vm: add VM_FAULT_SIGSEGV handling support
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / s390 / mm / fault.c
1 /*
2 * S390 version
3 * Copyright IBM Corp. 1999
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (uweigand@de.ibm.com)
6 *
7 * Derived from "arch/i386/mm/fault.c"
8 * Copyright (C) 1995 Linus Torvalds
9 */
10
11 #include <linux/kernel_stat.h>
12 #include <linux/perf_event.h>
13 #include <linux/signal.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/errno.h>
17 #include <linux/string.h>
18 #include <linux/types.h>
19 #include <linux/ptrace.h>
20 #include <linux/mman.h>
21 #include <linux/mm.h>
22 #include <linux/compat.h>
23 #include <linux/smp.h>
24 #include <linux/kdebug.h>
25 #include <linux/init.h>
26 #include <linux/console.h>
27 #include <linux/module.h>
28 #include <linux/hardirq.h>
29 #include <linux/kprobes.h>
30 #include <linux/uaccess.h>
31 #include <linux/hugetlb.h>
32 #include <asm/asm-offsets.h>
33 #include <asm/pgtable.h>
34 #include <asm/irq.h>
35 #include <asm/mmu_context.h>
36 #include <asm/facility.h>
37 #include "../kernel/entry.h"
38
39 #ifndef CONFIG_64BIT
40 #define __FAIL_ADDR_MASK 0x7ffff000
41 #define __SUBCODE_MASK 0x0200
42 #define __PF_RES_FIELD 0ULL
43 #else /* CONFIG_64BIT */
44 #define __FAIL_ADDR_MASK -4096L
45 #define __SUBCODE_MASK 0x0600
46 #define __PF_RES_FIELD 0x8000000000000000ULL
47 #endif /* CONFIG_64BIT */
48
49 #define VM_FAULT_BADCONTEXT 0x010000
50 #define VM_FAULT_BADMAP 0x020000
51 #define VM_FAULT_BADACCESS 0x040000
52 #define VM_FAULT_SIGNAL 0x080000
53
54 static unsigned long store_indication __read_mostly;
55
56 #ifdef CONFIG_64BIT
57 static int __init fault_init(void)
58 {
59 if (test_facility(75))
60 store_indication = 0xc00;
61 return 0;
62 }
63 early_initcall(fault_init);
64 #endif
65
66 static inline int notify_page_fault(struct pt_regs *regs)
67 {
68 int ret = 0;
69
70 /* kprobe_running() needs smp_processor_id() */
71 if (kprobes_built_in() && !user_mode(regs)) {
72 preempt_disable();
73 if (kprobe_running() && kprobe_fault_handler(regs, 14))
74 ret = 1;
75 preempt_enable();
76 }
77 return ret;
78 }
79
80
81 /*
82 * Unlock any spinlocks which will prevent us from getting the
83 * message out.
84 */
85 void bust_spinlocks(int yes)
86 {
87 if (yes) {
88 oops_in_progress = 1;
89 } else {
90 int loglevel_save = console_loglevel;
91 console_unblank();
92 oops_in_progress = 0;
93 /*
94 * OK, the message is on the console. Now we call printk()
95 * without oops_in_progress set so that printk will give klogd
96 * a poke. Hold onto your hats...
97 */
98 console_loglevel = 15;
99 printk(" ");
100 console_loglevel = loglevel_save;
101 }
102 }
103
104 /*
105 * Returns the address space associated with the fault.
106 * Returns 0 for kernel space and 1 for user space.
107 */
108 static inline int user_space_fault(unsigned long trans_exc_code)
109 {
110 /*
111 * The lowest two bits of the translation exception
112 * identification indicate which paging table was used.
113 */
114 trans_exc_code &= 3;
115 if (trans_exc_code == 2)
116 /* Access via secondary space, set_fs setting decides */
117 return current->thread.mm_segment.ar4;
118 if (s390_user_mode == HOME_SPACE_MODE)
119 /* User space if the access has been done via home space. */
120 return trans_exc_code == 3;
121 /*
122 * If the user space is not the home space the kernel runs in home
123 * space. Access via secondary space has already been covered,
124 * access via primary space or access register is from user space
125 * and access via home space is from the kernel.
126 */
127 return trans_exc_code != 3;
128 }
129
130 static inline void report_user_fault(struct pt_regs *regs, long signr)
131 {
132 if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
133 return;
134 if (!unhandled_signal(current, signr))
135 return;
136 if (!printk_ratelimit())
137 return;
138 printk(KERN_ALERT "User process fault: interruption code 0x%X ",
139 regs->int_code);
140 print_vma_addr(KERN_CONT "in ", regs->psw.addr & PSW_ADDR_INSN);
141 printk(KERN_CONT "\n");
142 printk(KERN_ALERT "failing address: %lX\n",
143 regs->int_parm_long & __FAIL_ADDR_MASK);
144 show_regs(regs);
145 }
146
147 /*
148 * Send SIGSEGV to task. This is an external routine
149 * to keep the stack usage of do_page_fault small.
150 */
151 static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
152 {
153 struct siginfo si;
154
155 report_user_fault(regs, SIGSEGV);
156 si.si_signo = SIGSEGV;
157 si.si_code = si_code;
158 si.si_addr = (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK);
159 force_sig_info(SIGSEGV, &si, current);
160 }
161
162 static noinline void do_no_context(struct pt_regs *regs)
163 {
164 const struct exception_table_entry *fixup;
165 unsigned long address;
166
167 /* Are we prepared to handle this kernel fault? */
168 fixup = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
169 if (fixup) {
170 regs->psw.addr = extable_fixup(fixup) | PSW_ADDR_AMODE;
171 return;
172 }
173
174 /*
175 * Oops. The kernel tried to access some bad page. We'll have to
176 * terminate things with extreme prejudice.
177 */
178 address = regs->int_parm_long & __FAIL_ADDR_MASK;
179 if (!user_space_fault(regs->int_parm_long))
180 printk(KERN_ALERT "Unable to handle kernel pointer dereference"
181 " at virtual kernel address %p\n", (void *)address);
182 else
183 printk(KERN_ALERT "Unable to handle kernel paging request"
184 " at virtual user address %p\n", (void *)address);
185
186 die(regs, "Oops");
187 do_exit(SIGKILL);
188 }
189
190 static noinline void do_low_address(struct pt_regs *regs)
191 {
192 /* Low-address protection hit in kernel mode means
193 NULL pointer write access in kernel mode. */
194 if (regs->psw.mask & PSW_MASK_PSTATE) {
195 /* Low-address protection hit in user mode 'cannot happen'. */
196 die (regs, "Low-address protection");
197 do_exit(SIGKILL);
198 }
199
200 do_no_context(regs);
201 }
202
203 static noinline void do_sigbus(struct pt_regs *regs)
204 {
205 struct task_struct *tsk = current;
206 struct siginfo si;
207
208 /*
209 * Send a sigbus, regardless of whether we were in kernel
210 * or user mode.
211 */
212 si.si_signo = SIGBUS;
213 si.si_errno = 0;
214 si.si_code = BUS_ADRERR;
215 si.si_addr = (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK);
216 force_sig_info(SIGBUS, &si, tsk);
217 }
218
219 static noinline void do_fault_error(struct pt_regs *regs, int fault)
220 {
221 int si_code;
222
223 switch (fault) {
224 case VM_FAULT_BADACCESS:
225 case VM_FAULT_BADMAP:
226 /* Bad memory access. Check if it is kernel or user space. */
227 if (user_mode(regs)) {
228 /* User mode accesses just cause a SIGSEGV */
229 si_code = (fault == VM_FAULT_BADMAP) ?
230 SEGV_MAPERR : SEGV_ACCERR;
231 do_sigsegv(regs, si_code);
232 return;
233 }
234 case VM_FAULT_BADCONTEXT:
235 do_no_context(regs);
236 break;
237 case VM_FAULT_SIGNAL:
238 if (!user_mode(regs))
239 do_no_context(regs);
240 break;
241 default: /* fault & VM_FAULT_ERROR */
242 if (fault & VM_FAULT_OOM) {
243 if (!user_mode(regs))
244 do_no_context(regs);
245 else
246 pagefault_out_of_memory();
247 } else if (fault & VM_FAULT_SIGSEGV) {
248 /* Kernel mode? Handle exceptions or die */
249 if (!user_mode(regs))
250 do_no_context(regs);
251 else
252 do_sigsegv(regs, SEGV_MAPERR);
253 } else if (fault & VM_FAULT_SIGBUS) {
254 /* Kernel mode? Handle exceptions or die */
255 if (!user_mode(regs))
256 do_no_context(regs);
257 else
258 do_sigbus(regs);
259 } else
260 BUG();
261 break;
262 }
263 }
264
265 /*
266 * This routine handles page faults. It determines the address,
267 * and the problem, and then passes it off to one of the appropriate
268 * routines.
269 *
270 * interruption code (int_code):
271 * 04 Protection -> Write-Protection (suprression)
272 * 10 Segment translation -> Not present (nullification)
273 * 11 Page translation -> Not present (nullification)
274 * 3b Region third trans. -> Not present (nullification)
275 */
276 static inline int do_exception(struct pt_regs *regs, int access)
277 {
278 struct task_struct *tsk;
279 struct mm_struct *mm;
280 struct vm_area_struct *vma;
281 unsigned long trans_exc_code;
282 unsigned long address;
283 unsigned int flags;
284 int fault;
285
286 tsk = current;
287 /*
288 * The instruction that caused the program check has
289 * been nullified. Don't signal single step via SIGTRAP.
290 */
291 clear_tsk_thread_flag(tsk, TIF_PER_TRAP);
292
293 if (notify_page_fault(regs))
294 return 0;
295
296 mm = tsk->mm;
297 trans_exc_code = regs->int_parm_long;
298
299 /*
300 * Verify that the fault happened in user space, that
301 * we are not in an interrupt and that there is a
302 * user context.
303 */
304 fault = VM_FAULT_BADCONTEXT;
305 if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
306 goto out;
307
308 address = trans_exc_code & __FAIL_ADDR_MASK;
309 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
310 flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
311 if (user_mode(regs))
312 flags |= FAULT_FLAG_USER;
313 if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
314 flags |= FAULT_FLAG_WRITE;
315 down_read(&mm->mmap_sem);
316
317 #ifdef CONFIG_PGSTE
318 if ((current->flags & PF_VCPU) && S390_lowcore.gmap) {
319 address = __gmap_fault(address,
320 (struct gmap *) S390_lowcore.gmap);
321 if (address == -EFAULT) {
322 fault = VM_FAULT_BADMAP;
323 goto out_up;
324 }
325 if (address == -ENOMEM) {
326 fault = VM_FAULT_OOM;
327 goto out_up;
328 }
329 }
330 #endif
331
332 retry:
333 fault = VM_FAULT_BADMAP;
334 vma = find_vma(mm, address);
335 if (!vma)
336 goto out_up;
337
338 if (unlikely(vma->vm_start > address)) {
339 if (!(vma->vm_flags & VM_GROWSDOWN))
340 goto out_up;
341 if (expand_stack(vma, address))
342 goto out_up;
343 }
344
345 /*
346 * Ok, we have a good vm_area for this memory access, so
347 * we can handle it..
348 */
349 fault = VM_FAULT_BADACCESS;
350 if (unlikely(!(vma->vm_flags & access)))
351 goto out_up;
352
353 if (is_vm_hugetlb_page(vma))
354 address &= HPAGE_MASK;
355 /*
356 * If for any reason at all we couldn't handle the fault,
357 * make sure we exit gracefully rather than endlessly redo
358 * the fault.
359 */
360 fault = handle_mm_fault(mm, vma, address, flags);
361 /* No reason to continue if interrupted by SIGKILL. */
362 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
363 fault = VM_FAULT_SIGNAL;
364 goto out;
365 }
366 if (unlikely(fault & VM_FAULT_ERROR))
367 goto out_up;
368
369 /*
370 * Major/minor page fault accounting is only done on the
371 * initial attempt. If we go through a retry, it is extremely
372 * likely that the page will be found in page cache at that point.
373 */
374 if (flags & FAULT_FLAG_ALLOW_RETRY) {
375 if (fault & VM_FAULT_MAJOR) {
376 tsk->maj_flt++;
377 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
378 regs, address);
379 } else {
380 tsk->min_flt++;
381 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
382 regs, address);
383 }
384 if (fault & VM_FAULT_RETRY) {
385 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
386 * of starvation. */
387 flags &= ~FAULT_FLAG_ALLOW_RETRY;
388 flags |= FAULT_FLAG_TRIED;
389 down_read(&mm->mmap_sem);
390 goto retry;
391 }
392 }
393 fault = 0;
394 out_up:
395 up_read(&mm->mmap_sem);
396 out:
397 return fault;
398 }
399
400 void __kprobes do_protection_exception(struct pt_regs *regs)
401 {
402 unsigned long trans_exc_code;
403 int fault;
404
405 trans_exc_code = regs->int_parm_long;
406 /*
407 * Protection exceptions are suppressing, decrement psw address.
408 * The exception to this rule are aborted transactions, for these
409 * the PSW already points to the correct location.
410 */
411 if (!(regs->int_code & 0x200))
412 regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
413 /*
414 * Check for low-address protection. This needs to be treated
415 * as a special case because the translation exception code
416 * field is not guaranteed to contain valid data in this case.
417 */
418 if (unlikely(!(trans_exc_code & 4))) {
419 do_low_address(regs);
420 return;
421 }
422 fault = do_exception(regs, VM_WRITE);
423 if (unlikely(fault))
424 do_fault_error(regs, fault);
425 }
426
427 void __kprobes do_dat_exception(struct pt_regs *regs)
428 {
429 int access, fault;
430
431 access = VM_READ | VM_EXEC | VM_WRITE;
432 fault = do_exception(regs, access);
433 if (unlikely(fault))
434 do_fault_error(regs, fault);
435 }
436
437 #ifdef CONFIG_64BIT
438 void __kprobes do_asce_exception(struct pt_regs *regs)
439 {
440 struct mm_struct *mm = current->mm;
441 struct vm_area_struct *vma;
442 unsigned long trans_exc_code;
443
444 /*
445 * The instruction that caused the program check has
446 * been nullified. Don't signal single step via SIGTRAP.
447 */
448 clear_tsk_thread_flag(current, TIF_PER_TRAP);
449
450 trans_exc_code = regs->int_parm_long;
451 if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
452 goto no_context;
453
454 down_read(&mm->mmap_sem);
455 vma = find_vma(mm, trans_exc_code & __FAIL_ADDR_MASK);
456 up_read(&mm->mmap_sem);
457
458 if (vma) {
459 update_mm(mm, current);
460 return;
461 }
462
463 /* User mode accesses just cause a SIGSEGV */
464 if (user_mode(regs)) {
465 do_sigsegv(regs, SEGV_MAPERR);
466 return;
467 }
468
469 no_context:
470 do_no_context(regs);
471 }
472 #endif
473
474 int __handle_fault(unsigned long uaddr, unsigned long pgm_int_code, int write)
475 {
476 struct pt_regs regs;
477 int access, fault;
478
479 /* Emulate a uaccess fault from kernel mode. */
480 regs.psw.mask = psw_kernel_bits | PSW_MASK_DAT | PSW_MASK_MCHECK;
481 if (!irqs_disabled())
482 regs.psw.mask |= PSW_MASK_IO | PSW_MASK_EXT;
483 regs.psw.addr = (unsigned long) __builtin_return_address(0);
484 regs.psw.addr |= PSW_ADDR_AMODE;
485 regs.int_code = pgm_int_code;
486 regs.int_parm_long = (uaddr & PAGE_MASK) | 2;
487 access = write ? VM_WRITE : VM_READ;
488 fault = do_exception(&regs, access);
489 /*
490 * Since the fault happened in kernel mode while performing a uaccess
491 * all we need to do now is emulating a fixup in case "fault" is not
492 * zero.
493 * For the calling uaccess functions this results always in -EFAULT.
494 */
495 return fault ? -EFAULT : 0;
496 }
497
498 #ifdef CONFIG_PFAULT
499 /*
500 * 'pfault' pseudo page faults routines.
501 */
502 static int pfault_disable;
503
504 static int __init nopfault(char *str)
505 {
506 pfault_disable = 1;
507 return 1;
508 }
509
510 __setup("nopfault", nopfault);
511
512 struct pfault_refbk {
513 u16 refdiagc;
514 u16 reffcode;
515 u16 refdwlen;
516 u16 refversn;
517 u64 refgaddr;
518 u64 refselmk;
519 u64 refcmpmk;
520 u64 reserved;
521 } __attribute__ ((packed, aligned(8)));
522
523 int pfault_init(void)
524 {
525 struct pfault_refbk refbk = {
526 .refdiagc = 0x258,
527 .reffcode = 0,
528 .refdwlen = 5,
529 .refversn = 2,
530 .refgaddr = __LC_CURRENT_PID,
531 .refselmk = 1ULL << 48,
532 .refcmpmk = 1ULL << 48,
533 .reserved = __PF_RES_FIELD };
534 int rc;
535
536 if (pfault_disable)
537 return -1;
538 asm volatile(
539 " diag %1,%0,0x258\n"
540 "0: j 2f\n"
541 "1: la %0,8\n"
542 "2:\n"
543 EX_TABLE(0b,1b)
544 : "=d" (rc) : "a" (&refbk), "m" (refbk) : "cc");
545 return rc;
546 }
547
548 void pfault_fini(void)
549 {
550 struct pfault_refbk refbk = {
551 .refdiagc = 0x258,
552 .reffcode = 1,
553 .refdwlen = 5,
554 .refversn = 2,
555 };
556
557 if (pfault_disable)
558 return;
559 asm volatile(
560 " diag %0,0,0x258\n"
561 "0:\n"
562 EX_TABLE(0b,0b)
563 : : "a" (&refbk), "m" (refbk) : "cc");
564 }
565
566 static DEFINE_SPINLOCK(pfault_lock);
567 static LIST_HEAD(pfault_list);
568
569 static void pfault_interrupt(struct ext_code ext_code,
570 unsigned int param32, unsigned long param64)
571 {
572 struct task_struct *tsk;
573 __u16 subcode;
574 pid_t pid;
575
576 /*
577 * Get the external interruption subcode & pfault
578 * initial/completion signal bit. VM stores this
579 * in the 'cpu address' field associated with the
580 * external interrupt.
581 */
582 subcode = ext_code.subcode;
583 if ((subcode & 0xff00) != __SUBCODE_MASK)
584 return;
585 inc_irq_stat(IRQEXT_PFL);
586 /* Get the token (= pid of the affected task). */
587 pid = sizeof(void *) == 4 ? param32 : param64;
588 rcu_read_lock();
589 tsk = find_task_by_pid_ns(pid, &init_pid_ns);
590 if (tsk)
591 get_task_struct(tsk);
592 rcu_read_unlock();
593 if (!tsk)
594 return;
595 spin_lock(&pfault_lock);
596 if (subcode & 0x0080) {
597 /* signal bit is set -> a page has been swapped in by VM */
598 if (tsk->thread.pfault_wait == 1) {
599 /* Initial interrupt was faster than the completion
600 * interrupt. pfault_wait is valid. Set pfault_wait
601 * back to zero and wake up the process. This can
602 * safely be done because the task is still sleeping
603 * and can't produce new pfaults. */
604 tsk->thread.pfault_wait = 0;
605 list_del(&tsk->thread.list);
606 wake_up_process(tsk);
607 put_task_struct(tsk);
608 } else {
609 /* Completion interrupt was faster than initial
610 * interrupt. Set pfault_wait to -1 so the initial
611 * interrupt doesn't put the task to sleep.
612 * If the task is not running, ignore the completion
613 * interrupt since it must be a leftover of a PFAULT
614 * CANCEL operation which didn't remove all pending
615 * completion interrupts. */
616 if (tsk->state == TASK_RUNNING)
617 tsk->thread.pfault_wait = -1;
618 }
619 } else {
620 /* signal bit not set -> a real page is missing. */
621 if (WARN_ON_ONCE(tsk != current))
622 goto out;
623 if (tsk->thread.pfault_wait == 1) {
624 /* Already on the list with a reference: put to sleep */
625 __set_task_state(tsk, TASK_UNINTERRUPTIBLE);
626 set_tsk_need_resched(tsk);
627 } else if (tsk->thread.pfault_wait == -1) {
628 /* Completion interrupt was faster than the initial
629 * interrupt (pfault_wait == -1). Set pfault_wait
630 * back to zero and exit. */
631 tsk->thread.pfault_wait = 0;
632 } else {
633 /* Initial interrupt arrived before completion
634 * interrupt. Let the task sleep.
635 * An extra task reference is needed since a different
636 * cpu may set the task state to TASK_RUNNING again
637 * before the scheduler is reached. */
638 get_task_struct(tsk);
639 tsk->thread.pfault_wait = 1;
640 list_add(&tsk->thread.list, &pfault_list);
641 __set_task_state(tsk, TASK_UNINTERRUPTIBLE);
642 set_tsk_need_resched(tsk);
643 }
644 }
645 out:
646 spin_unlock(&pfault_lock);
647 put_task_struct(tsk);
648 }
649
650 static int __cpuinit pfault_cpu_notify(struct notifier_block *self,
651 unsigned long action, void *hcpu)
652 {
653 struct thread_struct *thread, *next;
654 struct task_struct *tsk;
655
656 switch (action & ~CPU_TASKS_FROZEN) {
657 case CPU_DEAD:
658 spin_lock_irq(&pfault_lock);
659 list_for_each_entry_safe(thread, next, &pfault_list, list) {
660 thread->pfault_wait = 0;
661 list_del(&thread->list);
662 tsk = container_of(thread, struct task_struct, thread);
663 wake_up_process(tsk);
664 put_task_struct(tsk);
665 }
666 spin_unlock_irq(&pfault_lock);
667 break;
668 default:
669 break;
670 }
671 return NOTIFY_OK;
672 }
673
674 static int __init pfault_irq_init(void)
675 {
676 int rc;
677
678 rc = register_external_interrupt(0x2603, pfault_interrupt);
679 if (rc)
680 goto out_extint;
681 rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
682 if (rc)
683 goto out_pfault;
684 service_subclass_irq_register();
685 hotcpu_notifier(pfault_cpu_notify, 0);
686 return 0;
687
688 out_pfault:
689 unregister_external_interrupt(0x2603, pfault_interrupt);
690 out_extint:
691 pfault_disable = 1;
692 return rc;
693 }
694 early_initcall(pfault_irq_init);
695
696 #endif /* CONFIG_PFAULT */