Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / platforms / pseries / eeh_pe.c
1 /*
2 * The file intends to implement PE based on the information from
3 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
4 * All the PEs should be organized as hierarchy tree. The first level
5 * of the tree will be associated to existing PHBs since the particular
6 * PE is only meaningful in one PHB domain.
7 *
8 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 */
24
25 #include <linux/export.h>
26 #include <linux/gfp.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/pci.h>
30 #include <linux/string.h>
31
32 #include <asm/pci-bridge.h>
33 #include <asm/ppc-pci.h>
34
35 static LIST_HEAD(eeh_phb_pe);
36
37 /**
38 * eeh_pe_alloc - Allocate PE
39 * @phb: PCI controller
40 * @type: PE type
41 *
42 * Allocate PE instance dynamically.
43 */
44 static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
45 {
46 struct eeh_pe *pe;
47
48 /* Allocate PHB PE */
49 pe = kzalloc(sizeof(struct eeh_pe), GFP_KERNEL);
50 if (!pe) return NULL;
51
52 /* Initialize PHB PE */
53 pe->type = type;
54 pe->phb = phb;
55 INIT_LIST_HEAD(&pe->child_list);
56 INIT_LIST_HEAD(&pe->child);
57 INIT_LIST_HEAD(&pe->edevs);
58
59 return pe;
60 }
61
62 /**
63 * eeh_phb_pe_create - Create PHB PE
64 * @phb: PCI controller
65 *
66 * The function should be called while the PHB is detected during
67 * system boot or PCI hotplug in order to create PHB PE.
68 */
69 int eeh_phb_pe_create(struct pci_controller *phb)
70 {
71 struct eeh_pe *pe;
72
73 /* Allocate PHB PE */
74 pe = eeh_pe_alloc(phb, EEH_PE_PHB);
75 if (!pe) {
76 pr_err("%s: out of memory!\n", __func__);
77 return -ENOMEM;
78 }
79
80 /* Put it into the list */
81 eeh_lock();
82 list_add_tail(&pe->child, &eeh_phb_pe);
83 eeh_unlock();
84
85 pr_debug("EEH: Add PE for PHB#%d\n", phb->global_number);
86
87 return 0;
88 }
89
90 /**
91 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
92 * @phb: PCI controller
93 *
94 * The overall PEs form hierarchy tree. The first layer of the
95 * hierarchy tree is composed of PHB PEs. The function is used
96 * to retrieve the corresponding PHB PE according to the given PHB.
97 */
98 static struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
99 {
100 struct eeh_pe *pe;
101
102 list_for_each_entry(pe, &eeh_phb_pe, child) {
103 /*
104 * Actually, we needn't check the type since
105 * the PE for PHB has been determined when that
106 * was created.
107 */
108 if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
109 return pe;
110 }
111
112 return NULL;
113 }
114
115 /**
116 * eeh_pe_next - Retrieve the next PE in the tree
117 * @pe: current PE
118 * @root: root PE
119 *
120 * The function is used to retrieve the next PE in the
121 * hierarchy PE tree.
122 */
123 static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe,
124 struct eeh_pe *root)
125 {
126 struct list_head *next = pe->child_list.next;
127
128 if (next == &pe->child_list) {
129 while (1) {
130 if (pe == root)
131 return NULL;
132 next = pe->child.next;
133 if (next != &pe->parent->child_list)
134 break;
135 pe = pe->parent;
136 }
137 }
138
139 return list_entry(next, struct eeh_pe, child);
140 }
141
142 /**
143 * eeh_pe_traverse - Traverse PEs in the specified PHB
144 * @root: root PE
145 * @fn: callback
146 * @flag: extra parameter to callback
147 *
148 * The function is used to traverse the specified PE and its
149 * child PEs. The traversing is to be terminated once the
150 * callback returns something other than NULL, or no more PEs
151 * to be traversed.
152 */
153 static void *eeh_pe_traverse(struct eeh_pe *root,
154 eeh_traverse_func fn, void *flag)
155 {
156 struct eeh_pe *pe;
157 void *ret;
158
159 for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
160 ret = fn(pe, flag);
161 if (ret) return ret;
162 }
163
164 return NULL;
165 }
166
167 /**
168 * eeh_pe_dev_traverse - Traverse the devices from the PE
169 * @root: EEH PE
170 * @fn: function callback
171 * @flag: extra parameter to callback
172 *
173 * The function is used to traverse the devices of the specified
174 * PE and its child PEs.
175 */
176 void *eeh_pe_dev_traverse(struct eeh_pe *root,
177 eeh_traverse_func fn, void *flag)
178 {
179 struct eeh_pe *pe;
180 struct eeh_dev *edev;
181 void *ret;
182
183 if (!root) {
184 pr_warning("%s: Invalid PE %p\n", __func__, root);
185 return NULL;
186 }
187
188 eeh_lock();
189
190 /* Traverse root PE */
191 for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
192 eeh_pe_for_each_dev(pe, edev) {
193 ret = fn(edev, flag);
194 if (ret) {
195 eeh_unlock();
196 return ret;
197 }
198 }
199 }
200
201 eeh_unlock();
202
203 return NULL;
204 }
205
206 /**
207 * __eeh_pe_get - Check the PE address
208 * @data: EEH PE
209 * @flag: EEH device
210 *
211 * For one particular PE, it can be identified by PE address
212 * or tranditional BDF address. BDF address is composed of
213 * Bus/Device/Function number. The extra data referred by flag
214 * indicates which type of address should be used.
215 */
216 static void *__eeh_pe_get(void *data, void *flag)
217 {
218 struct eeh_pe *pe = (struct eeh_pe *)data;
219 struct eeh_dev *edev = (struct eeh_dev *)flag;
220
221 /* Unexpected PHB PE */
222 if (pe->type & EEH_PE_PHB)
223 return NULL;
224
225 /* We prefer PE address */
226 if (edev->pe_config_addr &&
227 (edev->pe_config_addr == pe->addr))
228 return pe;
229
230 /* Try BDF address */
231 if (edev->pe_config_addr &&
232 (edev->config_addr == pe->config_addr))
233 return pe;
234
235 return NULL;
236 }
237
238 /**
239 * eeh_pe_get - Search PE based on the given address
240 * @edev: EEH device
241 *
242 * Search the corresponding PE based on the specified address which
243 * is included in the eeh device. The function is used to check if
244 * the associated PE has been created against the PE address. It's
245 * notable that the PE address has 2 format: traditional PE address
246 * which is composed of PCI bus/device/function number, or unified
247 * PE address.
248 */
249 static struct eeh_pe *eeh_pe_get(struct eeh_dev *edev)
250 {
251 struct eeh_pe *root = eeh_phb_pe_get(edev->phb);
252 struct eeh_pe *pe;
253
254 pe = eeh_pe_traverse(root, __eeh_pe_get, edev);
255
256 return pe;
257 }
258
259 /**
260 * eeh_pe_get_parent - Retrieve the parent PE
261 * @edev: EEH device
262 *
263 * The whole PEs existing in the system are organized as hierarchy
264 * tree. The function is used to retrieve the parent PE according
265 * to the parent EEH device.
266 */
267 static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev)
268 {
269 struct device_node *dn;
270 struct eeh_dev *parent;
271
272 /*
273 * It might have the case for the indirect parent
274 * EEH device already having associated PE, but
275 * the direct parent EEH device doesn't have yet.
276 */
277 dn = edev->dn->parent;
278 while (dn) {
279 /* We're poking out of PCI territory */
280 if (!PCI_DN(dn)) return NULL;
281
282 parent = of_node_to_eeh_dev(dn);
283 /* We're poking out of PCI territory */
284 if (!parent) return NULL;
285
286 if (parent->pe)
287 return parent->pe;
288
289 dn = dn->parent;
290 }
291
292 return NULL;
293 }
294
295 /**
296 * eeh_add_to_parent_pe - Add EEH device to parent PE
297 * @edev: EEH device
298 *
299 * Add EEH device to the parent PE. If the parent PE already
300 * exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
301 * we have to create new PE to hold the EEH device and the new
302 * PE will be linked to its parent PE as well.
303 */
304 int eeh_add_to_parent_pe(struct eeh_dev *edev)
305 {
306 struct eeh_pe *pe, *parent;
307
308 eeh_lock();
309
310 /*
311 * Search the PE has been existing or not according
312 * to the PE address. If that has been existing, the
313 * PE should be composed of PCI bus and its subordinate
314 * components.
315 */
316 pe = eeh_pe_get(edev);
317 if (pe && !(pe->type & EEH_PE_INVALID)) {
318 if (!edev->pe_config_addr) {
319 eeh_unlock();
320 pr_err("%s: PE with addr 0x%x already exists\n",
321 __func__, edev->config_addr);
322 return -EEXIST;
323 }
324
325 /* Mark the PE as type of PCI bus */
326 pe->type = EEH_PE_BUS;
327 edev->pe = pe;
328
329 /* Put the edev to PE */
330 list_add_tail(&edev->list, &pe->edevs);
331 eeh_unlock();
332 pr_debug("EEH: Add %s to Bus PE#%x\n",
333 edev->dn->full_name, pe->addr);
334
335 return 0;
336 } else if (pe && (pe->type & EEH_PE_INVALID)) {
337 list_add_tail(&edev->list, &pe->edevs);
338 edev->pe = pe;
339 /*
340 * We're running to here because of PCI hotplug caused by
341 * EEH recovery. We need clear EEH_PE_INVALID until the top.
342 */
343 parent = pe;
344 while (parent) {
345 if (!(parent->type & EEH_PE_INVALID))
346 break;
347 parent->type &= ~EEH_PE_INVALID;
348 parent = parent->parent;
349 }
350 eeh_unlock();
351 pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n",
352 edev->dn->full_name, pe->addr, pe->parent->addr);
353
354 return 0;
355 }
356
357 /* Create a new EEH PE */
358 pe = eeh_pe_alloc(edev->phb, EEH_PE_DEVICE);
359 if (!pe) {
360 eeh_unlock();
361 pr_err("%s: out of memory!\n", __func__);
362 return -ENOMEM;
363 }
364 pe->addr = edev->pe_config_addr;
365 pe->config_addr = edev->config_addr;
366
367 /*
368 * Put the new EEH PE into hierarchy tree. If the parent
369 * can't be found, the newly created PE will be attached
370 * to PHB directly. Otherwise, we have to associate the
371 * PE with its parent.
372 */
373 parent = eeh_pe_get_parent(edev);
374 if (!parent) {
375 parent = eeh_phb_pe_get(edev->phb);
376 if (!parent) {
377 eeh_unlock();
378 pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
379 __func__, edev->phb->global_number);
380 edev->pe = NULL;
381 kfree(pe);
382 return -EEXIST;
383 }
384 }
385 pe->parent = parent;
386
387 /*
388 * Put the newly created PE into the child list and
389 * link the EEH device accordingly.
390 */
391 list_add_tail(&pe->child, &parent->child_list);
392 list_add_tail(&edev->list, &pe->edevs);
393 edev->pe = pe;
394 eeh_unlock();
395 pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n",
396 edev->dn->full_name, pe->addr, pe->parent->addr);
397
398 return 0;
399 }
400
401 /**
402 * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
403 * @edev: EEH device
404 * @purge_pe: remove PE or not
405 *
406 * The PE hierarchy tree might be changed when doing PCI hotplug.
407 * Also, the PCI devices or buses could be removed from the system
408 * during EEH recovery. So we have to call the function remove the
409 * corresponding PE accordingly if necessary.
410 */
411 int eeh_rmv_from_parent_pe(struct eeh_dev *edev, int purge_pe)
412 {
413 struct eeh_pe *pe, *parent, *child;
414 int cnt;
415
416 if (!edev->pe) {
417 pr_warning("%s: No PE found for EEH device %s\n",
418 __func__, edev->dn->full_name);
419 return -EEXIST;
420 }
421
422 eeh_lock();
423
424 /* Remove the EEH device */
425 pe = edev->pe;
426 edev->pe = NULL;
427 list_del(&edev->list);
428
429 /*
430 * Check if the parent PE includes any EEH devices.
431 * If not, we should delete that. Also, we should
432 * delete the parent PE if it doesn't have associated
433 * child PEs and EEH devices.
434 */
435 while (1) {
436 parent = pe->parent;
437 if (pe->type & EEH_PE_PHB)
438 break;
439
440 if (purge_pe) {
441 if (list_empty(&pe->edevs) &&
442 list_empty(&pe->child_list)) {
443 list_del(&pe->child);
444 kfree(pe);
445 } else {
446 break;
447 }
448 } else {
449 if (list_empty(&pe->edevs)) {
450 cnt = 0;
451 list_for_each_entry(child, &pe->child_list, child) {
452 if (!(child->type & EEH_PE_INVALID)) {
453 cnt++;
454 break;
455 }
456 }
457
458 if (!cnt)
459 pe->type |= EEH_PE_INVALID;
460 else
461 break;
462 }
463 }
464
465 pe = parent;
466 }
467
468 eeh_unlock();
469
470 return 0;
471 }
472
473 /**
474 * __eeh_pe_state_mark - Mark the state for the PE
475 * @data: EEH PE
476 * @flag: state
477 *
478 * The function is used to mark the indicated state for the given
479 * PE. Also, the associated PCI devices will be put into IO frozen
480 * state as well.
481 */
482 static void *__eeh_pe_state_mark(void *data, void *flag)
483 {
484 struct eeh_pe *pe = (struct eeh_pe *)data;
485 int state = *((int *)flag);
486 struct eeh_dev *tmp;
487 struct pci_dev *pdev;
488
489 /*
490 * Mark the PE with the indicated state. Also,
491 * the associated PCI device will be put into
492 * I/O frozen state to avoid I/O accesses from
493 * the PCI device driver.
494 */
495 pe->state |= state;
496 eeh_pe_for_each_dev(pe, tmp) {
497 pdev = eeh_dev_to_pci_dev(tmp);
498 if (pdev)
499 pdev->error_state = pci_channel_io_frozen;
500 }
501
502 return NULL;
503 }
504
505 /**
506 * eeh_pe_state_mark - Mark specified state for PE and its associated device
507 * @pe: EEH PE
508 *
509 * EEH error affects the current PE and its child PEs. The function
510 * is used to mark appropriate state for the affected PEs and the
511 * associated devices.
512 */
513 void eeh_pe_state_mark(struct eeh_pe *pe, int state)
514 {
515 eeh_lock();
516 eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
517 eeh_unlock();
518 }
519
520 /**
521 * __eeh_pe_state_clear - Clear state for the PE
522 * @data: EEH PE
523 * @flag: state
524 *
525 * The function is used to clear the indicated state from the
526 * given PE. Besides, we also clear the check count of the PE
527 * as well.
528 */
529 static void *__eeh_pe_state_clear(void *data, void *flag)
530 {
531 struct eeh_pe *pe = (struct eeh_pe *)data;
532 int state = *((int *)flag);
533
534 pe->state &= ~state;
535 pe->check_count = 0;
536
537 return NULL;
538 }
539
540 /**
541 * eeh_pe_state_clear - Clear state for the PE and its children
542 * @pe: PE
543 * @state: state to be cleared
544 *
545 * When the PE and its children has been recovered from error,
546 * we need clear the error state for that. The function is used
547 * for the purpose.
548 */
549 void eeh_pe_state_clear(struct eeh_pe *pe, int state)
550 {
551 eeh_lock();
552 eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
553 eeh_unlock();
554 }
555
556 /**
557 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
558 * @data: EEH device
559 * @flag: Unused
560 *
561 * Loads the PCI configuration space base address registers,
562 * the expansion ROM base address, the latency timer, and etc.
563 * from the saved values in the device node.
564 */
565 static void *eeh_restore_one_device_bars(void *data, void *flag)
566 {
567 int i;
568 u32 cmd;
569 struct eeh_dev *edev = (struct eeh_dev *)data;
570 struct device_node *dn = eeh_dev_to_of_node(edev);
571
572 for (i = 4; i < 10; i++)
573 eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]);
574 /* 12 == Expansion ROM Address */
575 eeh_ops->write_config(dn, 12*4, 4, edev->config_space[12]);
576
577 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
578 #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
579
580 eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1,
581 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
582 eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1,
583 SAVED_BYTE(PCI_LATENCY_TIMER));
584
585 /* max latency, min grant, interrupt pin and line */
586 eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]);
587
588 /*
589 * Restore PERR & SERR bits, some devices require it,
590 * don't touch the other command bits
591 */
592 eeh_ops->read_config(dn, PCI_COMMAND, 4, &cmd);
593 if (edev->config_space[1] & PCI_COMMAND_PARITY)
594 cmd |= PCI_COMMAND_PARITY;
595 else
596 cmd &= ~PCI_COMMAND_PARITY;
597 if (edev->config_space[1] & PCI_COMMAND_SERR)
598 cmd |= PCI_COMMAND_SERR;
599 else
600 cmd &= ~PCI_COMMAND_SERR;
601 eeh_ops->write_config(dn, PCI_COMMAND, 4, cmd);
602
603 return NULL;
604 }
605
606 /**
607 * eeh_pe_restore_bars - Restore the PCI config space info
608 * @pe: EEH PE
609 *
610 * This routine performs a recursive walk to the children
611 * of this device as well.
612 */
613 void eeh_pe_restore_bars(struct eeh_pe *pe)
614 {
615 /*
616 * We needn't take the EEH lock since eeh_pe_dev_traverse()
617 * will take that.
618 */
619 eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
620 }
621
622 /**
623 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
624 * @pe: EEH PE
625 *
626 * Retrieve the PCI bus according to the given PE. Basically,
627 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
628 * primary PCI bus will be retrieved. The parent bus will be
629 * returned for BUS PE. However, we don't have associated PCI
630 * bus for DEVICE PE.
631 */
632 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
633 {
634 struct pci_bus *bus = NULL;
635 struct eeh_dev *edev;
636 struct pci_dev *pdev;
637
638 eeh_lock();
639
640 if (pe->type & EEH_PE_PHB) {
641 bus = pe->phb->bus;
642 } else if (pe->type & EEH_PE_BUS) {
643 edev = list_first_entry(&pe->edevs, struct eeh_dev, list);
644 pdev = eeh_dev_to_pci_dev(edev);
645 if (pdev)
646 bus = pdev->bus;
647 }
648
649 eeh_unlock();
650
651 return bus;
652 }