locking, lockdep: Convert sprintf_symbol to %pS
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / platforms / pseries / eeh.c
1 /*
2 * eeh.c
3 * Copyright IBM Corporation 2001, 2005, 2006
4 * Copyright Dave Engebretsen & Todd Inglett 2001
5 * Copyright Linas Vepstas 2005, 2006
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22 */
23
24 #undef DEBUG
25
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 #include <linux/pci.h>
30 #include <linux/proc_fs.h>
31 #include <linux/rbtree.h>
32 #include <linux/seq_file.h>
33 #include <linux/spinlock.h>
34 #include <linux/of.h>
35
36 #include <asm/atomic.h>
37 #include <asm/eeh.h>
38 #include <asm/eeh_event.h>
39 #include <asm/io.h>
40 #include <asm/machdep.h>
41 #include <asm/ppc-pci.h>
42 #include <asm/rtas.h>
43
44
45 /** Overview:
46 * EEH, or "Extended Error Handling" is a PCI bridge technology for
47 * dealing with PCI bus errors that can't be dealt with within the
48 * usual PCI framework, except by check-stopping the CPU. Systems
49 * that are designed for high-availability/reliability cannot afford
50 * to crash due to a "mere" PCI error, thus the need for EEH.
51 * An EEH-capable bridge operates by converting a detected error
52 * into a "slot freeze", taking the PCI adapter off-line, making
53 * the slot behave, from the OS'es point of view, as if the slot
54 * were "empty": all reads return 0xff's and all writes are silently
55 * ignored. EEH slot isolation events can be triggered by parity
56 * errors on the address or data busses (e.g. during posted writes),
57 * which in turn might be caused by low voltage on the bus, dust,
58 * vibration, humidity, radioactivity or plain-old failed hardware.
59 *
60 * Note, however, that one of the leading causes of EEH slot
61 * freeze events are buggy device drivers, buggy device microcode,
62 * or buggy device hardware. This is because any attempt by the
63 * device to bus-master data to a memory address that is not
64 * assigned to the device will trigger a slot freeze. (The idea
65 * is to prevent devices-gone-wild from corrupting system memory).
66 * Buggy hardware/drivers will have a miserable time co-existing
67 * with EEH.
68 *
69 * Ideally, a PCI device driver, when suspecting that an isolation
70 * event has occured (e.g. by reading 0xff's), will then ask EEH
71 * whether this is the case, and then take appropriate steps to
72 * reset the PCI slot, the PCI device, and then resume operations.
73 * However, until that day, the checking is done here, with the
74 * eeh_check_failure() routine embedded in the MMIO macros. If
75 * the slot is found to be isolated, an "EEH Event" is synthesized
76 * and sent out for processing.
77 */
78
79 /* If a device driver keeps reading an MMIO register in an interrupt
80 * handler after a slot isolation event, it might be broken.
81 * This sets the threshold for how many read attempts we allow
82 * before printing an error message.
83 */
84 #define EEH_MAX_FAILS 2100000
85
86 /* Time to wait for a PCI slot to report status, in milliseconds */
87 #define PCI_BUS_RESET_WAIT_MSEC (60*1000)
88
89 /* RTAS tokens */
90 static int ibm_set_eeh_option;
91 static int ibm_set_slot_reset;
92 static int ibm_read_slot_reset_state;
93 static int ibm_read_slot_reset_state2;
94 static int ibm_slot_error_detail;
95 static int ibm_get_config_addr_info;
96 static int ibm_get_config_addr_info2;
97 static int ibm_configure_bridge;
98
99 int eeh_subsystem_enabled;
100 EXPORT_SYMBOL(eeh_subsystem_enabled);
101
102 /* Lock to avoid races due to multiple reports of an error */
103 static DEFINE_RAW_SPINLOCK(confirm_error_lock);
104
105 /* Buffer for reporting slot-error-detail rtas calls. Its here
106 * in BSS, and not dynamically alloced, so that it ends up in
107 * RMO where RTAS can access it.
108 */
109 static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
110 static DEFINE_SPINLOCK(slot_errbuf_lock);
111 static int eeh_error_buf_size;
112
113 /* Buffer for reporting pci register dumps. Its here in BSS, and
114 * not dynamically alloced, so that it ends up in RMO where RTAS
115 * can access it.
116 */
117 #define EEH_PCI_REGS_LOG_LEN 4096
118 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
119
120 /* System monitoring statistics */
121 static unsigned long no_device;
122 static unsigned long no_dn;
123 static unsigned long no_cfg_addr;
124 static unsigned long ignored_check;
125 static unsigned long total_mmio_ffs;
126 static unsigned long false_positives;
127 static unsigned long slot_resets;
128
129 #define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
130
131 /* --------------------------------------------------------------- */
132 /* Below lies the EEH event infrastructure */
133
134 static void rtas_slot_error_detail(struct pci_dn *pdn, int severity,
135 char *driver_log, size_t loglen)
136 {
137 int config_addr;
138 unsigned long flags;
139 int rc;
140
141 /* Log the error with the rtas logger */
142 spin_lock_irqsave(&slot_errbuf_lock, flags);
143 memset(slot_errbuf, 0, eeh_error_buf_size);
144
145 /* Use PE configuration address, if present */
146 config_addr = pdn->eeh_config_addr;
147 if (pdn->eeh_pe_config_addr)
148 config_addr = pdn->eeh_pe_config_addr;
149
150 rc = rtas_call(ibm_slot_error_detail,
151 8, 1, NULL, config_addr,
152 BUID_HI(pdn->phb->buid),
153 BUID_LO(pdn->phb->buid),
154 virt_to_phys(driver_log), loglen,
155 virt_to_phys(slot_errbuf),
156 eeh_error_buf_size,
157 severity);
158
159 if (rc == 0)
160 log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
161 spin_unlock_irqrestore(&slot_errbuf_lock, flags);
162 }
163
164 /**
165 * gather_pci_data - copy assorted PCI config space registers to buff
166 * @pdn: device to report data for
167 * @buf: point to buffer in which to log
168 * @len: amount of room in buffer
169 *
170 * This routine captures assorted PCI configuration space data,
171 * and puts them into a buffer for RTAS error logging.
172 */
173 static size_t gather_pci_data(struct pci_dn *pdn, char * buf, size_t len)
174 {
175 struct pci_dev *dev = pdn->pcidev;
176 u32 cfg;
177 int cap, i;
178 int n = 0;
179
180 n += scnprintf(buf+n, len-n, "%s\n", pdn->node->full_name);
181 printk(KERN_WARNING "EEH: of node=%s\n", pdn->node->full_name);
182
183 rtas_read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
184 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
185 printk(KERN_WARNING "EEH: PCI device/vendor: %08x\n", cfg);
186
187 rtas_read_config(pdn, PCI_COMMAND, 4, &cfg);
188 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
189 printk(KERN_WARNING "EEH: PCI cmd/status register: %08x\n", cfg);
190
191 if (!dev) {
192 printk(KERN_WARNING "EEH: no PCI device for this of node\n");
193 return n;
194 }
195
196 /* Gather bridge-specific registers */
197 if (dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) {
198 rtas_read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
199 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
200 printk(KERN_WARNING "EEH: Bridge secondary status: %04x\n", cfg);
201
202 rtas_read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
203 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
204 printk(KERN_WARNING "EEH: Bridge control: %04x\n", cfg);
205 }
206
207 /* Dump out the PCI-X command and status regs */
208 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
209 if (cap) {
210 rtas_read_config(pdn, cap, 4, &cfg);
211 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
212 printk(KERN_WARNING "EEH: PCI-X cmd: %08x\n", cfg);
213
214 rtas_read_config(pdn, cap+4, 4, &cfg);
215 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
216 printk(KERN_WARNING "EEH: PCI-X status: %08x\n", cfg);
217 }
218
219 /* If PCI-E capable, dump PCI-E cap 10, and the AER */
220 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
221 if (cap) {
222 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
223 printk(KERN_WARNING
224 "EEH: PCI-E capabilities and status follow:\n");
225
226 for (i=0; i<=8; i++) {
227 rtas_read_config(pdn, cap+4*i, 4, &cfg);
228 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
229 printk(KERN_WARNING "EEH: PCI-E %02x: %08x\n", i, cfg);
230 }
231
232 cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
233 if (cap) {
234 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
235 printk(KERN_WARNING
236 "EEH: PCI-E AER capability register set follows:\n");
237
238 for (i=0; i<14; i++) {
239 rtas_read_config(pdn, cap+4*i, 4, &cfg);
240 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
241 printk(KERN_WARNING "EEH: PCI-E AER %02x: %08x\n", i, cfg);
242 }
243 }
244 }
245
246 /* Gather status on devices under the bridge */
247 if (dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) {
248 struct device_node *dn;
249
250 for_each_child_of_node(pdn->node, dn) {
251 pdn = PCI_DN(dn);
252 if (pdn)
253 n += gather_pci_data(pdn, buf+n, len-n);
254 }
255 }
256
257 return n;
258 }
259
260 void eeh_slot_error_detail(struct pci_dn *pdn, int severity)
261 {
262 size_t loglen = 0;
263 pci_regs_buf[0] = 0;
264
265 rtas_pci_enable(pdn, EEH_THAW_MMIO);
266 loglen = gather_pci_data(pdn, pci_regs_buf, EEH_PCI_REGS_LOG_LEN);
267
268 rtas_slot_error_detail(pdn, severity, pci_regs_buf, loglen);
269 }
270
271 /**
272 * read_slot_reset_state - Read the reset state of a device node's slot
273 * @dn: device node to read
274 * @rets: array to return results in
275 */
276 static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
277 {
278 int token, outputs;
279 int config_addr;
280
281 if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
282 token = ibm_read_slot_reset_state2;
283 outputs = 4;
284 } else {
285 token = ibm_read_slot_reset_state;
286 rets[2] = 0; /* fake PE Unavailable info */
287 outputs = 3;
288 }
289
290 /* Use PE configuration address, if present */
291 config_addr = pdn->eeh_config_addr;
292 if (pdn->eeh_pe_config_addr)
293 config_addr = pdn->eeh_pe_config_addr;
294
295 return rtas_call(token, 3, outputs, rets, config_addr,
296 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
297 }
298
299 /**
300 * eeh_wait_for_slot_status - returns error status of slot
301 * @pdn pci device node
302 * @max_wait_msecs maximum number to millisecs to wait
303 *
304 * Return negative value if a permanent error, else return
305 * Partition Endpoint (PE) status value.
306 *
307 * If @max_wait_msecs is positive, then this routine will
308 * sleep until a valid status can be obtained, or until
309 * the max allowed wait time is exceeded, in which case
310 * a -2 is returned.
311 */
312 int
313 eeh_wait_for_slot_status(struct pci_dn *pdn, int max_wait_msecs)
314 {
315 int rc;
316 int rets[3];
317 int mwait;
318
319 while (1) {
320 rc = read_slot_reset_state(pdn, rets);
321 if (rc) return rc;
322 if (rets[1] == 0) return -1; /* EEH is not supported */
323
324 if (rets[0] != 5) return rets[0]; /* return actual status */
325
326 if (rets[2] == 0) return -1; /* permanently unavailable */
327
328 if (max_wait_msecs <= 0) break;
329
330 mwait = rets[2];
331 if (mwait <= 0) {
332 printk (KERN_WARNING
333 "EEH: Firmware returned bad wait value=%d\n", mwait);
334 mwait = 1000;
335 } else if (mwait > 300*1000) {
336 printk (KERN_WARNING
337 "EEH: Firmware is taking too long, time=%d\n", mwait);
338 mwait = 300*1000;
339 }
340 max_wait_msecs -= mwait;
341 msleep (mwait);
342 }
343
344 printk(KERN_WARNING "EEH: Timed out waiting for slot status\n");
345 return -2;
346 }
347
348 /**
349 * eeh_token_to_phys - convert EEH address token to phys address
350 * @token i/o token, should be address in the form 0xA....
351 */
352 static inline unsigned long eeh_token_to_phys(unsigned long token)
353 {
354 pte_t *ptep;
355 unsigned long pa;
356
357 ptep = find_linux_pte(init_mm.pgd, token);
358 if (!ptep)
359 return token;
360 pa = pte_pfn(*ptep) << PAGE_SHIFT;
361
362 return pa | (token & (PAGE_SIZE-1));
363 }
364
365 /**
366 * Return the "partitionable endpoint" (pe) under which this device lies
367 */
368 struct device_node * find_device_pe(struct device_node *dn)
369 {
370 while ((dn->parent) && PCI_DN(dn->parent) &&
371 (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
372 dn = dn->parent;
373 }
374 return dn;
375 }
376
377 /** Mark all devices that are children of this device as failed.
378 * Mark the device driver too, so that it can see the failure
379 * immediately; this is critical, since some drivers poll
380 * status registers in interrupts ... If a driver is polling,
381 * and the slot is frozen, then the driver can deadlock in
382 * an interrupt context, which is bad.
383 */
384
385 static void __eeh_mark_slot(struct device_node *parent, int mode_flag)
386 {
387 struct device_node *dn;
388
389 for_each_child_of_node(parent, dn) {
390 if (PCI_DN(dn)) {
391 /* Mark the pci device driver too */
392 struct pci_dev *dev = PCI_DN(dn)->pcidev;
393
394 PCI_DN(dn)->eeh_mode |= mode_flag;
395
396 if (dev && dev->driver)
397 dev->error_state = pci_channel_io_frozen;
398
399 __eeh_mark_slot(dn, mode_flag);
400 }
401 }
402 }
403
404 void eeh_mark_slot (struct device_node *dn, int mode_flag)
405 {
406 struct pci_dev *dev;
407 dn = find_device_pe (dn);
408
409 /* Back up one, since config addrs might be shared */
410 if (!pcibios_find_pci_bus(dn) && PCI_DN(dn->parent))
411 dn = dn->parent;
412
413 PCI_DN(dn)->eeh_mode |= mode_flag;
414
415 /* Mark the pci device too */
416 dev = PCI_DN(dn)->pcidev;
417 if (dev)
418 dev->error_state = pci_channel_io_frozen;
419
420 __eeh_mark_slot(dn, mode_flag);
421 }
422
423 static void __eeh_clear_slot(struct device_node *parent, int mode_flag)
424 {
425 struct device_node *dn;
426
427 for_each_child_of_node(parent, dn) {
428 if (PCI_DN(dn)) {
429 PCI_DN(dn)->eeh_mode &= ~mode_flag;
430 PCI_DN(dn)->eeh_check_count = 0;
431 __eeh_clear_slot(dn, mode_flag);
432 }
433 }
434 }
435
436 void eeh_clear_slot (struct device_node *dn, int mode_flag)
437 {
438 unsigned long flags;
439 raw_spin_lock_irqsave(&confirm_error_lock, flags);
440
441 dn = find_device_pe (dn);
442
443 /* Back up one, since config addrs might be shared */
444 if (!pcibios_find_pci_bus(dn) && PCI_DN(dn->parent))
445 dn = dn->parent;
446
447 PCI_DN(dn)->eeh_mode &= ~mode_flag;
448 PCI_DN(dn)->eeh_check_count = 0;
449 __eeh_clear_slot(dn, mode_flag);
450 raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
451 }
452
453 /**
454 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
455 * @dn device node
456 * @dev pci device, if known
457 *
458 * Check for an EEH failure for the given device node. Call this
459 * routine if the result of a read was all 0xff's and you want to
460 * find out if this is due to an EEH slot freeze. This routine
461 * will query firmware for the EEH status.
462 *
463 * Returns 0 if there has not been an EEH error; otherwise returns
464 * a non-zero value and queues up a slot isolation event notification.
465 *
466 * It is safe to call this routine in an interrupt context.
467 */
468 int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
469 {
470 int ret;
471 int rets[3];
472 unsigned long flags;
473 struct pci_dn *pdn;
474 int rc = 0;
475 const char *location;
476
477 total_mmio_ffs++;
478
479 if (!eeh_subsystem_enabled)
480 return 0;
481
482 if (!dn) {
483 no_dn++;
484 return 0;
485 }
486 dn = find_device_pe(dn);
487 pdn = PCI_DN(dn);
488
489 /* Access to IO BARs might get this far and still not want checking. */
490 if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
491 pdn->eeh_mode & EEH_MODE_NOCHECK) {
492 ignored_check++;
493 pr_debug("EEH: Ignored check (%x) for %s %s\n",
494 pdn->eeh_mode, eeh_pci_name(dev), dn->full_name);
495 return 0;
496 }
497
498 if (!pdn->eeh_config_addr && !pdn->eeh_pe_config_addr) {
499 no_cfg_addr++;
500 return 0;
501 }
502
503 /* If we already have a pending isolation event for this
504 * slot, we know it's bad already, we don't need to check.
505 * Do this checking under a lock; as multiple PCI devices
506 * in one slot might report errors simultaneously, and we
507 * only want one error recovery routine running.
508 */
509 raw_spin_lock_irqsave(&confirm_error_lock, flags);
510 rc = 1;
511 if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
512 pdn->eeh_check_count ++;
513 if (pdn->eeh_check_count % EEH_MAX_FAILS == 0) {
514 location = of_get_property(dn, "ibm,loc-code", NULL);
515 printk (KERN_ERR "EEH: %d reads ignored for recovering device at "
516 "location=%s driver=%s pci addr=%s\n",
517 pdn->eeh_check_count, location,
518 dev->driver->name, eeh_pci_name(dev));
519 printk (KERN_ERR "EEH: Might be infinite loop in %s driver\n",
520 dev->driver->name);
521 dump_stack();
522 }
523 goto dn_unlock;
524 }
525
526 /*
527 * Now test for an EEH failure. This is VERY expensive.
528 * Note that the eeh_config_addr may be a parent device
529 * in the case of a device behind a bridge, or it may be
530 * function zero of a multi-function device.
531 * In any case they must share a common PHB.
532 */
533 ret = read_slot_reset_state(pdn, rets);
534
535 /* If the call to firmware failed, punt */
536 if (ret != 0) {
537 printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
538 ret, dn->full_name);
539 false_positives++;
540 pdn->eeh_false_positives ++;
541 rc = 0;
542 goto dn_unlock;
543 }
544
545 /* Note that config-io to empty slots may fail;
546 * they are empty when they don't have children. */
547 if ((rets[0] == 5) && (rets[2] == 0) && (dn->child == NULL)) {
548 false_positives++;
549 pdn->eeh_false_positives ++;
550 rc = 0;
551 goto dn_unlock;
552 }
553
554 /* If EEH is not supported on this device, punt. */
555 if (rets[1] != 1) {
556 printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
557 ret, dn->full_name);
558 false_positives++;
559 pdn->eeh_false_positives ++;
560 rc = 0;
561 goto dn_unlock;
562 }
563
564 /* If not the kind of error we know about, punt. */
565 if (rets[0] != 1 && rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
566 false_positives++;
567 pdn->eeh_false_positives ++;
568 rc = 0;
569 goto dn_unlock;
570 }
571
572 slot_resets++;
573
574 /* Avoid repeated reports of this failure, including problems
575 * with other functions on this device, and functions under
576 * bridges. */
577 eeh_mark_slot (dn, EEH_MODE_ISOLATED);
578 raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
579
580 eeh_send_failure_event (dn, dev);
581
582 /* Most EEH events are due to device driver bugs. Having
583 * a stack trace will help the device-driver authors figure
584 * out what happened. So print that out. */
585 dump_stack();
586 return 1;
587
588 dn_unlock:
589 raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
590 return rc;
591 }
592
593 EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
594
595 /**
596 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
597 * @token i/o token, should be address in the form 0xA....
598 * @val value, should be all 1's (XXX why do we need this arg??)
599 *
600 * Check for an EEH failure at the given token address. Call this
601 * routine if the result of a read was all 0xff's and you want to
602 * find out if this is due to an EEH slot freeze event. This routine
603 * will query firmware for the EEH status.
604 *
605 * Note this routine is safe to call in an interrupt context.
606 */
607 unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
608 {
609 unsigned long addr;
610 struct pci_dev *dev;
611 struct device_node *dn;
612
613 /* Finding the phys addr + pci device; this is pretty quick. */
614 addr = eeh_token_to_phys((unsigned long __force) token);
615 dev = pci_get_device_by_addr(addr);
616 if (!dev) {
617 no_device++;
618 return val;
619 }
620
621 dn = pci_device_to_OF_node(dev);
622 eeh_dn_check_failure (dn, dev);
623
624 pci_dev_put(dev);
625 return val;
626 }
627
628 EXPORT_SYMBOL(eeh_check_failure);
629
630 /* ------------------------------------------------------------- */
631 /* The code below deals with error recovery */
632
633 /**
634 * rtas_pci_enable - enable MMIO or DMA transfers for this slot
635 * @pdn pci device node
636 */
637
638 int
639 rtas_pci_enable(struct pci_dn *pdn, int function)
640 {
641 int config_addr;
642 int rc;
643
644 /* Use PE configuration address, if present */
645 config_addr = pdn->eeh_config_addr;
646 if (pdn->eeh_pe_config_addr)
647 config_addr = pdn->eeh_pe_config_addr;
648
649 rc = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
650 config_addr,
651 BUID_HI(pdn->phb->buid),
652 BUID_LO(pdn->phb->buid),
653 function);
654
655 if (rc)
656 printk(KERN_WARNING "EEH: Unexpected state change %d, err=%d dn=%s\n",
657 function, rc, pdn->node->full_name);
658
659 rc = eeh_wait_for_slot_status (pdn, PCI_BUS_RESET_WAIT_MSEC);
660 if ((rc == 4) && (function == EEH_THAW_MMIO))
661 return 0;
662
663 return rc;
664 }
665
666 /**
667 * rtas_pci_slot_reset - raises/lowers the pci #RST line
668 * @pdn pci device node
669 * @state: 1/0 to raise/lower the #RST
670 *
671 * Clear the EEH-frozen condition on a slot. This routine
672 * asserts the PCI #RST line if the 'state' argument is '1',
673 * and drops the #RST line if 'state is '0'. This routine is
674 * safe to call in an interrupt context.
675 *
676 */
677
678 static void
679 rtas_pci_slot_reset(struct pci_dn *pdn, int state)
680 {
681 int config_addr;
682 int rc;
683
684 BUG_ON (pdn==NULL);
685
686 if (!pdn->phb) {
687 printk (KERN_WARNING "EEH: in slot reset, device node %s has no phb\n",
688 pdn->node->full_name);
689 return;
690 }
691
692 /* Use PE configuration address, if present */
693 config_addr = pdn->eeh_config_addr;
694 if (pdn->eeh_pe_config_addr)
695 config_addr = pdn->eeh_pe_config_addr;
696
697 rc = rtas_call(ibm_set_slot_reset,4,1, NULL,
698 config_addr,
699 BUID_HI(pdn->phb->buid),
700 BUID_LO(pdn->phb->buid),
701 state);
702 if (rc)
703 printk (KERN_WARNING "EEH: Unable to reset the failed slot,"
704 " (%d) #RST=%d dn=%s\n",
705 rc, state, pdn->node->full_name);
706 }
707
708 /**
709 * pcibios_set_pcie_slot_reset - Set PCI-E reset state
710 * @dev: pci device struct
711 * @state: reset state to enter
712 *
713 * Return value:
714 * 0 if success
715 **/
716 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
717 {
718 struct device_node *dn = pci_device_to_OF_node(dev);
719 struct pci_dn *pdn = PCI_DN(dn);
720
721 switch (state) {
722 case pcie_deassert_reset:
723 rtas_pci_slot_reset(pdn, 0);
724 break;
725 case pcie_hot_reset:
726 rtas_pci_slot_reset(pdn, 1);
727 break;
728 case pcie_warm_reset:
729 rtas_pci_slot_reset(pdn, 3);
730 break;
731 default:
732 return -EINVAL;
733 };
734
735 return 0;
736 }
737
738 /**
739 * rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
740 * @pdn: pci device node to be reset.
741 *
742 * Return 0 if success, else a non-zero value.
743 */
744
745 static void __rtas_set_slot_reset(struct pci_dn *pdn)
746 {
747 struct pci_dev *dev = pdn->pcidev;
748
749 /* Determine type of EEH reset required by device,
750 * default hot reset or fundamental reset
751 */
752 if (dev && dev->needs_freset)
753 rtas_pci_slot_reset(pdn, 3);
754 else
755 rtas_pci_slot_reset(pdn, 1);
756
757 /* The PCI bus requires that the reset be held high for at least
758 * a 100 milliseconds. We wait a bit longer 'just in case'. */
759
760 #define PCI_BUS_RST_HOLD_TIME_MSEC 250
761 msleep (PCI_BUS_RST_HOLD_TIME_MSEC);
762
763 /* We might get hit with another EEH freeze as soon as the
764 * pci slot reset line is dropped. Make sure we don't miss
765 * these, and clear the flag now. */
766 eeh_clear_slot (pdn->node, EEH_MODE_ISOLATED);
767
768 rtas_pci_slot_reset (pdn, 0);
769
770 /* After a PCI slot has been reset, the PCI Express spec requires
771 * a 1.5 second idle time for the bus to stabilize, before starting
772 * up traffic. */
773 #define PCI_BUS_SETTLE_TIME_MSEC 1800
774 msleep (PCI_BUS_SETTLE_TIME_MSEC);
775 }
776
777 int rtas_set_slot_reset(struct pci_dn *pdn)
778 {
779 int i, rc;
780
781 /* Take three shots at resetting the bus */
782 for (i=0; i<3; i++) {
783 __rtas_set_slot_reset(pdn);
784
785 rc = eeh_wait_for_slot_status(pdn, PCI_BUS_RESET_WAIT_MSEC);
786 if (rc == 0)
787 return 0;
788
789 if (rc < 0) {
790 printk(KERN_ERR "EEH: unrecoverable slot failure %s\n",
791 pdn->node->full_name);
792 return -1;
793 }
794 printk(KERN_ERR "EEH: bus reset %d failed on slot %s, rc=%d\n",
795 i+1, pdn->node->full_name, rc);
796 }
797
798 return -1;
799 }
800
801 /* ------------------------------------------------------- */
802 /** Save and restore of PCI BARs
803 *
804 * Although firmware will set up BARs during boot, it doesn't
805 * set up device BAR's after a device reset, although it will,
806 * if requested, set up bridge configuration. Thus, we need to
807 * configure the PCI devices ourselves.
808 */
809
810 /**
811 * __restore_bars - Restore the Base Address Registers
812 * @pdn: pci device node
813 *
814 * Loads the PCI configuration space base address registers,
815 * the expansion ROM base address, the latency timer, and etc.
816 * from the saved values in the device node.
817 */
818 static inline void __restore_bars (struct pci_dn *pdn)
819 {
820 int i;
821 u32 cmd;
822
823 if (NULL==pdn->phb) return;
824 for (i=4; i<10; i++) {
825 rtas_write_config(pdn, i*4, 4, pdn->config_space[i]);
826 }
827
828 /* 12 == Expansion ROM Address */
829 rtas_write_config(pdn, 12*4, 4, pdn->config_space[12]);
830
831 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
832 #define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)])
833
834 rtas_write_config (pdn, PCI_CACHE_LINE_SIZE, 1,
835 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
836
837 rtas_write_config (pdn, PCI_LATENCY_TIMER, 1,
838 SAVED_BYTE(PCI_LATENCY_TIMER));
839
840 /* max latency, min grant, interrupt pin and line */
841 rtas_write_config(pdn, 15*4, 4, pdn->config_space[15]);
842
843 /* Restore PERR & SERR bits, some devices require it,
844 don't touch the other command bits */
845 rtas_read_config(pdn, PCI_COMMAND, 4, &cmd);
846 if (pdn->config_space[1] & PCI_COMMAND_PARITY)
847 cmd |= PCI_COMMAND_PARITY;
848 else
849 cmd &= ~PCI_COMMAND_PARITY;
850 if (pdn->config_space[1] & PCI_COMMAND_SERR)
851 cmd |= PCI_COMMAND_SERR;
852 else
853 cmd &= ~PCI_COMMAND_SERR;
854 rtas_write_config(pdn, PCI_COMMAND, 4, cmd);
855 }
856
857 /**
858 * eeh_restore_bars - restore the PCI config space info
859 *
860 * This routine performs a recursive walk to the children
861 * of this device as well.
862 */
863 void eeh_restore_bars(struct pci_dn *pdn)
864 {
865 struct device_node *dn;
866 if (!pdn)
867 return;
868
869 if ((pdn->eeh_mode & EEH_MODE_SUPPORTED) && !IS_BRIDGE(pdn->class_code))
870 __restore_bars (pdn);
871
872 for_each_child_of_node(pdn->node, dn)
873 eeh_restore_bars (PCI_DN(dn));
874 }
875
876 /**
877 * eeh_save_bars - save device bars
878 *
879 * Save the values of the device bars. Unlike the restore
880 * routine, this routine is *not* recursive. This is because
881 * PCI devices are added individuallly; but, for the restore,
882 * an entire slot is reset at a time.
883 */
884 static void eeh_save_bars(struct pci_dn *pdn)
885 {
886 int i;
887
888 if (!pdn )
889 return;
890
891 for (i = 0; i < 16; i++)
892 rtas_read_config(pdn, i * 4, 4, &pdn->config_space[i]);
893 }
894
895 void
896 rtas_configure_bridge(struct pci_dn *pdn)
897 {
898 int config_addr;
899 int rc;
900
901 /* Use PE configuration address, if present */
902 config_addr = pdn->eeh_config_addr;
903 if (pdn->eeh_pe_config_addr)
904 config_addr = pdn->eeh_pe_config_addr;
905
906 rc = rtas_call(ibm_configure_bridge,3,1, NULL,
907 config_addr,
908 BUID_HI(pdn->phb->buid),
909 BUID_LO(pdn->phb->buid));
910 if (rc) {
911 printk (KERN_WARNING "EEH: Unable to configure device bridge (%d) for %s\n",
912 rc, pdn->node->full_name);
913 }
914 }
915
916 /* ------------------------------------------------------------- */
917 /* The code below deals with enabling EEH for devices during the
918 * early boot sequence. EEH must be enabled before any PCI probing
919 * can be done.
920 */
921
922 #define EEH_ENABLE 1
923
924 struct eeh_early_enable_info {
925 unsigned int buid_hi;
926 unsigned int buid_lo;
927 };
928
929 static int get_pe_addr (int config_addr,
930 struct eeh_early_enable_info *info)
931 {
932 unsigned int rets[3];
933 int ret;
934
935 /* Use latest config-addr token on power6 */
936 if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
937 /* Make sure we have a PE in hand */
938 ret = rtas_call (ibm_get_config_addr_info2, 4, 2, rets,
939 config_addr, info->buid_hi, info->buid_lo, 1);
940 if (ret || (rets[0]==0))
941 return 0;
942
943 ret = rtas_call (ibm_get_config_addr_info2, 4, 2, rets,
944 config_addr, info->buid_hi, info->buid_lo, 0);
945 if (ret)
946 return 0;
947 return rets[0];
948 }
949
950 /* Use older config-addr token on power5 */
951 if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
952 ret = rtas_call (ibm_get_config_addr_info, 4, 2, rets,
953 config_addr, info->buid_hi, info->buid_lo, 0);
954 if (ret)
955 return 0;
956 return rets[0];
957 }
958 return 0;
959 }
960
961 /* Enable eeh for the given device node. */
962 static void *early_enable_eeh(struct device_node *dn, void *data)
963 {
964 unsigned int rets[3];
965 struct eeh_early_enable_info *info = data;
966 int ret;
967 const u32 *class_code = of_get_property(dn, "class-code", NULL);
968 const u32 *vendor_id = of_get_property(dn, "vendor-id", NULL);
969 const u32 *device_id = of_get_property(dn, "device-id", NULL);
970 const u32 *regs;
971 int enable;
972 struct pci_dn *pdn = PCI_DN(dn);
973
974 pdn->class_code = 0;
975 pdn->eeh_mode = 0;
976 pdn->eeh_check_count = 0;
977 pdn->eeh_freeze_count = 0;
978 pdn->eeh_false_positives = 0;
979
980 if (!of_device_is_available(dn))
981 return NULL;
982
983 /* Ignore bad nodes. */
984 if (!class_code || !vendor_id || !device_id)
985 return NULL;
986
987 /* There is nothing to check on PCI to ISA bridges */
988 if (dn->type && !strcmp(dn->type, "isa")) {
989 pdn->eeh_mode |= EEH_MODE_NOCHECK;
990 return NULL;
991 }
992 pdn->class_code = *class_code;
993
994 /* Ok... see if this device supports EEH. Some do, some don't,
995 * and the only way to find out is to check each and every one. */
996 regs = of_get_property(dn, "reg", NULL);
997 if (regs) {
998 /* First register entry is addr (00BBSS00) */
999 /* Try to enable eeh */
1000 ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
1001 regs[0], info->buid_hi, info->buid_lo,
1002 EEH_ENABLE);
1003
1004 enable = 0;
1005 if (ret == 0) {
1006 pdn->eeh_config_addr = regs[0];
1007
1008 /* If the newer, better, ibm,get-config-addr-info is supported,
1009 * then use that instead. */
1010 pdn->eeh_pe_config_addr = get_pe_addr(pdn->eeh_config_addr, info);
1011
1012 /* Some older systems (Power4) allow the
1013 * ibm,set-eeh-option call to succeed even on nodes
1014 * where EEH is not supported. Verify support
1015 * explicitly. */
1016 ret = read_slot_reset_state(pdn, rets);
1017 if ((ret == 0) && (rets[1] == 1))
1018 enable = 1;
1019 }
1020
1021 if (enable) {
1022 eeh_subsystem_enabled = 1;
1023 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
1024
1025 pr_debug("EEH: %s: eeh enabled, config=%x pe_config=%x\n",
1026 dn->full_name, pdn->eeh_config_addr,
1027 pdn->eeh_pe_config_addr);
1028 } else {
1029
1030 /* This device doesn't support EEH, but it may have an
1031 * EEH parent, in which case we mark it as supported. */
1032 if (dn->parent && PCI_DN(dn->parent)
1033 && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
1034 /* Parent supports EEH. */
1035 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
1036 pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
1037 return NULL;
1038 }
1039 }
1040 } else {
1041 printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
1042 dn->full_name);
1043 }
1044
1045 eeh_save_bars(pdn);
1046 return NULL;
1047 }
1048
1049 /*
1050 * Initialize EEH by trying to enable it for all of the adapters in the system.
1051 * As a side effect we can determine here if eeh is supported at all.
1052 * Note that we leave EEH on so failed config cycles won't cause a machine
1053 * check. If a user turns off EEH for a particular adapter they are really
1054 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
1055 * grant access to a slot if EEH isn't enabled, and so we always enable
1056 * EEH for all slots/all devices.
1057 *
1058 * The eeh-force-off option disables EEH checking globally, for all slots.
1059 * Even if force-off is set, the EEH hardware is still enabled, so that
1060 * newer systems can boot.
1061 */
1062 void __init eeh_init(void)
1063 {
1064 struct device_node *phb, *np;
1065 struct eeh_early_enable_info info;
1066
1067 raw_spin_lock_init(&confirm_error_lock);
1068 spin_lock_init(&slot_errbuf_lock);
1069
1070 np = of_find_node_by_path("/rtas");
1071 if (np == NULL)
1072 return;
1073
1074 ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
1075 ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
1076 ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
1077 ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
1078 ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
1079 ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
1080 ibm_get_config_addr_info2 = rtas_token("ibm,get-config-addr-info2");
1081 ibm_configure_bridge = rtas_token ("ibm,configure-bridge");
1082
1083 if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
1084 return;
1085
1086 eeh_error_buf_size = rtas_token("rtas-error-log-max");
1087 if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
1088 eeh_error_buf_size = 1024;
1089 }
1090 if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
1091 printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
1092 "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
1093 eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
1094 }
1095
1096 /* Enable EEH for all adapters. Note that eeh requires buid's */
1097 for (phb = of_find_node_by_name(NULL, "pci"); phb;
1098 phb = of_find_node_by_name(phb, "pci")) {
1099 unsigned long buid;
1100
1101 buid = get_phb_buid(phb);
1102 if (buid == 0 || PCI_DN(phb) == NULL)
1103 continue;
1104
1105 info.buid_lo = BUID_LO(buid);
1106 info.buid_hi = BUID_HI(buid);
1107 traverse_pci_devices(phb, early_enable_eeh, &info);
1108 }
1109
1110 if (eeh_subsystem_enabled)
1111 printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
1112 else
1113 printk(KERN_WARNING "EEH: No capable adapters found\n");
1114 }
1115
1116 /**
1117 * eeh_add_device_early - enable EEH for the indicated device_node
1118 * @dn: device node for which to set up EEH
1119 *
1120 * This routine must be used to perform EEH initialization for PCI
1121 * devices that were added after system boot (e.g. hotplug, dlpar).
1122 * This routine must be called before any i/o is performed to the
1123 * adapter (inluding any config-space i/o).
1124 * Whether this actually enables EEH or not for this device depends
1125 * on the CEC architecture, type of the device, on earlier boot
1126 * command-line arguments & etc.
1127 */
1128 static void eeh_add_device_early(struct device_node *dn)
1129 {
1130 struct pci_controller *phb;
1131 struct eeh_early_enable_info info;
1132
1133 if (!dn || !PCI_DN(dn))
1134 return;
1135 phb = PCI_DN(dn)->phb;
1136
1137 /* USB Bus children of PCI devices will not have BUID's */
1138 if (NULL == phb || 0 == phb->buid)
1139 return;
1140
1141 info.buid_hi = BUID_HI(phb->buid);
1142 info.buid_lo = BUID_LO(phb->buid);
1143 early_enable_eeh(dn, &info);
1144 }
1145
1146 void eeh_add_device_tree_early(struct device_node *dn)
1147 {
1148 struct device_node *sib;
1149
1150 for_each_child_of_node(dn, sib)
1151 eeh_add_device_tree_early(sib);
1152 eeh_add_device_early(dn);
1153 }
1154 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1155
1156 /**
1157 * eeh_add_device_late - perform EEH initialization for the indicated pci device
1158 * @dev: pci device for which to set up EEH
1159 *
1160 * This routine must be used to complete EEH initialization for PCI
1161 * devices that were added after system boot (e.g. hotplug, dlpar).
1162 */
1163 static void eeh_add_device_late(struct pci_dev *dev)
1164 {
1165 struct device_node *dn;
1166 struct pci_dn *pdn;
1167
1168 if (!dev || !eeh_subsystem_enabled)
1169 return;
1170
1171 pr_debug("EEH: Adding device %s\n", pci_name(dev));
1172
1173 dn = pci_device_to_OF_node(dev);
1174 pdn = PCI_DN(dn);
1175 if (pdn->pcidev == dev) {
1176 pr_debug("EEH: Already referenced !\n");
1177 return;
1178 }
1179 WARN_ON(pdn->pcidev);
1180
1181 pci_dev_get (dev);
1182 pdn->pcidev = dev;
1183
1184 pci_addr_cache_insert_device(dev);
1185 eeh_sysfs_add_device(dev);
1186 }
1187
1188 void eeh_add_device_tree_late(struct pci_bus *bus)
1189 {
1190 struct pci_dev *dev;
1191
1192 list_for_each_entry(dev, &bus->devices, bus_list) {
1193 eeh_add_device_late(dev);
1194 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1195 struct pci_bus *subbus = dev->subordinate;
1196 if (subbus)
1197 eeh_add_device_tree_late(subbus);
1198 }
1199 }
1200 }
1201 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1202
1203 /**
1204 * eeh_remove_device - undo EEH setup for the indicated pci device
1205 * @dev: pci device to be removed
1206 *
1207 * This routine should be called when a device is removed from
1208 * a running system (e.g. by hotplug or dlpar). It unregisters
1209 * the PCI device from the EEH subsystem. I/O errors affecting
1210 * this device will no longer be detected after this call; thus,
1211 * i/o errors affecting this slot may leave this device unusable.
1212 */
1213 static void eeh_remove_device(struct pci_dev *dev)
1214 {
1215 struct device_node *dn;
1216 if (!dev || !eeh_subsystem_enabled)
1217 return;
1218
1219 /* Unregister the device with the EEH/PCI address search system */
1220 pr_debug("EEH: Removing device %s\n", pci_name(dev));
1221
1222 dn = pci_device_to_OF_node(dev);
1223 if (PCI_DN(dn)->pcidev == NULL) {
1224 pr_debug("EEH: Not referenced !\n");
1225 return;
1226 }
1227 PCI_DN(dn)->pcidev = NULL;
1228 pci_dev_put (dev);
1229
1230 pci_addr_cache_remove_device(dev);
1231 eeh_sysfs_remove_device(dev);
1232 }
1233
1234 void eeh_remove_bus_device(struct pci_dev *dev)
1235 {
1236 struct pci_bus *bus = dev->subordinate;
1237 struct pci_dev *child, *tmp;
1238
1239 eeh_remove_device(dev);
1240
1241 if (bus && dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1242 list_for_each_entry_safe(child, tmp, &bus->devices, bus_list)
1243 eeh_remove_bus_device(child);
1244 }
1245 }
1246 EXPORT_SYMBOL_GPL(eeh_remove_bus_device);
1247
1248 static int proc_eeh_show(struct seq_file *m, void *v)
1249 {
1250 if (0 == eeh_subsystem_enabled) {
1251 seq_printf(m, "EEH Subsystem is globally disabled\n");
1252 seq_printf(m, "eeh_total_mmio_ffs=%ld\n", total_mmio_ffs);
1253 } else {
1254 seq_printf(m, "EEH Subsystem is enabled\n");
1255 seq_printf(m,
1256 "no device=%ld\n"
1257 "no device node=%ld\n"
1258 "no config address=%ld\n"
1259 "check not wanted=%ld\n"
1260 "eeh_total_mmio_ffs=%ld\n"
1261 "eeh_false_positives=%ld\n"
1262 "eeh_slot_resets=%ld\n",
1263 no_device, no_dn, no_cfg_addr,
1264 ignored_check, total_mmio_ffs,
1265 false_positives,
1266 slot_resets);
1267 }
1268
1269 return 0;
1270 }
1271
1272 static int proc_eeh_open(struct inode *inode, struct file *file)
1273 {
1274 return single_open(file, proc_eeh_show, NULL);
1275 }
1276
1277 static const struct file_operations proc_eeh_operations = {
1278 .open = proc_eeh_open,
1279 .read = seq_read,
1280 .llseek = seq_lseek,
1281 .release = single_release,
1282 };
1283
1284 static int __init eeh_init_proc(void)
1285 {
1286 if (machine_is(pseries))
1287 proc_create("ppc64/eeh", 0, NULL, &proc_eeh_operations);
1288 return 0;
1289 }
1290 __initcall(eeh_init_proc);