
750 #if CHIP_HAS_TILE_DMA()
751 case INT_DMATLB_MISS:
752 case INT_DMATLB_MISS_DWNCL:
753 #endif
754 #if CHIP_HAS_SN_PROC()
755 case INT_SNITLB_MISS:
756 case INT_SNITLB_MISS_DWNCL:
757 #endif
758 is_page_fault = 1;
759 break;
760
761 case INT_DTLB_ACCESS:
762 #if CHIP_HAS_TILE_DMA()
763 case INT_DMATLB_ACCESS:
764 case INT_DMATLB_ACCESS_DWNCL:
765 #endif
766 is_page_fault = 0;
767 break;
768
769 default:
770 panic("Bad fault number %d in do_page_fault", fault_num);
771 }
772
773 #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
774 if (EX1_PL(regs->ex1) != USER_PL) {
775 struct async_tlb *async;
776 switch (fault_num) {
777 #if CHIP_HAS_TILE_DMA()
778 case INT_DMATLB_MISS:
779 case INT_DMATLB_ACCESS:
780 case INT_DMATLB_MISS_DWNCL:
781 case INT_DMATLB_ACCESS_DWNCL:
782 async = &current->thread.dma_async_tlb;
783 break;
784 #endif
785 #if CHIP_HAS_SN_PROC()
786 case INT_SNITLB_MISS:
787 case INT_SNITLB_MISS_DWNCL:
788 async = &current->thread.sn_async_tlb;
789 break;
790 #endif
791 default:
792 async = NULL;
793 }
794 if (async) {
795
796 /*
797 * No vmalloc check required, so we can allow
798 * interrupts immediately at this point.
799 */
800 local_irq_enable();
801
802 set_thread_flag(TIF_ASYNC_TLB);
803 if (async->fault_num != 0) {
804 panic("Second async fault %d;"
805 " old fault was %d (%#lx/%ld)",
806 fault_num, async->fault_num,
807 address, write);
808 }
809 BUG_ON(fault_num == 0);
810 async->fault_num = fault_num;
811 async->is_fault = is_page_fault;
812 async->is_write = write;
813 async->address = address;
814 return;
815 }
816 }
817 #endif
818
819 handle_page_fault(regs, fault_num, is_page_fault, address, write);
820 }
821
822
823 #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
824 /*
825 * Check an async_tlb structure to see if a deferred fault is waiting,
826 * and if so pass it to the page-fault code.
827 */
828 static void handle_async_page_fault(struct pt_regs *regs,
829 struct async_tlb *async)
830 {
831 if (async->fault_num) {
832 /*
833 * Clear async->fault_num before calling the page-fault
834 * handler so that if we re-interrupt before returning
835 * from the function we have somewhere to put the
836 * information from the new interrupt.
837 */
838 int fault_num = async->fault_num;
839 async->fault_num = 0;
840 handle_page_fault(regs, fault_num, async->is_fault,
841 async->address, async->is_write);
842 }
843 }
844
845 /*
846 * This routine effectively re-issues asynchronous page faults
847 * when we are returning to user space.
848 */
849 void do_async_page_fault(struct pt_regs *regs)
850 {
851 /*
852 * Clear thread flag early. If we re-interrupt while processing
853 * code here, we will reset it and recall this routine before
854 * returning to user space.
855 */
856 clear_thread_flag(TIF_ASYNC_TLB);
857
858 #if CHIP_HAS_TILE_DMA()
859 handle_async_page_fault(regs, &current->thread.dma_async_tlb);
860 #endif
861 #if CHIP_HAS_SN_PROC()
862 handle_async_page_fault(regs, &current->thread.sn_async_tlb);
863 #endif
864 }
865 #endif /* CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() */
866
867
868 void vmalloc_sync_all(void)
869 {
870 #ifdef __tilegx__
871 /* Currently all L1 kernel pmd's are static and shared. */
872 BUG_ON(pgd_index(VMALLOC_END) != pgd_index(VMALLOC_START));
873 #else
874 /*
875 * Note that races in the updates of insync and start aren't
876 * problematic: insync can only get set bits added, and updates to
877 * start are only improving performance (without affecting correctness
878 * if undone).
879 */
880 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
881 static unsigned long start = PAGE_OFFSET;
882 unsigned long address;
883
884 BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK);
885 for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) {
886 if (!test_bit(pgd_index(address), insync)) {
887 unsigned long flags;
888 struct list_head *pos;
889
890 spin_lock_irqsave(&pgd_lock, flags);
891 list_for_each(pos, &pgd_list)
892 if (!vmalloc_sync_one(list_to_pgd(pos),
893 address)) {
894 /* Must be at first entry in list. */
895 BUG_ON(pos != pgd_list.next);
896 break;
897 }
898 spin_unlock_irqrestore(&pgd_lock, flags);
899 if (pos != pgd_list.next)
900 set_bit(pgd_index(address), insync);
901 }
902 if (address == start && test_bit(pgd_index(address), insync))
903 start = address + PGDIR_SIZE;
904 }
905 #endif
906 }