signal: fix information leak in copy_siginfo_from_user32
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / kernel / signal_32.c
1 /*
2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
3 *
4 * PowerPC version
5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 * Copyright (C) 2001 IBM
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
9 *
10 * Derived from "arch/i386/kernel/signal.c"
11 * Copyright (C) 1991, 1992 Linus Torvalds
12 * 1997-11-28 Modified for POSIX.1b signals by Richard Henderson
13 *
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
18 */
19
20 #include <linux/sched.h>
21 #include <linux/mm.h>
22 #include <linux/smp.h>
23 #include <linux/kernel.h>
24 #include <linux/signal.h>
25 #include <linux/errno.h>
26 #include <linux/elf.h>
27 #include <linux/ptrace.h>
28 #include <linux/ratelimit.h>
29 #ifdef CONFIG_PPC64
30 #include <linux/syscalls.h>
31 #include <linux/compat.h>
32 #else
33 #include <linux/wait.h>
34 #include <linux/unistd.h>
35 #include <linux/stddef.h>
36 #include <linux/tty.h>
37 #include <linux/binfmts.h>
38 #endif
39
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/syscalls.h>
43 #include <asm/sigcontext.h>
44 #include <asm/vdso.h>
45 #include <asm/switch_to.h>
46 #include <asm/tm.h>
47 #ifdef CONFIG_PPC64
48 #include "ppc32.h"
49 #include <asm/unistd.h>
50 #else
51 #include <asm/ucontext.h>
52 #include <asm/pgtable.h>
53 #endif
54
55 #include "signal.h"
56
57 #undef DEBUG_SIG
58
59 #ifdef CONFIG_PPC64
60 #define sys_rt_sigreturn compat_sys_rt_sigreturn
61 #define sys_swapcontext compat_sys_swapcontext
62 #define sys_sigreturn compat_sys_sigreturn
63
64 #define old_sigaction old_sigaction32
65 #define sigcontext sigcontext32
66 #define mcontext mcontext32
67 #define ucontext ucontext32
68
69 #define __save_altstack __compat_save_altstack
70
71 /*
72 * Userspace code may pass a ucontext which doesn't include VSX added
73 * at the end. We need to check for this case.
74 */
75 #define UCONTEXTSIZEWITHOUTVSX \
76 (sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
77
78 /*
79 * Returning 0 means we return to userspace via
80 * ret_from_except and thus restore all user
81 * registers from *regs. This is what we need
82 * to do when a signal has been delivered.
83 */
84
85 #define GP_REGS_SIZE min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
86 #undef __SIGNAL_FRAMESIZE
87 #define __SIGNAL_FRAMESIZE __SIGNAL_FRAMESIZE32
88 #undef ELF_NVRREG
89 #define ELF_NVRREG ELF_NVRREG32
90
91 /*
92 * Functions for flipping sigsets (thanks to brain dead generic
93 * implementation that makes things simple for little endian only)
94 */
95 static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
96 {
97 compat_sigset_t cset;
98
99 switch (_NSIG_WORDS) {
100 case 4: cset.sig[6] = set->sig[3] & 0xffffffffull;
101 cset.sig[7] = set->sig[3] >> 32;
102 case 3: cset.sig[4] = set->sig[2] & 0xffffffffull;
103 cset.sig[5] = set->sig[2] >> 32;
104 case 2: cset.sig[2] = set->sig[1] & 0xffffffffull;
105 cset.sig[3] = set->sig[1] >> 32;
106 case 1: cset.sig[0] = set->sig[0] & 0xffffffffull;
107 cset.sig[1] = set->sig[0] >> 32;
108 }
109 return copy_to_user(uset, &cset, sizeof(*uset));
110 }
111
112 static inline int get_sigset_t(sigset_t *set,
113 const compat_sigset_t __user *uset)
114 {
115 compat_sigset_t s32;
116
117 if (copy_from_user(&s32, uset, sizeof(*uset)))
118 return -EFAULT;
119
120 /*
121 * Swap the 2 words of the 64-bit sigset_t (they are stored
122 * in the "wrong" endian in 32-bit user storage).
123 */
124 switch (_NSIG_WORDS) {
125 case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
126 case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
127 case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
128 case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
129 }
130 return 0;
131 }
132
133 #define to_user_ptr(p) ptr_to_compat(p)
134 #define from_user_ptr(p) compat_ptr(p)
135
136 static inline int save_general_regs(struct pt_regs *regs,
137 struct mcontext __user *frame)
138 {
139 elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
140 int i;
141
142 WARN_ON(!FULL_REGS(regs));
143
144 for (i = 0; i <= PT_RESULT; i ++) {
145 if (i == 14 && !FULL_REGS(regs))
146 i = 32;
147 if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
148 return -EFAULT;
149 }
150 return 0;
151 }
152
153 static inline int restore_general_regs(struct pt_regs *regs,
154 struct mcontext __user *sr)
155 {
156 elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
157 int i;
158
159 for (i = 0; i <= PT_RESULT; i++) {
160 if ((i == PT_MSR) || (i == PT_SOFTE))
161 continue;
162 if (__get_user(gregs[i], &sr->mc_gregs[i]))
163 return -EFAULT;
164 }
165 return 0;
166 }
167
168 #else /* CONFIG_PPC64 */
169
170 #define GP_REGS_SIZE min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
171
172 static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
173 {
174 return copy_to_user(uset, set, sizeof(*uset));
175 }
176
177 static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
178 {
179 return copy_from_user(set, uset, sizeof(*uset));
180 }
181
182 #define to_user_ptr(p) ((unsigned long)(p))
183 #define from_user_ptr(p) ((void __user *)(p))
184
185 static inline int save_general_regs(struct pt_regs *regs,
186 struct mcontext __user *frame)
187 {
188 WARN_ON(!FULL_REGS(regs));
189 return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
190 }
191
192 static inline int restore_general_regs(struct pt_regs *regs,
193 struct mcontext __user *sr)
194 {
195 /* copy up to but not including MSR */
196 if (__copy_from_user(regs, &sr->mc_gregs,
197 PT_MSR * sizeof(elf_greg_t)))
198 return -EFAULT;
199 /* copy from orig_r3 (the word after the MSR) up to the end */
200 if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
201 GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
202 return -EFAULT;
203 return 0;
204 }
205 #endif
206
207 /*
208 * When we have signals to deliver, we set up on the
209 * user stack, going down from the original stack pointer:
210 * an ABI gap of 56 words
211 * an mcontext struct
212 * a sigcontext struct
213 * a gap of __SIGNAL_FRAMESIZE bytes
214 *
215 * Each of these things must be a multiple of 16 bytes in size. The following
216 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
217 *
218 */
219 struct sigframe {
220 struct sigcontext sctx; /* the sigcontext */
221 struct mcontext mctx; /* all the register values */
222 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
223 struct sigcontext sctx_transact;
224 struct mcontext mctx_transact;
225 #endif
226 /*
227 * Programs using the rs6000/xcoff abi can save up to 19 gp
228 * regs and 18 fp regs below sp before decrementing it.
229 */
230 int abigap[56];
231 };
232
233 /* We use the mc_pad field for the signal return trampoline. */
234 #define tramp mc_pad
235
236 /*
237 * When we have rt signals to deliver, we set up on the
238 * user stack, going down from the original stack pointer:
239 * one rt_sigframe struct (siginfo + ucontext + ABI gap)
240 * a gap of __SIGNAL_FRAMESIZE+16 bytes
241 * (the +16 is to get the siginfo and ucontext in the same
242 * positions as in older kernels).
243 *
244 * Each of these things must be a multiple of 16 bytes in size.
245 *
246 */
247 struct rt_sigframe {
248 #ifdef CONFIG_PPC64
249 compat_siginfo_t info;
250 #else
251 struct siginfo info;
252 #endif
253 struct ucontext uc;
254 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
255 struct ucontext uc_transact;
256 #endif
257 /*
258 * Programs using the rs6000/xcoff abi can save up to 19 gp
259 * regs and 18 fp regs below sp before decrementing it.
260 */
261 int abigap[56];
262 };
263
264 #ifdef CONFIG_VSX
265 unsigned long copy_fpr_to_user(void __user *to,
266 struct task_struct *task)
267 {
268 double buf[ELF_NFPREG];
269 int i;
270
271 /* save FPR copy to local buffer then write to the thread_struct */
272 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
273 buf[i] = task->thread.TS_FPR(i);
274 memcpy(&buf[i], &task->thread.fpscr, sizeof(double));
275 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
276 }
277
278 unsigned long copy_fpr_from_user(struct task_struct *task,
279 void __user *from)
280 {
281 double buf[ELF_NFPREG];
282 int i;
283
284 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
285 return 1;
286 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
287 task->thread.TS_FPR(i) = buf[i];
288 memcpy(&task->thread.fpscr, &buf[i], sizeof(double));
289
290 return 0;
291 }
292
293 unsigned long copy_vsx_to_user(void __user *to,
294 struct task_struct *task)
295 {
296 double buf[ELF_NVSRHALFREG];
297 int i;
298
299 /* save FPR copy to local buffer then write to the thread_struct */
300 for (i = 0; i < ELF_NVSRHALFREG; i++)
301 buf[i] = task->thread.fpr[i][TS_VSRLOWOFFSET];
302 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
303 }
304
305 unsigned long copy_vsx_from_user(struct task_struct *task,
306 void __user *from)
307 {
308 double buf[ELF_NVSRHALFREG];
309 int i;
310
311 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
312 return 1;
313 for (i = 0; i < ELF_NVSRHALFREG ; i++)
314 task->thread.fpr[i][TS_VSRLOWOFFSET] = buf[i];
315 return 0;
316 }
317
318 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
319 unsigned long copy_transact_fpr_to_user(void __user *to,
320 struct task_struct *task)
321 {
322 double buf[ELF_NFPREG];
323 int i;
324
325 /* save FPR copy to local buffer then write to the thread_struct */
326 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
327 buf[i] = task->thread.TS_TRANS_FPR(i);
328 memcpy(&buf[i], &task->thread.transact_fpscr, sizeof(double));
329 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
330 }
331
332 unsigned long copy_transact_fpr_from_user(struct task_struct *task,
333 void __user *from)
334 {
335 double buf[ELF_NFPREG];
336 int i;
337
338 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
339 return 1;
340 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
341 task->thread.TS_TRANS_FPR(i) = buf[i];
342 memcpy(&task->thread.transact_fpscr, &buf[i], sizeof(double));
343
344 return 0;
345 }
346
347 unsigned long copy_transact_vsx_to_user(void __user *to,
348 struct task_struct *task)
349 {
350 double buf[ELF_NVSRHALFREG];
351 int i;
352
353 /* save FPR copy to local buffer then write to the thread_struct */
354 for (i = 0; i < ELF_NVSRHALFREG; i++)
355 buf[i] = task->thread.transact_fpr[i][TS_VSRLOWOFFSET];
356 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
357 }
358
359 unsigned long copy_transact_vsx_from_user(struct task_struct *task,
360 void __user *from)
361 {
362 double buf[ELF_NVSRHALFREG];
363 int i;
364
365 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
366 return 1;
367 for (i = 0; i < ELF_NVSRHALFREG ; i++)
368 task->thread.transact_fpr[i][TS_VSRLOWOFFSET] = buf[i];
369 return 0;
370 }
371 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
372 #else
373 inline unsigned long copy_fpr_to_user(void __user *to,
374 struct task_struct *task)
375 {
376 return __copy_to_user(to, task->thread.fpr,
377 ELF_NFPREG * sizeof(double));
378 }
379
380 inline unsigned long copy_fpr_from_user(struct task_struct *task,
381 void __user *from)
382 {
383 return __copy_from_user(task->thread.fpr, from,
384 ELF_NFPREG * sizeof(double));
385 }
386
387 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
388 inline unsigned long copy_transact_fpr_to_user(void __user *to,
389 struct task_struct *task)
390 {
391 return __copy_to_user(to, task->thread.transact_fpr,
392 ELF_NFPREG * sizeof(double));
393 }
394
395 inline unsigned long copy_transact_fpr_from_user(struct task_struct *task,
396 void __user *from)
397 {
398 return __copy_from_user(task->thread.transact_fpr, from,
399 ELF_NFPREG * sizeof(double));
400 }
401 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
402 #endif
403
404 /*
405 * Save the current user registers on the user stack.
406 * We only save the altivec/spe registers if the process has used
407 * altivec/spe instructions at some point.
408 */
409 static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
410 struct mcontext __user *tm_frame, int sigret,
411 int ctx_has_vsx_region)
412 {
413 unsigned long msr = regs->msr;
414
415 /* Make sure floating point registers are stored in regs */
416 flush_fp_to_thread(current);
417
418 /* save general registers */
419 if (save_general_regs(regs, frame))
420 return 1;
421
422 #ifdef CONFIG_ALTIVEC
423 /* save altivec registers */
424 if (current->thread.used_vr) {
425 flush_altivec_to_thread(current);
426 if (__copy_to_user(&frame->mc_vregs, current->thread.vr,
427 ELF_NVRREG * sizeof(vector128)))
428 return 1;
429 /* set MSR_VEC in the saved MSR value to indicate that
430 frame->mc_vregs contains valid data */
431 msr |= MSR_VEC;
432 }
433 /* else assert((regs->msr & MSR_VEC) == 0) */
434
435 /* We always copy to/from vrsave, it's 0 if we don't have or don't
436 * use altivec. Since VSCR only contains 32 bits saved in the least
437 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
438 * most significant bits of that same vector. --BenH
439 */
440 if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
441 return 1;
442 #endif /* CONFIG_ALTIVEC */
443 if (copy_fpr_to_user(&frame->mc_fregs, current))
444 return 1;
445
446 /*
447 * Clear the MSR VSX bit to indicate there is no valid state attached
448 * to this context, except in the specific case below where we set it.
449 */
450 msr &= ~MSR_VSX;
451 #ifdef CONFIG_VSX
452 /*
453 * Copy VSR 0-31 upper half from thread_struct to local
454 * buffer, then write that to userspace. Also set MSR_VSX in
455 * the saved MSR value to indicate that frame->mc_vregs
456 * contains valid data
457 */
458 if (current->thread.used_vsr && ctx_has_vsx_region) {
459 __giveup_vsx(current);
460 if (copy_vsx_to_user(&frame->mc_vsregs, current))
461 return 1;
462 msr |= MSR_VSX;
463 }
464 #endif /* CONFIG_VSX */
465 #ifdef CONFIG_SPE
466 /* save spe registers */
467 if (current->thread.used_spe) {
468 flush_spe_to_thread(current);
469 if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
470 ELF_NEVRREG * sizeof(u32)))
471 return 1;
472 /* set MSR_SPE in the saved MSR value to indicate that
473 frame->mc_vregs contains valid data */
474 msr |= MSR_SPE;
475 }
476 /* else assert((regs->msr & MSR_SPE) == 0) */
477
478 /* We always copy to/from spefscr */
479 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
480 return 1;
481 #endif /* CONFIG_SPE */
482
483 if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
484 return 1;
485 /* We need to write 0 the MSR top 32 bits in the tm frame so that we
486 * can check it on the restore to see if TM is active
487 */
488 if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
489 return 1;
490
491 if (sigret) {
492 /* Set up the sigreturn trampoline: li r0,sigret; sc */
493 if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
494 || __put_user(0x44000002UL, &frame->tramp[1]))
495 return 1;
496 flush_icache_range((unsigned long) &frame->tramp[0],
497 (unsigned long) &frame->tramp[2]);
498 }
499
500 return 0;
501 }
502
503 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
504 /*
505 * Save the current user registers on the user stack.
506 * We only save the altivec/spe registers if the process has used
507 * altivec/spe instructions at some point.
508 * We also save the transactional registers to a second ucontext in the
509 * frame.
510 *
511 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
512 */
513 static int save_tm_user_regs(struct pt_regs *regs,
514 struct mcontext __user *frame,
515 struct mcontext __user *tm_frame, int sigret)
516 {
517 unsigned long msr = regs->msr;
518
519 /* Make sure floating point registers are stored in regs */
520 flush_fp_to_thread(current);
521
522 /* Save both sets of general registers */
523 if (save_general_regs(&current->thread.ckpt_regs, frame)
524 || save_general_regs(regs, tm_frame))
525 return 1;
526
527 /* Stash the top half of the 64bit MSR into the 32bit MSR word
528 * of the transactional mcontext. This way we have a backward-compatible
529 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
530 * also look at what type of transaction (T or S) was active at the
531 * time of the signal.
532 */
533 if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
534 return 1;
535
536 #ifdef CONFIG_ALTIVEC
537 /* save altivec registers */
538 if (current->thread.used_vr) {
539 flush_altivec_to_thread(current);
540 if (__copy_to_user(&frame->mc_vregs, current->thread.vr,
541 ELF_NVRREG * sizeof(vector128)))
542 return 1;
543 if (msr & MSR_VEC) {
544 if (__copy_to_user(&tm_frame->mc_vregs,
545 current->thread.transact_vr,
546 ELF_NVRREG * sizeof(vector128)))
547 return 1;
548 } else {
549 if (__copy_to_user(&tm_frame->mc_vregs,
550 current->thread.vr,
551 ELF_NVRREG * sizeof(vector128)))
552 return 1;
553 }
554
555 /* set MSR_VEC in the saved MSR value to indicate that
556 * frame->mc_vregs contains valid data
557 */
558 msr |= MSR_VEC;
559 }
560
561 /* We always copy to/from vrsave, it's 0 if we don't have or don't
562 * use altivec. Since VSCR only contains 32 bits saved in the least
563 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
564 * most significant bits of that same vector. --BenH
565 */
566 if (__put_user(current->thread.vrsave,
567 (u32 __user *)&frame->mc_vregs[32]))
568 return 1;
569 if (msr & MSR_VEC) {
570 if (__put_user(current->thread.transact_vrsave,
571 (u32 __user *)&tm_frame->mc_vregs[32]))
572 return 1;
573 } else {
574 if (__put_user(current->thread.vrsave,
575 (u32 __user *)&tm_frame->mc_vregs[32]))
576 return 1;
577 }
578 #endif /* CONFIG_ALTIVEC */
579
580 if (copy_fpr_to_user(&frame->mc_fregs, current))
581 return 1;
582 if (msr & MSR_FP) {
583 if (copy_transact_fpr_to_user(&tm_frame->mc_fregs, current))
584 return 1;
585 } else {
586 if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
587 return 1;
588 }
589
590 #ifdef CONFIG_VSX
591 /*
592 * Copy VSR 0-31 upper half from thread_struct to local
593 * buffer, then write that to userspace. Also set MSR_VSX in
594 * the saved MSR value to indicate that frame->mc_vregs
595 * contains valid data
596 */
597 if (current->thread.used_vsr) {
598 __giveup_vsx(current);
599 if (copy_vsx_to_user(&frame->mc_vsregs, current))
600 return 1;
601 if (msr & MSR_VSX) {
602 if (copy_transact_vsx_to_user(&tm_frame->mc_vsregs,
603 current))
604 return 1;
605 } else {
606 if (copy_vsx_to_user(&tm_frame->mc_vsregs, current))
607 return 1;
608 }
609
610 msr |= MSR_VSX;
611 }
612 #endif /* CONFIG_VSX */
613 #ifdef CONFIG_SPE
614 /* SPE regs are not checkpointed with TM, so this section is
615 * simply the same as in save_user_regs().
616 */
617 if (current->thread.used_spe) {
618 flush_spe_to_thread(current);
619 if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
620 ELF_NEVRREG * sizeof(u32)))
621 return 1;
622 /* set MSR_SPE in the saved MSR value to indicate that
623 * frame->mc_vregs contains valid data */
624 msr |= MSR_SPE;
625 }
626
627 /* We always copy to/from spefscr */
628 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
629 return 1;
630 #endif /* CONFIG_SPE */
631
632 if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
633 return 1;
634 if (sigret) {
635 /* Set up the sigreturn trampoline: li r0,sigret; sc */
636 if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
637 || __put_user(0x44000002UL, &frame->tramp[1]))
638 return 1;
639 flush_icache_range((unsigned long) &frame->tramp[0],
640 (unsigned long) &frame->tramp[2]);
641 }
642
643 return 0;
644 }
645 #endif
646
647 /*
648 * Restore the current user register values from the user stack,
649 * (except for MSR).
650 */
651 static long restore_user_regs(struct pt_regs *regs,
652 struct mcontext __user *sr, int sig)
653 {
654 long err;
655 unsigned int save_r2 = 0;
656 unsigned long msr;
657 #ifdef CONFIG_VSX
658 int i;
659 #endif
660
661 /*
662 * restore general registers but not including MSR or SOFTE. Also
663 * take care of keeping r2 (TLS) intact if not a signal
664 */
665 if (!sig)
666 save_r2 = (unsigned int)regs->gpr[2];
667 err = restore_general_regs(regs, sr);
668 regs->trap = 0;
669 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
670 if (!sig)
671 regs->gpr[2] = (unsigned long) save_r2;
672 if (err)
673 return 1;
674
675 /* if doing signal return, restore the previous little-endian mode */
676 if (sig)
677 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
678
679 /*
680 * Do this before updating the thread state in
681 * current->thread.fpr/vr/evr. That way, if we get preempted
682 * and another task grabs the FPU/Altivec/SPE, it won't be
683 * tempted to save the current CPU state into the thread_struct
684 * and corrupt what we are writing there.
685 */
686 discard_lazy_cpu_state();
687
688 #ifdef CONFIG_ALTIVEC
689 /*
690 * Force the process to reload the altivec registers from
691 * current->thread when it next does altivec instructions
692 */
693 regs->msr &= ~MSR_VEC;
694 if (msr & MSR_VEC) {
695 /* restore altivec registers from the stack */
696 if (__copy_from_user(current->thread.vr, &sr->mc_vregs,
697 sizeof(sr->mc_vregs)))
698 return 1;
699 } else if (current->thread.used_vr)
700 memset(current->thread.vr, 0, ELF_NVRREG * sizeof(vector128));
701
702 /* Always get VRSAVE back */
703 if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
704 return 1;
705 #endif /* CONFIG_ALTIVEC */
706 if (copy_fpr_from_user(current, &sr->mc_fregs))
707 return 1;
708
709 #ifdef CONFIG_VSX
710 /*
711 * Force the process to reload the VSX registers from
712 * current->thread when it next does VSX instruction.
713 */
714 regs->msr &= ~MSR_VSX;
715 if (msr & MSR_VSX) {
716 /*
717 * Restore altivec registers from the stack to a local
718 * buffer, then write this out to the thread_struct
719 */
720 if (copy_vsx_from_user(current, &sr->mc_vsregs))
721 return 1;
722 } else if (current->thread.used_vsr)
723 for (i = 0; i < 32 ; i++)
724 current->thread.fpr[i][TS_VSRLOWOFFSET] = 0;
725 #endif /* CONFIG_VSX */
726 /*
727 * force the process to reload the FP registers from
728 * current->thread when it next does FP instructions
729 */
730 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
731
732 #ifdef CONFIG_SPE
733 /* force the process to reload the spe registers from
734 current->thread when it next does spe instructions */
735 regs->msr &= ~MSR_SPE;
736 if (msr & MSR_SPE) {
737 /* restore spe registers from the stack */
738 if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
739 ELF_NEVRREG * sizeof(u32)))
740 return 1;
741 } else if (current->thread.used_spe)
742 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
743
744 /* Always get SPEFSCR back */
745 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
746 return 1;
747 #endif /* CONFIG_SPE */
748
749 return 0;
750 }
751
752 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
753 /*
754 * Restore the current user register values from the user stack, except for
755 * MSR, and recheckpoint the original checkpointed register state for processes
756 * in transactions.
757 */
758 static long restore_tm_user_regs(struct pt_regs *regs,
759 struct mcontext __user *sr,
760 struct mcontext __user *tm_sr)
761 {
762 long err;
763 unsigned long msr, msr_hi;
764 #ifdef CONFIG_VSX
765 int i;
766 #endif
767
768 /*
769 * restore general registers but not including MSR or SOFTE. Also
770 * take care of keeping r2 (TLS) intact if not a signal.
771 * See comment in signal_64.c:restore_tm_sigcontexts();
772 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
773 * were set by the signal delivery.
774 */
775 err = restore_general_regs(regs, tm_sr);
776 err |= restore_general_regs(&current->thread.ckpt_regs, sr);
777
778 err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
779
780 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
781 if (err)
782 return 1;
783
784 /* Restore the previous little-endian mode */
785 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
786
787 /*
788 * Do this before updating the thread state in
789 * current->thread.fpr/vr/evr. That way, if we get preempted
790 * and another task grabs the FPU/Altivec/SPE, it won't be
791 * tempted to save the current CPU state into the thread_struct
792 * and corrupt what we are writing there.
793 */
794 discard_lazy_cpu_state();
795
796 #ifdef CONFIG_ALTIVEC
797 regs->msr &= ~MSR_VEC;
798 if (msr & MSR_VEC) {
799 /* restore altivec registers from the stack */
800 if (__copy_from_user(current->thread.vr, &sr->mc_vregs,
801 sizeof(sr->mc_vregs)) ||
802 __copy_from_user(current->thread.transact_vr,
803 &tm_sr->mc_vregs,
804 sizeof(sr->mc_vregs)))
805 return 1;
806 } else if (current->thread.used_vr) {
807 memset(current->thread.vr, 0, ELF_NVRREG * sizeof(vector128));
808 memset(current->thread.transact_vr, 0,
809 ELF_NVRREG * sizeof(vector128));
810 }
811
812 /* Always get VRSAVE back */
813 if (__get_user(current->thread.vrsave,
814 (u32 __user *)&sr->mc_vregs[32]) ||
815 __get_user(current->thread.transact_vrsave,
816 (u32 __user *)&tm_sr->mc_vregs[32]))
817 return 1;
818 #endif /* CONFIG_ALTIVEC */
819
820 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
821
822 if (copy_fpr_from_user(current, &sr->mc_fregs) ||
823 copy_transact_fpr_from_user(current, &tm_sr->mc_fregs))
824 return 1;
825
826 #ifdef CONFIG_VSX
827 regs->msr &= ~MSR_VSX;
828 if (msr & MSR_VSX) {
829 /*
830 * Restore altivec registers from the stack to a local
831 * buffer, then write this out to the thread_struct
832 */
833 if (copy_vsx_from_user(current, &sr->mc_vsregs) ||
834 copy_transact_vsx_from_user(current, &tm_sr->mc_vsregs))
835 return 1;
836 } else if (current->thread.used_vsr)
837 for (i = 0; i < 32 ; i++) {
838 current->thread.fpr[i][TS_VSRLOWOFFSET] = 0;
839 current->thread.transact_fpr[i][TS_VSRLOWOFFSET] = 0;
840 }
841 #endif /* CONFIG_VSX */
842
843 #ifdef CONFIG_SPE
844 /* SPE regs are not checkpointed with TM, so this section is
845 * simply the same as in restore_user_regs().
846 */
847 regs->msr &= ~MSR_SPE;
848 if (msr & MSR_SPE) {
849 if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
850 ELF_NEVRREG * sizeof(u32)))
851 return 1;
852 } else if (current->thread.used_spe)
853 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
854
855 /* Always get SPEFSCR back */
856 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
857 + ELF_NEVRREG))
858 return 1;
859 #endif /* CONFIG_SPE */
860
861 /* Now, recheckpoint. This loads up all of the checkpointed (older)
862 * registers, including FP and V[S]Rs. After recheckpointing, the
863 * transactional versions should be loaded.
864 */
865 tm_enable();
866 /* Make sure the transaction is marked as failed */
867 current->thread.tm_texasr |= TEXASR_FS;
868 /* This loads the checkpointed FP/VEC state, if used */
869 tm_recheckpoint(&current->thread, msr);
870 /* Get the top half of the MSR */
871 if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
872 return 1;
873 /* Pull in MSR TM from user context */
874 regs->msr = (regs->msr & ~MSR_TS_MASK) | ((msr_hi<<32) & MSR_TS_MASK);
875
876 /* This loads the speculative FP/VEC state, if used */
877 if (msr & MSR_FP) {
878 do_load_up_transact_fpu(&current->thread);
879 regs->msr |= (MSR_FP | current->thread.fpexc_mode);
880 }
881 #ifdef CONFIG_ALTIVEC
882 if (msr & MSR_VEC) {
883 do_load_up_transact_altivec(&current->thread);
884 regs->msr |= MSR_VEC;
885 }
886 #endif
887
888 return 0;
889 }
890 #endif
891
892 #ifdef CONFIG_PPC64
893 int copy_siginfo_to_user32(struct compat_siginfo __user *d, siginfo_t *s)
894 {
895 int err;
896
897 if (!access_ok (VERIFY_WRITE, d, sizeof(*d)))
898 return -EFAULT;
899
900 /* If you change siginfo_t structure, please be sure
901 * this code is fixed accordingly.
902 * It should never copy any pad contained in the structure
903 * to avoid security leaks, but must copy the generic
904 * 3 ints plus the relevant union member.
905 * This routine must convert siginfo from 64bit to 32bit as well
906 * at the same time.
907 */
908 err = __put_user(s->si_signo, &d->si_signo);
909 err |= __put_user(s->si_errno, &d->si_errno);
910 err |= __put_user((short)s->si_code, &d->si_code);
911 if (s->si_code < 0)
912 err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad,
913 SI_PAD_SIZE32);
914 else switch(s->si_code >> 16) {
915 case __SI_CHLD >> 16:
916 err |= __put_user(s->si_pid, &d->si_pid);
917 err |= __put_user(s->si_uid, &d->si_uid);
918 err |= __put_user(s->si_utime, &d->si_utime);
919 err |= __put_user(s->si_stime, &d->si_stime);
920 err |= __put_user(s->si_status, &d->si_status);
921 break;
922 case __SI_FAULT >> 16:
923 err |= __put_user((unsigned int)(unsigned long)s->si_addr,
924 &d->si_addr);
925 break;
926 case __SI_POLL >> 16:
927 err |= __put_user(s->si_band, &d->si_band);
928 err |= __put_user(s->si_fd, &d->si_fd);
929 break;
930 case __SI_TIMER >> 16:
931 err |= __put_user(s->si_tid, &d->si_tid);
932 err |= __put_user(s->si_overrun, &d->si_overrun);
933 err |= __put_user(s->si_int, &d->si_int);
934 break;
935 case __SI_RT >> 16: /* This is not generated by the kernel as of now. */
936 case __SI_MESGQ >> 16:
937 err |= __put_user(s->si_int, &d->si_int);
938 /* fallthrough */
939 case __SI_KILL >> 16:
940 default:
941 err |= __put_user(s->si_pid, &d->si_pid);
942 err |= __put_user(s->si_uid, &d->si_uid);
943 break;
944 }
945 return err;
946 }
947
948 #define copy_siginfo_to_user copy_siginfo_to_user32
949
950 int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from)
951 {
952 if (copy_from_user(to, from, 3*sizeof(int)) ||
953 copy_from_user(to->_sifields._pad,
954 from->_sifields._pad, SI_PAD_SIZE32))
955 return -EFAULT;
956
957 return 0;
958 }
959 #endif /* CONFIG_PPC64 */
960
961 /*
962 * Set up a signal frame for a "real-time" signal handler
963 * (one which gets siginfo).
964 */
965 int handle_rt_signal32(unsigned long sig, struct k_sigaction *ka,
966 siginfo_t *info, sigset_t *oldset,
967 struct pt_regs *regs)
968 {
969 struct rt_sigframe __user *rt_sf;
970 struct mcontext __user *frame;
971 struct mcontext __user *tm_frame = NULL;
972 void __user *addr;
973 unsigned long newsp = 0;
974 int sigret;
975 unsigned long tramp;
976
977 /* Set up Signal Frame */
978 /* Put a Real Time Context onto stack */
979 rt_sf = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*rt_sf), 1);
980 addr = rt_sf;
981 if (unlikely(rt_sf == NULL))
982 goto badframe;
983
984 /* Put the siginfo & fill in most of the ucontext */
985 if (copy_siginfo_to_user(&rt_sf->info, info)
986 || __put_user(0, &rt_sf->uc.uc_flags)
987 || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
988 || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
989 &rt_sf->uc.uc_regs)
990 || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
991 goto badframe;
992
993 /* Save user registers on the stack */
994 frame = &rt_sf->uc.uc_mcontext;
995 addr = frame;
996 if (vdso32_rt_sigtramp && current->mm->context.vdso_base) {
997 sigret = 0;
998 tramp = current->mm->context.vdso_base + vdso32_rt_sigtramp;
999 } else {
1000 sigret = __NR_rt_sigreturn;
1001 tramp = (unsigned long) frame->tramp;
1002 }
1003
1004 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1005 tm_frame = &rt_sf->uc_transact.uc_mcontext;
1006 if (MSR_TM_ACTIVE(regs->msr)) {
1007 if (save_tm_user_regs(regs, frame, tm_frame, sigret))
1008 goto badframe;
1009 }
1010 else
1011 #endif
1012 {
1013 if (save_user_regs(regs, frame, tm_frame, sigret, 1))
1014 goto badframe;
1015 }
1016 regs->link = tramp;
1017
1018 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1019 if (MSR_TM_ACTIVE(regs->msr)) {
1020 if (__put_user((unsigned long)&rt_sf->uc_transact,
1021 &rt_sf->uc.uc_link)
1022 || __put_user((unsigned long)tm_frame, &rt_sf->uc_transact.uc_regs))
1023 goto badframe;
1024 }
1025 else
1026 #endif
1027 if (__put_user(0, &rt_sf->uc.uc_link))
1028 goto badframe;
1029
1030 current->thread.fpscr.val = 0; /* turn off all fp exceptions */
1031
1032 /* create a stack frame for the caller of the handler */
1033 newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
1034 addr = (void __user *)regs->gpr[1];
1035 if (put_user(regs->gpr[1], (u32 __user *)newsp))
1036 goto badframe;
1037
1038 /* Fill registers for signal handler */
1039 regs->gpr[1] = newsp;
1040 regs->gpr[3] = sig;
1041 regs->gpr[4] = (unsigned long) &rt_sf->info;
1042 regs->gpr[5] = (unsigned long) &rt_sf->uc;
1043 regs->gpr[6] = (unsigned long) rt_sf;
1044 regs->nip = (unsigned long) ka->sa.sa_handler;
1045 /* enter the signal handler in big-endian mode */
1046 regs->msr &= ~MSR_LE;
1047 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1048 /* Remove TM bits from thread's MSR. The MSR in the sigcontext
1049 * just indicates to userland that we were doing a transaction, but we
1050 * don't want to return in transactional state:
1051 */
1052 regs->msr &= ~MSR_TS_MASK;
1053 #endif
1054 return 1;
1055
1056 badframe:
1057 #ifdef DEBUG_SIG
1058 printk("badframe in handle_rt_signal, regs=%p frame=%p newsp=%lx\n",
1059 regs, frame, newsp);
1060 #endif
1061 if (show_unhandled_signals)
1062 printk_ratelimited(KERN_INFO
1063 "%s[%d]: bad frame in handle_rt_signal32: "
1064 "%p nip %08lx lr %08lx\n",
1065 current->comm, current->pid,
1066 addr, regs->nip, regs->link);
1067
1068 force_sigsegv(sig, current);
1069 return 0;
1070 }
1071
1072 static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
1073 {
1074 sigset_t set;
1075 struct mcontext __user *mcp;
1076
1077 if (get_sigset_t(&set, &ucp->uc_sigmask))
1078 return -EFAULT;
1079 #ifdef CONFIG_PPC64
1080 {
1081 u32 cmcp;
1082
1083 if (__get_user(cmcp, &ucp->uc_regs))
1084 return -EFAULT;
1085 mcp = (struct mcontext __user *)(u64)cmcp;
1086 /* no need to check access_ok(mcp), since mcp < 4GB */
1087 }
1088 #else
1089 if (__get_user(mcp, &ucp->uc_regs))
1090 return -EFAULT;
1091 if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp)))
1092 return -EFAULT;
1093 #endif
1094 set_current_blocked(&set);
1095 if (restore_user_regs(regs, mcp, sig))
1096 return -EFAULT;
1097
1098 return 0;
1099 }
1100
1101 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1102 static int do_setcontext_tm(struct ucontext __user *ucp,
1103 struct ucontext __user *tm_ucp,
1104 struct pt_regs *regs)
1105 {
1106 sigset_t set;
1107 struct mcontext __user *mcp;
1108 struct mcontext __user *tm_mcp;
1109 u32 cmcp;
1110 u32 tm_cmcp;
1111
1112 if (get_sigset_t(&set, &ucp->uc_sigmask))
1113 return -EFAULT;
1114
1115 if (__get_user(cmcp, &ucp->uc_regs) ||
1116 __get_user(tm_cmcp, &tm_ucp->uc_regs))
1117 return -EFAULT;
1118 mcp = (struct mcontext __user *)(u64)cmcp;
1119 tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1120 /* no need to check access_ok(mcp), since mcp < 4GB */
1121
1122 set_current_blocked(&set);
1123 if (restore_tm_user_regs(regs, mcp, tm_mcp))
1124 return -EFAULT;
1125
1126 return 0;
1127 }
1128 #endif
1129
1130 long sys_swapcontext(struct ucontext __user *old_ctx,
1131 struct ucontext __user *new_ctx,
1132 int ctx_size, int r6, int r7, int r8, struct pt_regs *regs)
1133 {
1134 unsigned char tmp;
1135 int ctx_has_vsx_region = 0;
1136
1137 #ifdef CONFIG_PPC64
1138 unsigned long new_msr = 0;
1139
1140 if (new_ctx) {
1141 struct mcontext __user *mcp;
1142 u32 cmcp;
1143
1144 /*
1145 * Get pointer to the real mcontext. No need for
1146 * access_ok since we are dealing with compat
1147 * pointers.
1148 */
1149 if (__get_user(cmcp, &new_ctx->uc_regs))
1150 return -EFAULT;
1151 mcp = (struct mcontext __user *)(u64)cmcp;
1152 if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1153 return -EFAULT;
1154 }
1155 /*
1156 * Check that the context is not smaller than the original
1157 * size (with VMX but without VSX)
1158 */
1159 if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1160 return -EINVAL;
1161 /*
1162 * If the new context state sets the MSR VSX bits but
1163 * it doesn't provide VSX state.
1164 */
1165 if ((ctx_size < sizeof(struct ucontext)) &&
1166 (new_msr & MSR_VSX))
1167 return -EINVAL;
1168 /* Does the context have enough room to store VSX data? */
1169 if (ctx_size >= sizeof(struct ucontext))
1170 ctx_has_vsx_region = 1;
1171 #else
1172 /* Context size is for future use. Right now, we only make sure
1173 * we are passed something we understand
1174 */
1175 if (ctx_size < sizeof(struct ucontext))
1176 return -EINVAL;
1177 #endif
1178 if (old_ctx != NULL) {
1179 struct mcontext __user *mctx;
1180
1181 /*
1182 * old_ctx might not be 16-byte aligned, in which
1183 * case old_ctx->uc_mcontext won't be either.
1184 * Because we have the old_ctx->uc_pad2 field
1185 * before old_ctx->uc_mcontext, we need to round down
1186 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1187 */
1188 mctx = (struct mcontext __user *)
1189 ((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1190 if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size)
1191 || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
1192 || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1193 || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1194 return -EFAULT;
1195 }
1196 if (new_ctx == NULL)
1197 return 0;
1198 if (!access_ok(VERIFY_READ, new_ctx, ctx_size)
1199 || __get_user(tmp, (u8 __user *) new_ctx)
1200 || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
1201 return -EFAULT;
1202
1203 /*
1204 * If we get a fault copying the context into the kernel's
1205 * image of the user's registers, we can't just return -EFAULT
1206 * because the user's registers will be corrupted. For instance
1207 * the NIP value may have been updated but not some of the
1208 * other registers. Given that we have done the access_ok
1209 * and successfully read the first and last bytes of the region
1210 * above, this should only happen in an out-of-memory situation
1211 * or if another thread unmaps the region containing the context.
1212 * We kill the task with a SIGSEGV in this situation.
1213 */
1214 if (do_setcontext(new_ctx, regs, 0))
1215 do_exit(SIGSEGV);
1216
1217 set_thread_flag(TIF_RESTOREALL);
1218 return 0;
1219 }
1220
1221 long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1222 struct pt_regs *regs)
1223 {
1224 struct rt_sigframe __user *rt_sf;
1225 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1226 struct ucontext __user *uc_transact;
1227 unsigned long msr_hi;
1228 unsigned long tmp;
1229 int tm_restore = 0;
1230 #endif
1231 /* Always make any pending restarted system calls return -EINTR */
1232 current_thread_info()->restart_block.fn = do_no_restart_syscall;
1233
1234 rt_sf = (struct rt_sigframe __user *)
1235 (regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1236 if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf)))
1237 goto bad;
1238 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1239 if (__get_user(tmp, &rt_sf->uc.uc_link))
1240 goto bad;
1241 uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1242 if (uc_transact) {
1243 u32 cmcp;
1244 struct mcontext __user *mcp;
1245
1246 if (__get_user(cmcp, &uc_transact->uc_regs))
1247 return -EFAULT;
1248 mcp = (struct mcontext __user *)(u64)cmcp;
1249 /* The top 32 bits of the MSR are stashed in the transactional
1250 * ucontext. */
1251 if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1252 goto bad;
1253
1254 if (MSR_TM_ACTIVE(msr_hi<<32)) {
1255 /* We only recheckpoint on return if we're
1256 * transaction.
1257 */
1258 tm_restore = 1;
1259 if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1260 goto bad;
1261 }
1262 }
1263 if (!tm_restore)
1264 /* Fall through, for non-TM restore */
1265 #endif
1266 if (do_setcontext(&rt_sf->uc, regs, 1))
1267 goto bad;
1268
1269 /*
1270 * It's not clear whether or why it is desirable to save the
1271 * sigaltstack setting on signal delivery and restore it on
1272 * signal return. But other architectures do this and we have
1273 * always done it up until now so it is probably better not to
1274 * change it. -- paulus
1275 */
1276 #ifdef CONFIG_PPC64
1277 if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1278 goto bad;
1279 #else
1280 if (restore_altstack(&rt_sf->uc.uc_stack))
1281 goto bad;
1282 #endif
1283 set_thread_flag(TIF_RESTOREALL);
1284 return 0;
1285
1286 bad:
1287 if (show_unhandled_signals)
1288 printk_ratelimited(KERN_INFO
1289 "%s[%d]: bad frame in sys_rt_sigreturn: "
1290 "%p nip %08lx lr %08lx\n",
1291 current->comm, current->pid,
1292 rt_sf, regs->nip, regs->link);
1293
1294 force_sig(SIGSEGV, current);
1295 return 0;
1296 }
1297
1298 #ifdef CONFIG_PPC32
1299 int sys_debug_setcontext(struct ucontext __user *ctx,
1300 int ndbg, struct sig_dbg_op __user *dbg,
1301 int r6, int r7, int r8,
1302 struct pt_regs *regs)
1303 {
1304 struct sig_dbg_op op;
1305 int i;
1306 unsigned char tmp;
1307 unsigned long new_msr = regs->msr;
1308 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1309 unsigned long new_dbcr0 = current->thread.dbcr0;
1310 #endif
1311
1312 for (i=0; i<ndbg; i++) {
1313 if (copy_from_user(&op, dbg + i, sizeof(op)))
1314 return -EFAULT;
1315 switch (op.dbg_type) {
1316 case SIG_DBG_SINGLE_STEPPING:
1317 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1318 if (op.dbg_value) {
1319 new_msr |= MSR_DE;
1320 new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1321 } else {
1322 new_dbcr0 &= ~DBCR0_IC;
1323 if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1324 current->thread.dbcr1)) {
1325 new_msr &= ~MSR_DE;
1326 new_dbcr0 &= ~DBCR0_IDM;
1327 }
1328 }
1329 #else
1330 if (op.dbg_value)
1331 new_msr |= MSR_SE;
1332 else
1333 new_msr &= ~MSR_SE;
1334 #endif
1335 break;
1336 case SIG_DBG_BRANCH_TRACING:
1337 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1338 return -EINVAL;
1339 #else
1340 if (op.dbg_value)
1341 new_msr |= MSR_BE;
1342 else
1343 new_msr &= ~MSR_BE;
1344 #endif
1345 break;
1346
1347 default:
1348 return -EINVAL;
1349 }
1350 }
1351
1352 /* We wait until here to actually install the values in the
1353 registers so if we fail in the above loop, it will not
1354 affect the contents of these registers. After this point,
1355 failure is a problem, anyway, and it's very unlikely unless
1356 the user is really doing something wrong. */
1357 regs->msr = new_msr;
1358 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1359 current->thread.dbcr0 = new_dbcr0;
1360 #endif
1361
1362 if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx))
1363 || __get_user(tmp, (u8 __user *) ctx)
1364 || __get_user(tmp, (u8 __user *) (ctx + 1) - 1))
1365 return -EFAULT;
1366
1367 /*
1368 * If we get a fault copying the context into the kernel's
1369 * image of the user's registers, we can't just return -EFAULT
1370 * because the user's registers will be corrupted. For instance
1371 * the NIP value may have been updated but not some of the
1372 * other registers. Given that we have done the access_ok
1373 * and successfully read the first and last bytes of the region
1374 * above, this should only happen in an out-of-memory situation
1375 * or if another thread unmaps the region containing the context.
1376 * We kill the task with a SIGSEGV in this situation.
1377 */
1378 if (do_setcontext(ctx, regs, 1)) {
1379 if (show_unhandled_signals)
1380 printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1381 "sys_debug_setcontext: %p nip %08lx "
1382 "lr %08lx\n",
1383 current->comm, current->pid,
1384 ctx, regs->nip, regs->link);
1385
1386 force_sig(SIGSEGV, current);
1387 goto out;
1388 }
1389
1390 /*
1391 * It's not clear whether or why it is desirable to save the
1392 * sigaltstack setting on signal delivery and restore it on
1393 * signal return. But other architectures do this and we have
1394 * always done it up until now so it is probably better not to
1395 * change it. -- paulus
1396 */
1397 restore_altstack(&ctx->uc_stack);
1398
1399 set_thread_flag(TIF_RESTOREALL);
1400 out:
1401 return 0;
1402 }
1403 #endif
1404
1405 /*
1406 * OK, we're invoking a handler
1407 */
1408 int handle_signal32(unsigned long sig, struct k_sigaction *ka,
1409 siginfo_t *info, sigset_t *oldset, struct pt_regs *regs)
1410 {
1411 struct sigcontext __user *sc;
1412 struct sigframe __user *frame;
1413 struct mcontext __user *tm_mctx = NULL;
1414 unsigned long newsp = 0;
1415 int sigret;
1416 unsigned long tramp;
1417
1418 /* Set up Signal Frame */
1419 frame = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*frame), 1);
1420 if (unlikely(frame == NULL))
1421 goto badframe;
1422 sc = (struct sigcontext __user *) &frame->sctx;
1423
1424 #if _NSIG != 64
1425 #error "Please adjust handle_signal()"
1426 #endif
1427 if (__put_user(to_user_ptr(ka->sa.sa_handler), &sc->handler)
1428 || __put_user(oldset->sig[0], &sc->oldmask)
1429 #ifdef CONFIG_PPC64
1430 || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1431 #else
1432 || __put_user(oldset->sig[1], &sc->_unused[3])
1433 #endif
1434 || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1435 || __put_user(sig, &sc->signal))
1436 goto badframe;
1437
1438 if (vdso32_sigtramp && current->mm->context.vdso_base) {
1439 sigret = 0;
1440 tramp = current->mm->context.vdso_base + vdso32_sigtramp;
1441 } else {
1442 sigret = __NR_sigreturn;
1443 tramp = (unsigned long) frame->mctx.tramp;
1444 }
1445
1446 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1447 tm_mctx = &frame->mctx_transact;
1448 if (MSR_TM_ACTIVE(regs->msr)) {
1449 if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1450 sigret))
1451 goto badframe;
1452 }
1453 else
1454 #endif
1455 {
1456 if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1457 goto badframe;
1458 }
1459
1460 regs->link = tramp;
1461
1462 current->thread.fpscr.val = 0; /* turn off all fp exceptions */
1463
1464 /* create a stack frame for the caller of the handler */
1465 newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1466 if (put_user(regs->gpr[1], (u32 __user *)newsp))
1467 goto badframe;
1468
1469 regs->gpr[1] = newsp;
1470 regs->gpr[3] = sig;
1471 regs->gpr[4] = (unsigned long) sc;
1472 regs->nip = (unsigned long) ka->sa.sa_handler;
1473 /* enter the signal handler in big-endian mode */
1474 regs->msr &= ~MSR_LE;
1475 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1476 /* Remove TM bits from thread's MSR. The MSR in the sigcontext
1477 * just indicates to userland that we were doing a transaction, but we
1478 * don't want to return in transactional state:
1479 */
1480 regs->msr &= ~MSR_TS_MASK;
1481 #endif
1482 return 1;
1483
1484 badframe:
1485 #ifdef DEBUG_SIG
1486 printk("badframe in handle_signal, regs=%p frame=%p newsp=%lx\n",
1487 regs, frame, newsp);
1488 #endif
1489 if (show_unhandled_signals)
1490 printk_ratelimited(KERN_INFO
1491 "%s[%d]: bad frame in handle_signal32: "
1492 "%p nip %08lx lr %08lx\n",
1493 current->comm, current->pid,
1494 frame, regs->nip, regs->link);
1495
1496 force_sigsegv(sig, current);
1497 return 0;
1498 }
1499
1500 /*
1501 * Do a signal return; undo the signal stack.
1502 */
1503 long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1504 struct pt_regs *regs)
1505 {
1506 struct sigframe __user *sf;
1507 struct sigcontext __user *sc;
1508 struct sigcontext sigctx;
1509 struct mcontext __user *sr;
1510 void __user *addr;
1511 sigset_t set;
1512 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1513 struct mcontext __user *mcp, *tm_mcp;
1514 unsigned long msr_hi;
1515 #endif
1516
1517 /* Always make any pending restarted system calls return -EINTR */
1518 current_thread_info()->restart_block.fn = do_no_restart_syscall;
1519
1520 sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1521 sc = &sf->sctx;
1522 addr = sc;
1523 if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1524 goto badframe;
1525
1526 #ifdef CONFIG_PPC64
1527 /*
1528 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1529 * unused part of the signal stackframe
1530 */
1531 set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1532 #else
1533 set.sig[0] = sigctx.oldmask;
1534 set.sig[1] = sigctx._unused[3];
1535 #endif
1536 set_current_blocked(&set);
1537
1538 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1539 mcp = (struct mcontext __user *)&sf->mctx;
1540 tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1541 if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1542 goto badframe;
1543 if (MSR_TM_ACTIVE(msr_hi<<32)) {
1544 if (!cpu_has_feature(CPU_FTR_TM))
1545 goto badframe;
1546 if (restore_tm_user_regs(regs, mcp, tm_mcp))
1547 goto badframe;
1548 } else
1549 #endif
1550 {
1551 sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1552 addr = sr;
1553 if (!access_ok(VERIFY_READ, sr, sizeof(*sr))
1554 || restore_user_regs(regs, sr, 1))
1555 goto badframe;
1556 }
1557
1558 set_thread_flag(TIF_RESTOREALL);
1559 return 0;
1560
1561 badframe:
1562 if (show_unhandled_signals)
1563 printk_ratelimited(KERN_INFO
1564 "%s[%d]: bad frame in sys_sigreturn: "
1565 "%p nip %08lx lr %08lx\n",
1566 current->comm, current->pid,
1567 addr, regs->nip, regs->link);
1568
1569 force_sig(SIGSEGV, current);
1570 return 0;
1571 }