include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / platforms / cell / spufs / sched.c
1 /* sched.c - SPU scheduler.
2 *
3 * Copyright (C) IBM 2005
4 * Author: Mark Nutter <mnutter@us.ibm.com>
5 *
6 * 2006-03-31 NUMA domains added.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #undef DEBUG
24
25 #include <linux/module.h>
26 #include <linux/errno.h>
27 #include <linux/sched.h>
28 #include <linux/kernel.h>
29 #include <linux/mm.h>
30 #include <linux/slab.h>
31 #include <linux/completion.h>
32 #include <linux/vmalloc.h>
33 #include <linux/smp.h>
34 #include <linux/stddef.h>
35 #include <linux/unistd.h>
36 #include <linux/numa.h>
37 #include <linux/mutex.h>
38 #include <linux/notifier.h>
39 #include <linux/kthread.h>
40 #include <linux/pid_namespace.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43
44 #include <asm/io.h>
45 #include <asm/mmu_context.h>
46 #include <asm/spu.h>
47 #include <asm/spu_csa.h>
48 #include <asm/spu_priv1.h>
49 #include "spufs.h"
50 #define CREATE_TRACE_POINTS
51 #include "sputrace.h"
52
53 struct spu_prio_array {
54 DECLARE_BITMAP(bitmap, MAX_PRIO);
55 struct list_head runq[MAX_PRIO];
56 spinlock_t runq_lock;
57 int nr_waiting;
58 };
59
60 static unsigned long spu_avenrun[3];
61 static struct spu_prio_array *spu_prio;
62 static struct task_struct *spusched_task;
63 static struct timer_list spusched_timer;
64 static struct timer_list spuloadavg_timer;
65
66 /*
67 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
68 */
69 #define NORMAL_PRIO 120
70
71 /*
72 * Frequency of the spu scheduler tick. By default we do one SPU scheduler
73 * tick for every 10 CPU scheduler ticks.
74 */
75 #define SPUSCHED_TICK (10)
76
77 /*
78 * These are the 'tuning knobs' of the scheduler:
79 *
80 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
81 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
82 */
83 #define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
84 #define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK))
85
86 #define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO)
87 #define SCALE_PRIO(x, prio) \
88 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
89
90 /*
91 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
92 * [800ms ... 100ms ... 5ms]
93 *
94 * The higher a thread's priority, the bigger timeslices
95 * it gets during one round of execution. But even the lowest
96 * priority thread gets MIN_TIMESLICE worth of execution time.
97 */
98 void spu_set_timeslice(struct spu_context *ctx)
99 {
100 if (ctx->prio < NORMAL_PRIO)
101 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
102 else
103 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
104 }
105
106 /*
107 * Update scheduling information from the owning thread.
108 */
109 void __spu_update_sched_info(struct spu_context *ctx)
110 {
111 /*
112 * assert that the context is not on the runqueue, so it is safe
113 * to change its scheduling parameters.
114 */
115 BUG_ON(!list_empty(&ctx->rq));
116
117 /*
118 * 32-Bit assignments are atomic on powerpc, and we don't care about
119 * memory ordering here because retrieving the controlling thread is
120 * per definition racy.
121 */
122 ctx->tid = current->pid;
123
124 /*
125 * We do our own priority calculations, so we normally want
126 * ->static_prio to start with. Unfortunately this field
127 * contains junk for threads with a realtime scheduling
128 * policy so we have to look at ->prio in this case.
129 */
130 if (rt_prio(current->prio))
131 ctx->prio = current->prio;
132 else
133 ctx->prio = current->static_prio;
134 ctx->policy = current->policy;
135
136 /*
137 * TO DO: the context may be loaded, so we may need to activate
138 * it again on a different node. But it shouldn't hurt anything
139 * to update its parameters, because we know that the scheduler
140 * is not actively looking at this field, since it is not on the
141 * runqueue. The context will be rescheduled on the proper node
142 * if it is timesliced or preempted.
143 */
144 ctx->cpus_allowed = current->cpus_allowed;
145
146 /* Save the current cpu id for spu interrupt routing. */
147 ctx->last_ran = raw_smp_processor_id();
148 }
149
150 void spu_update_sched_info(struct spu_context *ctx)
151 {
152 int node;
153
154 if (ctx->state == SPU_STATE_RUNNABLE) {
155 node = ctx->spu->node;
156
157 /*
158 * Take list_mutex to sync with find_victim().
159 */
160 mutex_lock(&cbe_spu_info[node].list_mutex);
161 __spu_update_sched_info(ctx);
162 mutex_unlock(&cbe_spu_info[node].list_mutex);
163 } else {
164 __spu_update_sched_info(ctx);
165 }
166 }
167
168 static int __node_allowed(struct spu_context *ctx, int node)
169 {
170 if (nr_cpus_node(node)) {
171 const struct cpumask *mask = cpumask_of_node(node);
172
173 if (cpumask_intersects(mask, &ctx->cpus_allowed))
174 return 1;
175 }
176
177 return 0;
178 }
179
180 static int node_allowed(struct spu_context *ctx, int node)
181 {
182 int rval;
183
184 spin_lock(&spu_prio->runq_lock);
185 rval = __node_allowed(ctx, node);
186 spin_unlock(&spu_prio->runq_lock);
187
188 return rval;
189 }
190
191 void do_notify_spus_active(void)
192 {
193 int node;
194
195 /*
196 * Wake up the active spu_contexts.
197 *
198 * When the awakened processes see their "notify_active" flag is set,
199 * they will call spu_switch_notify().
200 */
201 for_each_online_node(node) {
202 struct spu *spu;
203
204 mutex_lock(&cbe_spu_info[node].list_mutex);
205 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
206 if (spu->alloc_state != SPU_FREE) {
207 struct spu_context *ctx = spu->ctx;
208 set_bit(SPU_SCHED_NOTIFY_ACTIVE,
209 &ctx->sched_flags);
210 mb();
211 wake_up_all(&ctx->stop_wq);
212 }
213 }
214 mutex_unlock(&cbe_spu_info[node].list_mutex);
215 }
216 }
217
218 /**
219 * spu_bind_context - bind spu context to physical spu
220 * @spu: physical spu to bind to
221 * @ctx: context to bind
222 */
223 static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
224 {
225 spu_context_trace(spu_bind_context__enter, ctx, spu);
226
227 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
228
229 if (ctx->flags & SPU_CREATE_NOSCHED)
230 atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
231
232 ctx->stats.slb_flt_base = spu->stats.slb_flt;
233 ctx->stats.class2_intr_base = spu->stats.class2_intr;
234
235 spu_associate_mm(spu, ctx->owner);
236
237 spin_lock_irq(&spu->register_lock);
238 spu->ctx = ctx;
239 spu->flags = 0;
240 ctx->spu = spu;
241 ctx->ops = &spu_hw_ops;
242 spu->pid = current->pid;
243 spu->tgid = current->tgid;
244 spu->ibox_callback = spufs_ibox_callback;
245 spu->wbox_callback = spufs_wbox_callback;
246 spu->stop_callback = spufs_stop_callback;
247 spu->mfc_callback = spufs_mfc_callback;
248 spin_unlock_irq(&spu->register_lock);
249
250 spu_unmap_mappings(ctx);
251
252 spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0);
253 spu_restore(&ctx->csa, spu);
254 spu->timestamp = jiffies;
255 spu_switch_notify(spu, ctx);
256 ctx->state = SPU_STATE_RUNNABLE;
257
258 spuctx_switch_state(ctx, SPU_UTIL_USER);
259 }
260
261 /*
262 * Must be used with the list_mutex held.
263 */
264 static inline int sched_spu(struct spu *spu)
265 {
266 BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
267
268 return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
269 }
270
271 static void aff_merge_remaining_ctxs(struct spu_gang *gang)
272 {
273 struct spu_context *ctx;
274
275 list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
276 if (list_empty(&ctx->aff_list))
277 list_add(&ctx->aff_list, &gang->aff_list_head);
278 }
279 gang->aff_flags |= AFF_MERGED;
280 }
281
282 static void aff_set_offsets(struct spu_gang *gang)
283 {
284 struct spu_context *ctx;
285 int offset;
286
287 offset = -1;
288 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
289 aff_list) {
290 if (&ctx->aff_list == &gang->aff_list_head)
291 break;
292 ctx->aff_offset = offset--;
293 }
294
295 offset = 0;
296 list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
297 if (&ctx->aff_list == &gang->aff_list_head)
298 break;
299 ctx->aff_offset = offset++;
300 }
301
302 gang->aff_flags |= AFF_OFFSETS_SET;
303 }
304
305 static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
306 int group_size, int lowest_offset)
307 {
308 struct spu *spu;
309 int node, n;
310
311 /*
312 * TODO: A better algorithm could be used to find a good spu to be
313 * used as reference location for the ctxs chain.
314 */
315 node = cpu_to_node(raw_smp_processor_id());
316 for (n = 0; n < MAX_NUMNODES; n++, node++) {
317 /*
318 * "available_spus" counts how many spus are not potentially
319 * going to be used by other affinity gangs whose reference
320 * context is already in place. Although this code seeks to
321 * avoid having affinity gangs with a summed amount of
322 * contexts bigger than the amount of spus in the node,
323 * this may happen sporadically. In this case, available_spus
324 * becomes negative, which is harmless.
325 */
326 int available_spus;
327
328 node = (node < MAX_NUMNODES) ? node : 0;
329 if (!node_allowed(ctx, node))
330 continue;
331
332 available_spus = 0;
333 mutex_lock(&cbe_spu_info[node].list_mutex);
334 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
335 if (spu->ctx && spu->ctx->gang && !spu->ctx->aff_offset
336 && spu->ctx->gang->aff_ref_spu)
337 available_spus -= spu->ctx->gang->contexts;
338 available_spus++;
339 }
340 if (available_spus < ctx->gang->contexts) {
341 mutex_unlock(&cbe_spu_info[node].list_mutex);
342 continue;
343 }
344
345 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
346 if ((!mem_aff || spu->has_mem_affinity) &&
347 sched_spu(spu)) {
348 mutex_unlock(&cbe_spu_info[node].list_mutex);
349 return spu;
350 }
351 }
352 mutex_unlock(&cbe_spu_info[node].list_mutex);
353 }
354 return NULL;
355 }
356
357 static void aff_set_ref_point_location(struct spu_gang *gang)
358 {
359 int mem_aff, gs, lowest_offset;
360 struct spu_context *ctx;
361 struct spu *tmp;
362
363 mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
364 lowest_offset = 0;
365 gs = 0;
366
367 list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
368 gs++;
369
370 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
371 aff_list) {
372 if (&ctx->aff_list == &gang->aff_list_head)
373 break;
374 lowest_offset = ctx->aff_offset;
375 }
376
377 gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
378 lowest_offset);
379 }
380
381 static struct spu *ctx_location(struct spu *ref, int offset, int node)
382 {
383 struct spu *spu;
384
385 spu = NULL;
386 if (offset >= 0) {
387 list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
388 BUG_ON(spu->node != node);
389 if (offset == 0)
390 break;
391 if (sched_spu(spu))
392 offset--;
393 }
394 } else {
395 list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
396 BUG_ON(spu->node != node);
397 if (offset == 0)
398 break;
399 if (sched_spu(spu))
400 offset++;
401 }
402 }
403
404 return spu;
405 }
406
407 /*
408 * affinity_check is called each time a context is going to be scheduled.
409 * It returns the spu ptr on which the context must run.
410 */
411 static int has_affinity(struct spu_context *ctx)
412 {
413 struct spu_gang *gang = ctx->gang;
414
415 if (list_empty(&ctx->aff_list))
416 return 0;
417
418 if (atomic_read(&ctx->gang->aff_sched_count) == 0)
419 ctx->gang->aff_ref_spu = NULL;
420
421 if (!gang->aff_ref_spu) {
422 if (!(gang->aff_flags & AFF_MERGED))
423 aff_merge_remaining_ctxs(gang);
424 if (!(gang->aff_flags & AFF_OFFSETS_SET))
425 aff_set_offsets(gang);
426 aff_set_ref_point_location(gang);
427 }
428
429 return gang->aff_ref_spu != NULL;
430 }
431
432 /**
433 * spu_unbind_context - unbind spu context from physical spu
434 * @spu: physical spu to unbind from
435 * @ctx: context to unbind
436 */
437 static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
438 {
439 u32 status;
440
441 spu_context_trace(spu_unbind_context__enter, ctx, spu);
442
443 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
444
445 if (spu->ctx->flags & SPU_CREATE_NOSCHED)
446 atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
447
448 if (ctx->gang)
449 /*
450 * If ctx->gang->aff_sched_count is positive, SPU affinity is
451 * being considered in this gang. Using atomic_dec_if_positive
452 * allow us to skip an explicit check for affinity in this gang
453 */
454 atomic_dec_if_positive(&ctx->gang->aff_sched_count);
455
456 spu_switch_notify(spu, NULL);
457 spu_unmap_mappings(ctx);
458 spu_save(&ctx->csa, spu);
459 spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0);
460
461 spin_lock_irq(&spu->register_lock);
462 spu->timestamp = jiffies;
463 ctx->state = SPU_STATE_SAVED;
464 spu->ibox_callback = NULL;
465 spu->wbox_callback = NULL;
466 spu->stop_callback = NULL;
467 spu->mfc_callback = NULL;
468 spu->pid = 0;
469 spu->tgid = 0;
470 ctx->ops = &spu_backing_ops;
471 spu->flags = 0;
472 spu->ctx = NULL;
473 spin_unlock_irq(&spu->register_lock);
474
475 spu_associate_mm(spu, NULL);
476
477 ctx->stats.slb_flt +=
478 (spu->stats.slb_flt - ctx->stats.slb_flt_base);
479 ctx->stats.class2_intr +=
480 (spu->stats.class2_intr - ctx->stats.class2_intr_base);
481
482 /* This maps the underlying spu state to idle */
483 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
484 ctx->spu = NULL;
485
486 if (spu_stopped(ctx, &status))
487 wake_up_all(&ctx->stop_wq);
488 }
489
490 /**
491 * spu_add_to_rq - add a context to the runqueue
492 * @ctx: context to add
493 */
494 static void __spu_add_to_rq(struct spu_context *ctx)
495 {
496 /*
497 * Unfortunately this code path can be called from multiple threads
498 * on behalf of a single context due to the way the problem state
499 * mmap support works.
500 *
501 * Fortunately we need to wake up all these threads at the same time
502 * and can simply skip the runqueue addition for every but the first
503 * thread getting into this codepath.
504 *
505 * It's still quite hacky, and long-term we should proxy all other
506 * threads through the owner thread so that spu_run is in control
507 * of all the scheduling activity for a given context.
508 */
509 if (list_empty(&ctx->rq)) {
510 list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
511 set_bit(ctx->prio, spu_prio->bitmap);
512 if (!spu_prio->nr_waiting++)
513 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
514 }
515 }
516
517 static void spu_add_to_rq(struct spu_context *ctx)
518 {
519 spin_lock(&spu_prio->runq_lock);
520 __spu_add_to_rq(ctx);
521 spin_unlock(&spu_prio->runq_lock);
522 }
523
524 static void __spu_del_from_rq(struct spu_context *ctx)
525 {
526 int prio = ctx->prio;
527
528 if (!list_empty(&ctx->rq)) {
529 if (!--spu_prio->nr_waiting)
530 del_timer(&spusched_timer);
531 list_del_init(&ctx->rq);
532
533 if (list_empty(&spu_prio->runq[prio]))
534 clear_bit(prio, spu_prio->bitmap);
535 }
536 }
537
538 void spu_del_from_rq(struct spu_context *ctx)
539 {
540 spin_lock(&spu_prio->runq_lock);
541 __spu_del_from_rq(ctx);
542 spin_unlock(&spu_prio->runq_lock);
543 }
544
545 static void spu_prio_wait(struct spu_context *ctx)
546 {
547 DEFINE_WAIT(wait);
548
549 /*
550 * The caller must explicitly wait for a context to be loaded
551 * if the nosched flag is set. If NOSCHED is not set, the caller
552 * queues the context and waits for an spu event or error.
553 */
554 BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));
555
556 spin_lock(&spu_prio->runq_lock);
557 prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
558 if (!signal_pending(current)) {
559 __spu_add_to_rq(ctx);
560 spin_unlock(&spu_prio->runq_lock);
561 mutex_unlock(&ctx->state_mutex);
562 schedule();
563 mutex_lock(&ctx->state_mutex);
564 spin_lock(&spu_prio->runq_lock);
565 __spu_del_from_rq(ctx);
566 }
567 spin_unlock(&spu_prio->runq_lock);
568 __set_current_state(TASK_RUNNING);
569 remove_wait_queue(&ctx->stop_wq, &wait);
570 }
571
572 static struct spu *spu_get_idle(struct spu_context *ctx)
573 {
574 struct spu *spu, *aff_ref_spu;
575 int node, n;
576
577 spu_context_nospu_trace(spu_get_idle__enter, ctx);
578
579 if (ctx->gang) {
580 mutex_lock(&ctx->gang->aff_mutex);
581 if (has_affinity(ctx)) {
582 aff_ref_spu = ctx->gang->aff_ref_spu;
583 atomic_inc(&ctx->gang->aff_sched_count);
584 mutex_unlock(&ctx->gang->aff_mutex);
585 node = aff_ref_spu->node;
586
587 mutex_lock(&cbe_spu_info[node].list_mutex);
588 spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
589 if (spu && spu->alloc_state == SPU_FREE)
590 goto found;
591 mutex_unlock(&cbe_spu_info[node].list_mutex);
592
593 atomic_dec(&ctx->gang->aff_sched_count);
594 goto not_found;
595 }
596 mutex_unlock(&ctx->gang->aff_mutex);
597 }
598 node = cpu_to_node(raw_smp_processor_id());
599 for (n = 0; n < MAX_NUMNODES; n++, node++) {
600 node = (node < MAX_NUMNODES) ? node : 0;
601 if (!node_allowed(ctx, node))
602 continue;
603
604 mutex_lock(&cbe_spu_info[node].list_mutex);
605 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
606 if (spu->alloc_state == SPU_FREE)
607 goto found;
608 }
609 mutex_unlock(&cbe_spu_info[node].list_mutex);
610 }
611
612 not_found:
613 spu_context_nospu_trace(spu_get_idle__not_found, ctx);
614 return NULL;
615
616 found:
617 spu->alloc_state = SPU_USED;
618 mutex_unlock(&cbe_spu_info[node].list_mutex);
619 spu_context_trace(spu_get_idle__found, ctx, spu);
620 spu_init_channels(spu);
621 return spu;
622 }
623
624 /**
625 * find_victim - find a lower priority context to preempt
626 * @ctx: canidate context for running
627 *
628 * Returns the freed physical spu to run the new context on.
629 */
630 static struct spu *find_victim(struct spu_context *ctx)
631 {
632 struct spu_context *victim = NULL;
633 struct spu *spu;
634 int node, n;
635
636 spu_context_nospu_trace(spu_find_victim__enter, ctx);
637
638 /*
639 * Look for a possible preemption candidate on the local node first.
640 * If there is no candidate look at the other nodes. This isn't
641 * exactly fair, but so far the whole spu scheduler tries to keep
642 * a strong node affinity. We might want to fine-tune this in
643 * the future.
644 */
645 restart:
646 node = cpu_to_node(raw_smp_processor_id());
647 for (n = 0; n < MAX_NUMNODES; n++, node++) {
648 node = (node < MAX_NUMNODES) ? node : 0;
649 if (!node_allowed(ctx, node))
650 continue;
651
652 mutex_lock(&cbe_spu_info[node].list_mutex);
653 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
654 struct spu_context *tmp = spu->ctx;
655
656 if (tmp && tmp->prio > ctx->prio &&
657 !(tmp->flags & SPU_CREATE_NOSCHED) &&
658 (!victim || tmp->prio > victim->prio)) {
659 victim = spu->ctx;
660 }
661 }
662 if (victim)
663 get_spu_context(victim);
664 mutex_unlock(&cbe_spu_info[node].list_mutex);
665
666 if (victim) {
667 /*
668 * This nests ctx->state_mutex, but we always lock
669 * higher priority contexts before lower priority
670 * ones, so this is safe until we introduce
671 * priority inheritance schemes.
672 *
673 * XXX if the highest priority context is locked,
674 * this can loop a long time. Might be better to
675 * look at another context or give up after X retries.
676 */
677 if (!mutex_trylock(&victim->state_mutex)) {
678 put_spu_context(victim);
679 victim = NULL;
680 goto restart;
681 }
682
683 spu = victim->spu;
684 if (!spu || victim->prio <= ctx->prio) {
685 /*
686 * This race can happen because we've dropped
687 * the active list mutex. Not a problem, just
688 * restart the search.
689 */
690 mutex_unlock(&victim->state_mutex);
691 put_spu_context(victim);
692 victim = NULL;
693 goto restart;
694 }
695
696 spu_context_trace(__spu_deactivate__unload, ctx, spu);
697
698 mutex_lock(&cbe_spu_info[node].list_mutex);
699 cbe_spu_info[node].nr_active--;
700 spu_unbind_context(spu, victim);
701 mutex_unlock(&cbe_spu_info[node].list_mutex);
702
703 victim->stats.invol_ctx_switch++;
704 spu->stats.invol_ctx_switch++;
705 if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags))
706 spu_add_to_rq(victim);
707
708 mutex_unlock(&victim->state_mutex);
709 put_spu_context(victim);
710
711 return spu;
712 }
713 }
714
715 return NULL;
716 }
717
718 static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
719 {
720 int node = spu->node;
721 int success = 0;
722
723 spu_set_timeslice(ctx);
724
725 mutex_lock(&cbe_spu_info[node].list_mutex);
726 if (spu->ctx == NULL) {
727 spu_bind_context(spu, ctx);
728 cbe_spu_info[node].nr_active++;
729 spu->alloc_state = SPU_USED;
730 success = 1;
731 }
732 mutex_unlock(&cbe_spu_info[node].list_mutex);
733
734 if (success)
735 wake_up_all(&ctx->run_wq);
736 else
737 spu_add_to_rq(ctx);
738 }
739
740 static void spu_schedule(struct spu *spu, struct spu_context *ctx)
741 {
742 /* not a candidate for interruptible because it's called either
743 from the scheduler thread or from spu_deactivate */
744 mutex_lock(&ctx->state_mutex);
745 if (ctx->state == SPU_STATE_SAVED)
746 __spu_schedule(spu, ctx);
747 spu_release(ctx);
748 }
749
750 /**
751 * spu_unschedule - remove a context from a spu, and possibly release it.
752 * @spu: The SPU to unschedule from
753 * @ctx: The context currently scheduled on the SPU
754 * @free_spu Whether to free the SPU for other contexts
755 *
756 * Unbinds the context @ctx from the SPU @spu. If @free_spu is non-zero, the
757 * SPU is made available for other contexts (ie, may be returned by
758 * spu_get_idle). If this is zero, the caller is expected to schedule another
759 * context to this spu.
760 *
761 * Should be called with ctx->state_mutex held.
762 */
763 static void spu_unschedule(struct spu *spu, struct spu_context *ctx,
764 int free_spu)
765 {
766 int node = spu->node;
767
768 mutex_lock(&cbe_spu_info[node].list_mutex);
769 cbe_spu_info[node].nr_active--;
770 if (free_spu)
771 spu->alloc_state = SPU_FREE;
772 spu_unbind_context(spu, ctx);
773 ctx->stats.invol_ctx_switch++;
774 spu->stats.invol_ctx_switch++;
775 mutex_unlock(&cbe_spu_info[node].list_mutex);
776 }
777
778 /**
779 * spu_activate - find a free spu for a context and execute it
780 * @ctx: spu context to schedule
781 * @flags: flags (currently ignored)
782 *
783 * Tries to find a free spu to run @ctx. If no free spu is available
784 * add the context to the runqueue so it gets woken up once an spu
785 * is available.
786 */
787 int spu_activate(struct spu_context *ctx, unsigned long flags)
788 {
789 struct spu *spu;
790
791 /*
792 * If there are multiple threads waiting for a single context
793 * only one actually binds the context while the others will
794 * only be able to acquire the state_mutex once the context
795 * already is in runnable state.
796 */
797 if (ctx->spu)
798 return 0;
799
800 spu_activate_top:
801 if (signal_pending(current))
802 return -ERESTARTSYS;
803
804 spu = spu_get_idle(ctx);
805 /*
806 * If this is a realtime thread we try to get it running by
807 * preempting a lower priority thread.
808 */
809 if (!spu && rt_prio(ctx->prio))
810 spu = find_victim(ctx);
811 if (spu) {
812 unsigned long runcntl;
813
814 runcntl = ctx->ops->runcntl_read(ctx);
815 __spu_schedule(spu, ctx);
816 if (runcntl & SPU_RUNCNTL_RUNNABLE)
817 spuctx_switch_state(ctx, SPU_UTIL_USER);
818
819 return 0;
820 }
821
822 if (ctx->flags & SPU_CREATE_NOSCHED) {
823 spu_prio_wait(ctx);
824 goto spu_activate_top;
825 }
826
827 spu_add_to_rq(ctx);
828
829 return 0;
830 }
831
832 /**
833 * grab_runnable_context - try to find a runnable context
834 *
835 * Remove the highest priority context on the runqueue and return it
836 * to the caller. Returns %NULL if no runnable context was found.
837 */
838 static struct spu_context *grab_runnable_context(int prio, int node)
839 {
840 struct spu_context *ctx;
841 int best;
842
843 spin_lock(&spu_prio->runq_lock);
844 best = find_first_bit(spu_prio->bitmap, prio);
845 while (best < prio) {
846 struct list_head *rq = &spu_prio->runq[best];
847
848 list_for_each_entry(ctx, rq, rq) {
849 /* XXX(hch): check for affinity here aswell */
850 if (__node_allowed(ctx, node)) {
851 __spu_del_from_rq(ctx);
852 goto found;
853 }
854 }
855 best++;
856 }
857 ctx = NULL;
858 found:
859 spin_unlock(&spu_prio->runq_lock);
860 return ctx;
861 }
862
863 static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
864 {
865 struct spu *spu = ctx->spu;
866 struct spu_context *new = NULL;
867
868 if (spu) {
869 new = grab_runnable_context(max_prio, spu->node);
870 if (new || force) {
871 spu_unschedule(spu, ctx, new == NULL);
872 if (new) {
873 if (new->flags & SPU_CREATE_NOSCHED)
874 wake_up(&new->stop_wq);
875 else {
876 spu_release(ctx);
877 spu_schedule(spu, new);
878 /* this one can't easily be made
879 interruptible */
880 mutex_lock(&ctx->state_mutex);
881 }
882 }
883 }
884 }
885
886 return new != NULL;
887 }
888
889 /**
890 * spu_deactivate - unbind a context from it's physical spu
891 * @ctx: spu context to unbind
892 *
893 * Unbind @ctx from the physical spu it is running on and schedule
894 * the highest priority context to run on the freed physical spu.
895 */
896 void spu_deactivate(struct spu_context *ctx)
897 {
898 spu_context_nospu_trace(spu_deactivate__enter, ctx);
899 __spu_deactivate(ctx, 1, MAX_PRIO);
900 }
901
902 /**
903 * spu_yield - yield a physical spu if others are waiting
904 * @ctx: spu context to yield
905 *
906 * Check if there is a higher priority context waiting and if yes
907 * unbind @ctx from the physical spu and schedule the highest
908 * priority context to run on the freed physical spu instead.
909 */
910 void spu_yield(struct spu_context *ctx)
911 {
912 spu_context_nospu_trace(spu_yield__enter, ctx);
913 if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
914 mutex_lock(&ctx->state_mutex);
915 __spu_deactivate(ctx, 0, MAX_PRIO);
916 mutex_unlock(&ctx->state_mutex);
917 }
918 }
919
920 static noinline void spusched_tick(struct spu_context *ctx)
921 {
922 struct spu_context *new = NULL;
923 struct spu *spu = NULL;
924
925 if (spu_acquire(ctx))
926 BUG(); /* a kernel thread never has signals pending */
927
928 if (ctx->state != SPU_STATE_RUNNABLE)
929 goto out;
930 if (ctx->flags & SPU_CREATE_NOSCHED)
931 goto out;
932 if (ctx->policy == SCHED_FIFO)
933 goto out;
934
935 if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
936 goto out;
937
938 spu = ctx->spu;
939
940 spu_context_trace(spusched_tick__preempt, ctx, spu);
941
942 new = grab_runnable_context(ctx->prio + 1, spu->node);
943 if (new) {
944 spu_unschedule(spu, ctx, 0);
945 if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
946 spu_add_to_rq(ctx);
947 } else {
948 spu_context_nospu_trace(spusched_tick__newslice, ctx);
949 if (!ctx->time_slice)
950 ctx->time_slice++;
951 }
952 out:
953 spu_release(ctx);
954
955 if (new)
956 spu_schedule(spu, new);
957 }
958
959 /**
960 * count_active_contexts - count nr of active tasks
961 *
962 * Return the number of tasks currently running or waiting to run.
963 *
964 * Note that we don't take runq_lock / list_mutex here. Reading
965 * a single 32bit value is atomic on powerpc, and we don't care
966 * about memory ordering issues here.
967 */
968 static unsigned long count_active_contexts(void)
969 {
970 int nr_active = 0, node;
971
972 for (node = 0; node < MAX_NUMNODES; node++)
973 nr_active += cbe_spu_info[node].nr_active;
974 nr_active += spu_prio->nr_waiting;
975
976 return nr_active;
977 }
978
979 /**
980 * spu_calc_load - update the avenrun load estimates.
981 *
982 * No locking against reading these values from userspace, as for
983 * the CPU loadavg code.
984 */
985 static void spu_calc_load(void)
986 {
987 unsigned long active_tasks; /* fixed-point */
988
989 active_tasks = count_active_contexts() * FIXED_1;
990 CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
991 CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
992 CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
993 }
994
995 static void spusched_wake(unsigned long data)
996 {
997 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
998 wake_up_process(spusched_task);
999 }
1000
1001 static void spuloadavg_wake(unsigned long data)
1002 {
1003 mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
1004 spu_calc_load();
1005 }
1006
1007 static int spusched_thread(void *unused)
1008 {
1009 struct spu *spu;
1010 int node;
1011
1012 while (!kthread_should_stop()) {
1013 set_current_state(TASK_INTERRUPTIBLE);
1014 schedule();
1015 for (node = 0; node < MAX_NUMNODES; node++) {
1016 struct mutex *mtx = &cbe_spu_info[node].list_mutex;
1017
1018 mutex_lock(mtx);
1019 list_for_each_entry(spu, &cbe_spu_info[node].spus,
1020 cbe_list) {
1021 struct spu_context *ctx = spu->ctx;
1022
1023 if (ctx) {
1024 get_spu_context(ctx);
1025 mutex_unlock(mtx);
1026 spusched_tick(ctx);
1027 mutex_lock(mtx);
1028 put_spu_context(ctx);
1029 }
1030 }
1031 mutex_unlock(mtx);
1032 }
1033 }
1034
1035 return 0;
1036 }
1037
1038 void spuctx_switch_state(struct spu_context *ctx,
1039 enum spu_utilization_state new_state)
1040 {
1041 unsigned long long curtime;
1042 signed long long delta;
1043 struct timespec ts;
1044 struct spu *spu;
1045 enum spu_utilization_state old_state;
1046 int node;
1047
1048 ktime_get_ts(&ts);
1049 curtime = timespec_to_ns(&ts);
1050 delta = curtime - ctx->stats.tstamp;
1051
1052 WARN_ON(!mutex_is_locked(&ctx->state_mutex));
1053 WARN_ON(delta < 0);
1054
1055 spu = ctx->spu;
1056 old_state = ctx->stats.util_state;
1057 ctx->stats.util_state = new_state;
1058 ctx->stats.tstamp = curtime;
1059
1060 /*
1061 * Update the physical SPU utilization statistics.
1062 */
1063 if (spu) {
1064 ctx->stats.times[old_state] += delta;
1065 spu->stats.times[old_state] += delta;
1066 spu->stats.util_state = new_state;
1067 spu->stats.tstamp = curtime;
1068 node = spu->node;
1069 if (old_state == SPU_UTIL_USER)
1070 atomic_dec(&cbe_spu_info[node].busy_spus);
1071 if (new_state == SPU_UTIL_USER)
1072 atomic_inc(&cbe_spu_info[node].busy_spus);
1073 }
1074 }
1075
1076 #define LOAD_INT(x) ((x) >> FSHIFT)
1077 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
1078
1079 static int show_spu_loadavg(struct seq_file *s, void *private)
1080 {
1081 int a, b, c;
1082
1083 a = spu_avenrun[0] + (FIXED_1/200);
1084 b = spu_avenrun[1] + (FIXED_1/200);
1085 c = spu_avenrun[2] + (FIXED_1/200);
1086
1087 /*
1088 * Note that last_pid doesn't really make much sense for the
1089 * SPU loadavg (it even seems very odd on the CPU side...),
1090 * but we include it here to have a 100% compatible interface.
1091 */
1092 seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
1093 LOAD_INT(a), LOAD_FRAC(a),
1094 LOAD_INT(b), LOAD_FRAC(b),
1095 LOAD_INT(c), LOAD_FRAC(c),
1096 count_active_contexts(),
1097 atomic_read(&nr_spu_contexts),
1098 current->nsproxy->pid_ns->last_pid);
1099 return 0;
1100 }
1101
1102 static int spu_loadavg_open(struct inode *inode, struct file *file)
1103 {
1104 return single_open(file, show_spu_loadavg, NULL);
1105 }
1106
1107 static const struct file_operations spu_loadavg_fops = {
1108 .open = spu_loadavg_open,
1109 .read = seq_read,
1110 .llseek = seq_lseek,
1111 .release = single_release,
1112 };
1113
1114 int __init spu_sched_init(void)
1115 {
1116 struct proc_dir_entry *entry;
1117 int err = -ENOMEM, i;
1118
1119 spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
1120 if (!spu_prio)
1121 goto out;
1122
1123 for (i = 0; i < MAX_PRIO; i++) {
1124 INIT_LIST_HEAD(&spu_prio->runq[i]);
1125 __clear_bit(i, spu_prio->bitmap);
1126 }
1127 spin_lock_init(&spu_prio->runq_lock);
1128
1129 setup_timer(&spusched_timer, spusched_wake, 0);
1130 setup_timer(&spuloadavg_timer, spuloadavg_wake, 0);
1131
1132 spusched_task = kthread_run(spusched_thread, NULL, "spusched");
1133 if (IS_ERR(spusched_task)) {
1134 err = PTR_ERR(spusched_task);
1135 goto out_free_spu_prio;
1136 }
1137
1138 mod_timer(&spuloadavg_timer, 0);
1139
1140 entry = proc_create("spu_loadavg", 0, NULL, &spu_loadavg_fops);
1141 if (!entry)
1142 goto out_stop_kthread;
1143
1144 pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
1145 SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
1146 return 0;
1147
1148 out_stop_kthread:
1149 kthread_stop(spusched_task);
1150 out_free_spu_prio:
1151 kfree(spu_prio);
1152 out:
1153 return err;
1154 }
1155
1156 void spu_sched_exit(void)
1157 {
1158 struct spu *spu;
1159 int node;
1160
1161 remove_proc_entry("spu_loadavg", NULL);
1162
1163 del_timer_sync(&spusched_timer);
1164 del_timer_sync(&spuloadavg_timer);
1165 kthread_stop(spusched_task);
1166
1167 for (node = 0; node < MAX_NUMNODES; node++) {
1168 mutex_lock(&cbe_spu_info[node].list_mutex);
1169 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
1170 if (spu->alloc_state != SPU_FREE)
1171 spu->alloc_state = SPU_FREE;
1172 mutex_unlock(&cbe_spu_info[node].list_mutex);
1173 }
1174 kfree(spu_prio);
1175 }