Merge tag 'fcoe' into fixes
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/export.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/uaccess.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #endif
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
60
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
67
68 extern unsigned long _get_SP(void);
69
70 #ifndef CONFIG_SMP
71 struct task_struct *last_task_used_math = NULL;
72 struct task_struct *last_task_used_altivec = NULL;
73 struct task_struct *last_task_used_vsx = NULL;
74 struct task_struct *last_task_used_spe = NULL;
75 #endif
76
77 /*
78 * Make sure the floating-point register state in the
79 * the thread_struct is up to date for task tsk.
80 */
81 void flush_fp_to_thread(struct task_struct *tsk)
82 {
83 if (tsk->thread.regs) {
84 /*
85 * We need to disable preemption here because if we didn't,
86 * another process could get scheduled after the regs->msr
87 * test but before we have finished saving the FP registers
88 * to the thread_struct. That process could take over the
89 * FPU, and then when we get scheduled again we would store
90 * bogus values for the remaining FP registers.
91 */
92 preempt_disable();
93 if (tsk->thread.regs->msr & MSR_FP) {
94 #ifdef CONFIG_SMP
95 /*
96 * This should only ever be called for current or
97 * for a stopped child process. Since we save away
98 * the FP register state on context switch on SMP,
99 * there is something wrong if a stopped child appears
100 * to still have its FP state in the CPU registers.
101 */
102 BUG_ON(tsk != current);
103 #endif
104 giveup_fpu(tsk);
105 }
106 preempt_enable();
107 }
108 }
109 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
110
111 void enable_kernel_fp(void)
112 {
113 WARN_ON(preemptible());
114
115 #ifdef CONFIG_SMP
116 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
117 giveup_fpu(current);
118 else
119 giveup_fpu(NULL); /* just enables FP for kernel */
120 #else
121 giveup_fpu(last_task_used_math);
122 #endif /* CONFIG_SMP */
123 }
124 EXPORT_SYMBOL(enable_kernel_fp);
125
126 #ifdef CONFIG_ALTIVEC
127 void enable_kernel_altivec(void)
128 {
129 WARN_ON(preemptible());
130
131 #ifdef CONFIG_SMP
132 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
133 giveup_altivec(current);
134 else
135 giveup_altivec_notask();
136 #else
137 giveup_altivec(last_task_used_altivec);
138 #endif /* CONFIG_SMP */
139 }
140 EXPORT_SYMBOL(enable_kernel_altivec);
141
142 /*
143 * Make sure the VMX/Altivec register state in the
144 * the thread_struct is up to date for task tsk.
145 */
146 void flush_altivec_to_thread(struct task_struct *tsk)
147 {
148 if (tsk->thread.regs) {
149 preempt_disable();
150 if (tsk->thread.regs->msr & MSR_VEC) {
151 #ifdef CONFIG_SMP
152 BUG_ON(tsk != current);
153 #endif
154 giveup_altivec(tsk);
155 }
156 preempt_enable();
157 }
158 }
159 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
160 #endif /* CONFIG_ALTIVEC */
161
162 #ifdef CONFIG_VSX
163 #if 0
164 /* not currently used, but some crazy RAID module might want to later */
165 void enable_kernel_vsx(void)
166 {
167 WARN_ON(preemptible());
168
169 #ifdef CONFIG_SMP
170 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
171 giveup_vsx(current);
172 else
173 giveup_vsx(NULL); /* just enable vsx for kernel - force */
174 #else
175 giveup_vsx(last_task_used_vsx);
176 #endif /* CONFIG_SMP */
177 }
178 EXPORT_SYMBOL(enable_kernel_vsx);
179 #endif
180
181 void giveup_vsx(struct task_struct *tsk)
182 {
183 giveup_fpu(tsk);
184 giveup_altivec(tsk);
185 __giveup_vsx(tsk);
186 }
187
188 void flush_vsx_to_thread(struct task_struct *tsk)
189 {
190 if (tsk->thread.regs) {
191 preempt_disable();
192 if (tsk->thread.regs->msr & MSR_VSX) {
193 #ifdef CONFIG_SMP
194 BUG_ON(tsk != current);
195 #endif
196 giveup_vsx(tsk);
197 }
198 preempt_enable();
199 }
200 }
201 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
202 #endif /* CONFIG_VSX */
203
204 #ifdef CONFIG_SPE
205
206 void enable_kernel_spe(void)
207 {
208 WARN_ON(preemptible());
209
210 #ifdef CONFIG_SMP
211 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
212 giveup_spe(current);
213 else
214 giveup_spe(NULL); /* just enable SPE for kernel - force */
215 #else
216 giveup_spe(last_task_used_spe);
217 #endif /* __SMP __ */
218 }
219 EXPORT_SYMBOL(enable_kernel_spe);
220
221 void flush_spe_to_thread(struct task_struct *tsk)
222 {
223 if (tsk->thread.regs) {
224 preempt_disable();
225 if (tsk->thread.regs->msr & MSR_SPE) {
226 #ifdef CONFIG_SMP
227 BUG_ON(tsk != current);
228 #endif
229 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
230 giveup_spe(tsk);
231 }
232 preempt_enable();
233 }
234 }
235 #endif /* CONFIG_SPE */
236
237 #ifndef CONFIG_SMP
238 /*
239 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
240 * and the current task has some state, discard it.
241 */
242 void discard_lazy_cpu_state(void)
243 {
244 preempt_disable();
245 if (last_task_used_math == current)
246 last_task_used_math = NULL;
247 #ifdef CONFIG_ALTIVEC
248 if (last_task_used_altivec == current)
249 last_task_used_altivec = NULL;
250 #endif /* CONFIG_ALTIVEC */
251 #ifdef CONFIG_VSX
252 if (last_task_used_vsx == current)
253 last_task_used_vsx = NULL;
254 #endif /* CONFIG_VSX */
255 #ifdef CONFIG_SPE
256 if (last_task_used_spe == current)
257 last_task_used_spe = NULL;
258 #endif
259 preempt_enable();
260 }
261 #endif /* CONFIG_SMP */
262
263 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
264 void do_send_trap(struct pt_regs *regs, unsigned long address,
265 unsigned long error_code, int signal_code, int breakpt)
266 {
267 siginfo_t info;
268
269 current->thread.trap_nr = signal_code;
270 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
271 11, SIGSEGV) == NOTIFY_STOP)
272 return;
273
274 /* Deliver the signal to userspace */
275 info.si_signo = SIGTRAP;
276 info.si_errno = breakpt; /* breakpoint or watchpoint id */
277 info.si_code = signal_code;
278 info.si_addr = (void __user *)address;
279 force_sig_info(SIGTRAP, &info, current);
280 }
281 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
282 void do_break (struct pt_regs *regs, unsigned long address,
283 unsigned long error_code)
284 {
285 siginfo_t info;
286
287 current->thread.trap_nr = TRAP_HWBKPT;
288 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
289 11, SIGSEGV) == NOTIFY_STOP)
290 return;
291
292 if (debugger_break_match(regs))
293 return;
294
295 /* Clear the breakpoint */
296 hw_breakpoint_disable();
297
298 /* Deliver the signal to userspace */
299 info.si_signo = SIGTRAP;
300 info.si_errno = 0;
301 info.si_code = TRAP_HWBKPT;
302 info.si_addr = (void __user *)address;
303 force_sig_info(SIGTRAP, &info, current);
304 }
305 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
306
307 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
308
309 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
310 /*
311 * Set the debug registers back to their default "safe" values.
312 */
313 static void set_debug_reg_defaults(struct thread_struct *thread)
314 {
315 thread->iac1 = thread->iac2 = 0;
316 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
317 thread->iac3 = thread->iac4 = 0;
318 #endif
319 thread->dac1 = thread->dac2 = 0;
320 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
321 thread->dvc1 = thread->dvc2 = 0;
322 #endif
323 thread->dbcr0 = 0;
324 #ifdef CONFIG_BOOKE
325 /*
326 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
327 */
328 thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | \
329 DBCR1_IAC3US | DBCR1_IAC4US;
330 /*
331 * Force Data Address Compare User/Supervisor bits to be User-only
332 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
333 */
334 thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
335 #else
336 thread->dbcr1 = 0;
337 #endif
338 }
339
340 static void prime_debug_regs(struct thread_struct *thread)
341 {
342 mtspr(SPRN_IAC1, thread->iac1);
343 mtspr(SPRN_IAC2, thread->iac2);
344 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
345 mtspr(SPRN_IAC3, thread->iac3);
346 mtspr(SPRN_IAC4, thread->iac4);
347 #endif
348 mtspr(SPRN_DAC1, thread->dac1);
349 mtspr(SPRN_DAC2, thread->dac2);
350 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
351 mtspr(SPRN_DVC1, thread->dvc1);
352 mtspr(SPRN_DVC2, thread->dvc2);
353 #endif
354 mtspr(SPRN_DBCR0, thread->dbcr0);
355 mtspr(SPRN_DBCR1, thread->dbcr1);
356 #ifdef CONFIG_BOOKE
357 mtspr(SPRN_DBCR2, thread->dbcr2);
358 #endif
359 }
360 /*
361 * Unless neither the old or new thread are making use of the
362 * debug registers, set the debug registers from the values
363 * stored in the new thread.
364 */
365 static void switch_booke_debug_regs(struct thread_struct *new_thread)
366 {
367 if ((current->thread.dbcr0 & DBCR0_IDM)
368 || (new_thread->dbcr0 & DBCR0_IDM))
369 prime_debug_regs(new_thread);
370 }
371 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
372 #ifndef CONFIG_HAVE_HW_BREAKPOINT
373 static void set_debug_reg_defaults(struct thread_struct *thread)
374 {
375 thread->hw_brk.address = 0;
376 thread->hw_brk.type = 0;
377 set_breakpoint(&thread->hw_brk);
378 }
379 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
380 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
381
382 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
383 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
384 {
385 mtspr(SPRN_DAC1, dabr);
386 #ifdef CONFIG_PPC_47x
387 isync();
388 #endif
389 return 0;
390 }
391 #elif defined(CONFIG_PPC_BOOK3S)
392 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
393 {
394 mtspr(SPRN_DABR, dabr);
395 mtspr(SPRN_DABRX, dabrx);
396 return 0;
397 }
398 #else
399 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
400 {
401 return -EINVAL;
402 }
403 #endif
404
405 static inline int set_dabr(struct arch_hw_breakpoint *brk)
406 {
407 unsigned long dabr, dabrx;
408
409 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
410 dabrx = ((brk->type >> 3) & 0x7);
411
412 if (ppc_md.set_dabr)
413 return ppc_md.set_dabr(dabr, dabrx);
414
415 return __set_dabr(dabr, dabrx);
416 }
417
418 static inline int set_dawr(struct arch_hw_breakpoint *brk)
419 {
420 unsigned long dawr, dawrx, mrd;
421
422 dawr = brk->address;
423
424 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
425 << (63 - 58); //* read/write bits */
426 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
427 << (63 - 59); //* translate */
428 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
429 >> 3; //* PRIM bits */
430 /* dawr length is stored in field MDR bits 48:53. Matches range in
431 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
432 0b111111=64DW.
433 brk->len is in bytes.
434 This aligns up to double word size, shifts and does the bias.
435 */
436 mrd = ((brk->len + 7) >> 3) - 1;
437 dawrx |= (mrd & 0x3f) << (63 - 53);
438
439 if (ppc_md.set_dawr)
440 return ppc_md.set_dawr(dawr, dawrx);
441 mtspr(SPRN_DAWR, dawr);
442 mtspr(SPRN_DAWRX, dawrx);
443 return 0;
444 }
445
446 int set_breakpoint(struct arch_hw_breakpoint *brk)
447 {
448 __get_cpu_var(current_brk) = *brk;
449
450 if (cpu_has_feature(CPU_FTR_DAWR))
451 return set_dawr(brk);
452
453 return set_dabr(brk);
454 }
455
456 #ifdef CONFIG_PPC64
457 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
458 #endif
459
460 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
461 struct arch_hw_breakpoint *b)
462 {
463 if (a->address != b->address)
464 return false;
465 if (a->type != b->type)
466 return false;
467 if (a->len != b->len)
468 return false;
469 return true;
470 }
471 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
472 static inline void tm_reclaim_task(struct task_struct *tsk)
473 {
474 /* We have to work out if we're switching from/to a task that's in the
475 * middle of a transaction.
476 *
477 * In switching we need to maintain a 2nd register state as
478 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
479 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
480 * (current) FPRs into oldtask->thread.transact_fpr[].
481 *
482 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
483 */
484 struct thread_struct *thr = &tsk->thread;
485
486 if (!thr->regs)
487 return;
488
489 if (!MSR_TM_ACTIVE(thr->regs->msr))
490 goto out_and_saveregs;
491
492 /* Stash the original thread MSR, as giveup_fpu et al will
493 * modify it. We hold onto it to see whether the task used
494 * FP & vector regs.
495 */
496 thr->tm_orig_msr = thr->regs->msr;
497
498 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
499 "ccr=%lx, msr=%lx, trap=%lx)\n",
500 tsk->pid, thr->regs->nip,
501 thr->regs->ccr, thr->regs->msr,
502 thr->regs->trap);
503
504 tm_reclaim(thr, thr->regs->msr, TM_CAUSE_RESCHED);
505
506 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
507 tsk->pid);
508
509 out_and_saveregs:
510 /* Always save the regs here, even if a transaction's not active.
511 * This context-switches a thread's TM info SPRs. We do it here to
512 * be consistent with the restore path (in recheckpoint) which
513 * cannot happen later in _switch().
514 */
515 tm_save_sprs(thr);
516 }
517
518 static inline void tm_recheckpoint_new_task(struct task_struct *new)
519 {
520 unsigned long msr;
521
522 if (!cpu_has_feature(CPU_FTR_TM))
523 return;
524
525 /* Recheckpoint the registers of the thread we're about to switch to.
526 *
527 * If the task was using FP, we non-lazily reload both the original and
528 * the speculative FP register states. This is because the kernel
529 * doesn't see if/when a TM rollback occurs, so if we take an FP
530 * unavoidable later, we are unable to determine which set of FP regs
531 * need to be restored.
532 */
533 if (!new->thread.regs)
534 return;
535
536 /* The TM SPRs are restored here, so that TEXASR.FS can be set
537 * before the trecheckpoint and no explosion occurs.
538 */
539 tm_restore_sprs(&new->thread);
540
541 if (!MSR_TM_ACTIVE(new->thread.regs->msr))
542 return;
543 msr = new->thread.tm_orig_msr;
544 /* Recheckpoint to restore original checkpointed register state. */
545 TM_DEBUG("*** tm_recheckpoint of pid %d "
546 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
547 new->pid, new->thread.regs->msr, msr);
548
549 /* This loads the checkpointed FP/VEC state, if used */
550 tm_recheckpoint(&new->thread, msr);
551
552 /* This loads the speculative FP/VEC state, if used */
553 if (msr & MSR_FP) {
554 do_load_up_transact_fpu(&new->thread);
555 new->thread.regs->msr |=
556 (MSR_FP | new->thread.fpexc_mode);
557 }
558 #ifdef CONFIG_ALTIVEC
559 if (msr & MSR_VEC) {
560 do_load_up_transact_altivec(&new->thread);
561 new->thread.regs->msr |= MSR_VEC;
562 }
563 #endif
564 /* We may as well turn on VSX too since all the state is restored now */
565 if (msr & MSR_VSX)
566 new->thread.regs->msr |= MSR_VSX;
567
568 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
569 "(kernel msr 0x%lx)\n",
570 new->pid, mfmsr());
571 }
572
573 static inline void __switch_to_tm(struct task_struct *prev)
574 {
575 if (cpu_has_feature(CPU_FTR_TM)) {
576 tm_enable();
577 tm_reclaim_task(prev);
578 }
579 }
580 #else
581 #define tm_recheckpoint_new_task(new)
582 #define __switch_to_tm(prev)
583 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
584
585 struct task_struct *__switch_to(struct task_struct *prev,
586 struct task_struct *new)
587 {
588 struct thread_struct *new_thread, *old_thread;
589 unsigned long flags;
590 struct task_struct *last;
591 #ifdef CONFIG_PPC_BOOK3S_64
592 struct ppc64_tlb_batch *batch;
593 #endif
594
595 __switch_to_tm(prev);
596
597 #ifdef CONFIG_SMP
598 /* avoid complexity of lazy save/restore of fpu
599 * by just saving it every time we switch out if
600 * this task used the fpu during the last quantum.
601 *
602 * If it tries to use the fpu again, it'll trap and
603 * reload its fp regs. So we don't have to do a restore
604 * every switch, just a save.
605 * -- Cort
606 */
607 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
608 giveup_fpu(prev);
609 #ifdef CONFIG_ALTIVEC
610 /*
611 * If the previous thread used altivec in the last quantum
612 * (thus changing altivec regs) then save them.
613 * We used to check the VRSAVE register but not all apps
614 * set it, so we don't rely on it now (and in fact we need
615 * to save & restore VSCR even if VRSAVE == 0). -- paulus
616 *
617 * On SMP we always save/restore altivec regs just to avoid the
618 * complexity of changing processors.
619 * -- Cort
620 */
621 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
622 giveup_altivec(prev);
623 #endif /* CONFIG_ALTIVEC */
624 #ifdef CONFIG_VSX
625 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
626 /* VMX and FPU registers are already save here */
627 __giveup_vsx(prev);
628 #endif /* CONFIG_VSX */
629 #ifdef CONFIG_SPE
630 /*
631 * If the previous thread used spe in the last quantum
632 * (thus changing spe regs) then save them.
633 *
634 * On SMP we always save/restore spe regs just to avoid the
635 * complexity of changing processors.
636 */
637 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
638 giveup_spe(prev);
639 #endif /* CONFIG_SPE */
640
641 #else /* CONFIG_SMP */
642 #ifdef CONFIG_ALTIVEC
643 /* Avoid the trap. On smp this this never happens since
644 * we don't set last_task_used_altivec -- Cort
645 */
646 if (new->thread.regs && last_task_used_altivec == new)
647 new->thread.regs->msr |= MSR_VEC;
648 #endif /* CONFIG_ALTIVEC */
649 #ifdef CONFIG_VSX
650 if (new->thread.regs && last_task_used_vsx == new)
651 new->thread.regs->msr |= MSR_VSX;
652 #endif /* CONFIG_VSX */
653 #ifdef CONFIG_SPE
654 /* Avoid the trap. On smp this this never happens since
655 * we don't set last_task_used_spe
656 */
657 if (new->thread.regs && last_task_used_spe == new)
658 new->thread.regs->msr |= MSR_SPE;
659 #endif /* CONFIG_SPE */
660
661 #endif /* CONFIG_SMP */
662
663 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
664 switch_booke_debug_regs(&new->thread);
665 #else
666 /*
667 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
668 * schedule DABR
669 */
670 #ifndef CONFIG_HAVE_HW_BREAKPOINT
671 if (unlikely(hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
672 set_breakpoint(&new->thread.hw_brk);
673 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
674 #endif
675
676
677 new_thread = &new->thread;
678 old_thread = &current->thread;
679
680 #ifdef CONFIG_PPC64
681 /*
682 * Collect processor utilization data per process
683 */
684 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
685 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
686 long unsigned start_tb, current_tb;
687 start_tb = old_thread->start_tb;
688 cu->current_tb = current_tb = mfspr(SPRN_PURR);
689 old_thread->accum_tb += (current_tb - start_tb);
690 new_thread->start_tb = current_tb;
691 }
692 #endif /* CONFIG_PPC64 */
693
694 #ifdef CONFIG_PPC_BOOK3S_64
695 batch = &__get_cpu_var(ppc64_tlb_batch);
696 if (batch->active) {
697 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
698 if (batch->index)
699 __flush_tlb_pending(batch);
700 batch->active = 0;
701 }
702 #endif /* CONFIG_PPC_BOOK3S_64 */
703
704 local_irq_save(flags);
705
706 /*
707 * We can't take a PMU exception inside _switch() since there is a
708 * window where the kernel stack SLB and the kernel stack are out
709 * of sync. Hard disable here.
710 */
711 hard_irq_disable();
712
713 tm_recheckpoint_new_task(new);
714
715 last = _switch(old_thread, new_thread);
716
717 #ifdef CONFIG_PPC_BOOK3S_64
718 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
719 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
720 batch = &__get_cpu_var(ppc64_tlb_batch);
721 batch->active = 1;
722 }
723 #endif /* CONFIG_PPC_BOOK3S_64 */
724
725 local_irq_restore(flags);
726
727 return last;
728 }
729
730 static int instructions_to_print = 16;
731
732 static void show_instructions(struct pt_regs *regs)
733 {
734 int i;
735 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
736 sizeof(int));
737
738 printk("Instruction dump:");
739
740 for (i = 0; i < instructions_to_print; i++) {
741 int instr;
742
743 if (!(i % 8))
744 printk("\n");
745
746 #if !defined(CONFIG_BOOKE)
747 /* If executing with the IMMU off, adjust pc rather
748 * than print XXXXXXXX.
749 */
750 if (!(regs->msr & MSR_IR))
751 pc = (unsigned long)phys_to_virt(pc);
752 #endif
753
754 /* We use __get_user here *only* to avoid an OOPS on a
755 * bad address because the pc *should* only be a
756 * kernel address.
757 */
758 if (!__kernel_text_address(pc) ||
759 __get_user(instr, (unsigned int __user *)pc)) {
760 printk(KERN_CONT "XXXXXXXX ");
761 } else {
762 if (regs->nip == pc)
763 printk(KERN_CONT "<%08x> ", instr);
764 else
765 printk(KERN_CONT "%08x ", instr);
766 }
767
768 pc += sizeof(int);
769 }
770
771 printk("\n");
772 }
773
774 static struct regbit {
775 unsigned long bit;
776 const char *name;
777 } msr_bits[] = {
778 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
779 {MSR_SF, "SF"},
780 {MSR_HV, "HV"},
781 #endif
782 {MSR_VEC, "VEC"},
783 {MSR_VSX, "VSX"},
784 #ifdef CONFIG_BOOKE
785 {MSR_CE, "CE"},
786 #endif
787 {MSR_EE, "EE"},
788 {MSR_PR, "PR"},
789 {MSR_FP, "FP"},
790 {MSR_ME, "ME"},
791 #ifdef CONFIG_BOOKE
792 {MSR_DE, "DE"},
793 #else
794 {MSR_SE, "SE"},
795 {MSR_BE, "BE"},
796 #endif
797 {MSR_IR, "IR"},
798 {MSR_DR, "DR"},
799 {MSR_PMM, "PMM"},
800 #ifndef CONFIG_BOOKE
801 {MSR_RI, "RI"},
802 {MSR_LE, "LE"},
803 #endif
804 {0, NULL}
805 };
806
807 static void printbits(unsigned long val, struct regbit *bits)
808 {
809 const char *sep = "";
810
811 printk("<");
812 for (; bits->bit; ++bits)
813 if (val & bits->bit) {
814 printk("%s%s", sep, bits->name);
815 sep = ",";
816 }
817 printk(">");
818 }
819
820 #ifdef CONFIG_PPC64
821 #define REG "%016lx"
822 #define REGS_PER_LINE 4
823 #define LAST_VOLATILE 13
824 #else
825 #define REG "%08lx"
826 #define REGS_PER_LINE 8
827 #define LAST_VOLATILE 12
828 #endif
829
830 void show_regs(struct pt_regs * regs)
831 {
832 int i, trap;
833
834 show_regs_print_info(KERN_DEFAULT);
835
836 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
837 regs->nip, regs->link, regs->ctr);
838 printk("REGS: %p TRAP: %04lx %s (%s)\n",
839 regs, regs->trap, print_tainted(), init_utsname()->release);
840 printk("MSR: "REG" ", regs->msr);
841 printbits(regs->msr, msr_bits);
842 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
843 #ifdef CONFIG_PPC64
844 printk("SOFTE: %ld\n", regs->softe);
845 #endif
846 trap = TRAP(regs);
847 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
848 printk("CFAR: "REG"\n", regs->orig_gpr3);
849 if (trap == 0x300 || trap == 0x600)
850 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
851 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
852 #else
853 printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
854 #endif
855
856 for (i = 0; i < 32; i++) {
857 if ((i % REGS_PER_LINE) == 0)
858 printk("\nGPR%02d: ", i);
859 printk(REG " ", regs->gpr[i]);
860 if (i == LAST_VOLATILE && !FULL_REGS(regs))
861 break;
862 }
863 printk("\n");
864 #ifdef CONFIG_KALLSYMS
865 /*
866 * Lookup NIP late so we have the best change of getting the
867 * above info out without failing
868 */
869 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
870 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
871 #endif
872 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
873 printk("PACATMSCRATCH [%llx]\n", get_paca()->tm_scratch);
874 #endif
875 show_stack(current, (unsigned long *) regs->gpr[1]);
876 if (!user_mode(regs))
877 show_instructions(regs);
878 }
879
880 void exit_thread(void)
881 {
882 discard_lazy_cpu_state();
883 }
884
885 void flush_thread(void)
886 {
887 discard_lazy_cpu_state();
888
889 #ifdef CONFIG_HAVE_HW_BREAKPOINT
890 flush_ptrace_hw_breakpoint(current);
891 #else /* CONFIG_HAVE_HW_BREAKPOINT */
892 set_debug_reg_defaults(&current->thread);
893 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
894 }
895
896 void
897 release_thread(struct task_struct *t)
898 {
899 }
900
901 /*
902 * this gets called so that we can store coprocessor state into memory and
903 * copy the current task into the new thread.
904 */
905 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
906 {
907 flush_fp_to_thread(src);
908 flush_altivec_to_thread(src);
909 flush_vsx_to_thread(src);
910 flush_spe_to_thread(src);
911 *dst = *src;
912 return 0;
913 }
914
915 /*
916 * Copy a thread..
917 */
918 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
919
920 int copy_thread(unsigned long clone_flags, unsigned long usp,
921 unsigned long arg, struct task_struct *p)
922 {
923 struct pt_regs *childregs, *kregs;
924 extern void ret_from_fork(void);
925 extern void ret_from_kernel_thread(void);
926 void (*f)(void);
927 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
928
929 /* Copy registers */
930 sp -= sizeof(struct pt_regs);
931 childregs = (struct pt_regs *) sp;
932 if (unlikely(p->flags & PF_KTHREAD)) {
933 struct thread_info *ti = (void *)task_stack_page(p);
934 memset(childregs, 0, sizeof(struct pt_regs));
935 childregs->gpr[1] = sp + sizeof(struct pt_regs);
936 childregs->gpr[14] = usp; /* function */
937 #ifdef CONFIG_PPC64
938 clear_tsk_thread_flag(p, TIF_32BIT);
939 childregs->softe = 1;
940 #endif
941 childregs->gpr[15] = arg;
942 p->thread.regs = NULL; /* no user register state */
943 ti->flags |= _TIF_RESTOREALL;
944 f = ret_from_kernel_thread;
945 } else {
946 struct pt_regs *regs = current_pt_regs();
947 CHECK_FULL_REGS(regs);
948 *childregs = *regs;
949 if (usp)
950 childregs->gpr[1] = usp;
951 p->thread.regs = childregs;
952 childregs->gpr[3] = 0; /* Result from fork() */
953 if (clone_flags & CLONE_SETTLS) {
954 #ifdef CONFIG_PPC64
955 if (!is_32bit_task())
956 childregs->gpr[13] = childregs->gpr[6];
957 else
958 #endif
959 childregs->gpr[2] = childregs->gpr[6];
960 }
961
962 f = ret_from_fork;
963 }
964 sp -= STACK_FRAME_OVERHEAD;
965
966 /*
967 * The way this works is that at some point in the future
968 * some task will call _switch to switch to the new task.
969 * That will pop off the stack frame created below and start
970 * the new task running at ret_from_fork. The new task will
971 * do some house keeping and then return from the fork or clone
972 * system call, using the stack frame created above.
973 */
974 sp -= sizeof(struct pt_regs);
975 kregs = (struct pt_regs *) sp;
976 sp -= STACK_FRAME_OVERHEAD;
977 p->thread.ksp = sp;
978 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
979 _ALIGN_UP(sizeof(struct thread_info), 16);
980
981 #ifdef CONFIG_HAVE_HW_BREAKPOINT
982 p->thread.ptrace_bps[0] = NULL;
983 #endif
984
985 #ifdef CONFIG_PPC_STD_MMU_64
986 if (mmu_has_feature(MMU_FTR_SLB)) {
987 unsigned long sp_vsid;
988 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
989
990 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
991 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
992 << SLB_VSID_SHIFT_1T;
993 else
994 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
995 << SLB_VSID_SHIFT;
996 sp_vsid |= SLB_VSID_KERNEL | llp;
997 p->thread.ksp_vsid = sp_vsid;
998 }
999 #endif /* CONFIG_PPC_STD_MMU_64 */
1000 #ifdef CONFIG_PPC64
1001 if (cpu_has_feature(CPU_FTR_DSCR)) {
1002 p->thread.dscr_inherit = current->thread.dscr_inherit;
1003 p->thread.dscr = current->thread.dscr;
1004 }
1005 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1006 p->thread.ppr = INIT_PPR;
1007 #endif
1008 /*
1009 * The PPC64 ABI makes use of a TOC to contain function
1010 * pointers. The function (ret_from_except) is actually a pointer
1011 * to the TOC entry. The first entry is a pointer to the actual
1012 * function.
1013 */
1014 #ifdef CONFIG_PPC64
1015 kregs->nip = *((unsigned long *)f);
1016 #else
1017 kregs->nip = (unsigned long)f;
1018 #endif
1019 return 0;
1020 }
1021
1022 /*
1023 * Set up a thread for executing a new program
1024 */
1025 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1026 {
1027 #ifdef CONFIG_PPC64
1028 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1029 #endif
1030
1031 /*
1032 * If we exec out of a kernel thread then thread.regs will not be
1033 * set. Do it now.
1034 */
1035 if (!current->thread.regs) {
1036 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1037 current->thread.regs = regs - 1;
1038 }
1039
1040 memset(regs->gpr, 0, sizeof(regs->gpr));
1041 regs->ctr = 0;
1042 regs->link = 0;
1043 regs->xer = 0;
1044 regs->ccr = 0;
1045 regs->gpr[1] = sp;
1046
1047 /*
1048 * We have just cleared all the nonvolatile GPRs, so make
1049 * FULL_REGS(regs) return true. This is necessary to allow
1050 * ptrace to examine the thread immediately after exec.
1051 */
1052 regs->trap &= ~1UL;
1053
1054 #ifdef CONFIG_PPC32
1055 regs->mq = 0;
1056 regs->nip = start;
1057 regs->msr = MSR_USER;
1058 #else
1059 if (!is_32bit_task()) {
1060 unsigned long entry, toc;
1061
1062 /* start is a relocated pointer to the function descriptor for
1063 * the elf _start routine. The first entry in the function
1064 * descriptor is the entry address of _start and the second
1065 * entry is the TOC value we need to use.
1066 */
1067 __get_user(entry, (unsigned long __user *)start);
1068 __get_user(toc, (unsigned long __user *)start+1);
1069
1070 /* Check whether the e_entry function descriptor entries
1071 * need to be relocated before we can use them.
1072 */
1073 if (load_addr != 0) {
1074 entry += load_addr;
1075 toc += load_addr;
1076 }
1077 regs->nip = entry;
1078 regs->gpr[2] = toc;
1079 regs->msr = MSR_USER64;
1080 } else {
1081 regs->nip = start;
1082 regs->gpr[2] = 0;
1083 regs->msr = MSR_USER32;
1084 }
1085 #endif
1086 discard_lazy_cpu_state();
1087 #ifdef CONFIG_VSX
1088 current->thread.used_vsr = 0;
1089 #endif
1090 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
1091 current->thread.fpscr.val = 0;
1092 #ifdef CONFIG_ALTIVEC
1093 memset(current->thread.vr, 0, sizeof(current->thread.vr));
1094 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
1095 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
1096 current->thread.vrsave = 0;
1097 current->thread.used_vr = 0;
1098 #endif /* CONFIG_ALTIVEC */
1099 #ifdef CONFIG_SPE
1100 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1101 current->thread.acc = 0;
1102 current->thread.spefscr = 0;
1103 current->thread.used_spe = 0;
1104 #endif /* CONFIG_SPE */
1105 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1106 if (cpu_has_feature(CPU_FTR_TM))
1107 regs->msr |= MSR_TM;
1108 current->thread.tm_tfhar = 0;
1109 current->thread.tm_texasr = 0;
1110 current->thread.tm_tfiar = 0;
1111 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1112 }
1113
1114 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1115 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1116
1117 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1118 {
1119 struct pt_regs *regs = tsk->thread.regs;
1120
1121 /* This is a bit hairy. If we are an SPE enabled processor
1122 * (have embedded fp) we store the IEEE exception enable flags in
1123 * fpexc_mode. fpexc_mode is also used for setting FP exception
1124 * mode (asyn, precise, disabled) for 'Classic' FP. */
1125 if (val & PR_FP_EXC_SW_ENABLE) {
1126 #ifdef CONFIG_SPE
1127 if (cpu_has_feature(CPU_FTR_SPE)) {
1128 tsk->thread.fpexc_mode = val &
1129 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1130 return 0;
1131 } else {
1132 return -EINVAL;
1133 }
1134 #else
1135 return -EINVAL;
1136 #endif
1137 }
1138
1139 /* on a CONFIG_SPE this does not hurt us. The bits that
1140 * __pack_fe01 use do not overlap with bits used for
1141 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1142 * on CONFIG_SPE implementations are reserved so writing to
1143 * them does not change anything */
1144 if (val > PR_FP_EXC_PRECISE)
1145 return -EINVAL;
1146 tsk->thread.fpexc_mode = __pack_fe01(val);
1147 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1148 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1149 | tsk->thread.fpexc_mode;
1150 return 0;
1151 }
1152
1153 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1154 {
1155 unsigned int val;
1156
1157 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1158 #ifdef CONFIG_SPE
1159 if (cpu_has_feature(CPU_FTR_SPE))
1160 val = tsk->thread.fpexc_mode;
1161 else
1162 return -EINVAL;
1163 #else
1164 return -EINVAL;
1165 #endif
1166 else
1167 val = __unpack_fe01(tsk->thread.fpexc_mode);
1168 return put_user(val, (unsigned int __user *) adr);
1169 }
1170
1171 int set_endian(struct task_struct *tsk, unsigned int val)
1172 {
1173 struct pt_regs *regs = tsk->thread.regs;
1174
1175 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1176 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1177 return -EINVAL;
1178
1179 if (regs == NULL)
1180 return -EINVAL;
1181
1182 if (val == PR_ENDIAN_BIG)
1183 regs->msr &= ~MSR_LE;
1184 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1185 regs->msr |= MSR_LE;
1186 else
1187 return -EINVAL;
1188
1189 return 0;
1190 }
1191
1192 int get_endian(struct task_struct *tsk, unsigned long adr)
1193 {
1194 struct pt_regs *regs = tsk->thread.regs;
1195 unsigned int val;
1196
1197 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1198 !cpu_has_feature(CPU_FTR_REAL_LE))
1199 return -EINVAL;
1200
1201 if (regs == NULL)
1202 return -EINVAL;
1203
1204 if (regs->msr & MSR_LE) {
1205 if (cpu_has_feature(CPU_FTR_REAL_LE))
1206 val = PR_ENDIAN_LITTLE;
1207 else
1208 val = PR_ENDIAN_PPC_LITTLE;
1209 } else
1210 val = PR_ENDIAN_BIG;
1211
1212 return put_user(val, (unsigned int __user *)adr);
1213 }
1214
1215 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1216 {
1217 tsk->thread.align_ctl = val;
1218 return 0;
1219 }
1220
1221 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1222 {
1223 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1224 }
1225
1226 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1227 unsigned long nbytes)
1228 {
1229 unsigned long stack_page;
1230 unsigned long cpu = task_cpu(p);
1231
1232 /*
1233 * Avoid crashing if the stack has overflowed and corrupted
1234 * task_cpu(p), which is in the thread_info struct.
1235 */
1236 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1237 stack_page = (unsigned long) hardirq_ctx[cpu];
1238 if (sp >= stack_page + sizeof(struct thread_struct)
1239 && sp <= stack_page + THREAD_SIZE - nbytes)
1240 return 1;
1241
1242 stack_page = (unsigned long) softirq_ctx[cpu];
1243 if (sp >= stack_page + sizeof(struct thread_struct)
1244 && sp <= stack_page + THREAD_SIZE - nbytes)
1245 return 1;
1246 }
1247 return 0;
1248 }
1249
1250 int validate_sp(unsigned long sp, struct task_struct *p,
1251 unsigned long nbytes)
1252 {
1253 unsigned long stack_page = (unsigned long)task_stack_page(p);
1254
1255 if (sp >= stack_page + sizeof(struct thread_struct)
1256 && sp <= stack_page + THREAD_SIZE - nbytes)
1257 return 1;
1258
1259 return valid_irq_stack(sp, p, nbytes);
1260 }
1261
1262 EXPORT_SYMBOL(validate_sp);
1263
1264 unsigned long get_wchan(struct task_struct *p)
1265 {
1266 unsigned long ip, sp;
1267 int count = 0;
1268
1269 if (!p || p == current || p->state == TASK_RUNNING)
1270 return 0;
1271
1272 sp = p->thread.ksp;
1273 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1274 return 0;
1275
1276 do {
1277 sp = *(unsigned long *)sp;
1278 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1279 return 0;
1280 if (count > 0) {
1281 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1282 if (!in_sched_functions(ip))
1283 return ip;
1284 }
1285 } while (count++ < 16);
1286 return 0;
1287 }
1288
1289 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1290
1291 void show_stack(struct task_struct *tsk, unsigned long *stack)
1292 {
1293 unsigned long sp, ip, lr, newsp;
1294 int count = 0;
1295 int firstframe = 1;
1296 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1297 int curr_frame = current->curr_ret_stack;
1298 extern void return_to_handler(void);
1299 unsigned long rth = (unsigned long)return_to_handler;
1300 unsigned long mrth = -1;
1301 #ifdef CONFIG_PPC64
1302 extern void mod_return_to_handler(void);
1303 rth = *(unsigned long *)rth;
1304 mrth = (unsigned long)mod_return_to_handler;
1305 mrth = *(unsigned long *)mrth;
1306 #endif
1307 #endif
1308
1309 sp = (unsigned long) stack;
1310 if (tsk == NULL)
1311 tsk = current;
1312 if (sp == 0) {
1313 if (tsk == current)
1314 asm("mr %0,1" : "=r" (sp));
1315 else
1316 sp = tsk->thread.ksp;
1317 }
1318
1319 lr = 0;
1320 printk("Call Trace:\n");
1321 do {
1322 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1323 return;
1324
1325 stack = (unsigned long *) sp;
1326 newsp = stack[0];
1327 ip = stack[STACK_FRAME_LR_SAVE];
1328 if (!firstframe || ip != lr) {
1329 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1330 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1331 if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1332 printk(" (%pS)",
1333 (void *)current->ret_stack[curr_frame].ret);
1334 curr_frame--;
1335 }
1336 #endif
1337 if (firstframe)
1338 printk(" (unreliable)");
1339 printk("\n");
1340 }
1341 firstframe = 0;
1342
1343 /*
1344 * See if this is an exception frame.
1345 * We look for the "regshere" marker in the current frame.
1346 */
1347 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1348 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1349 struct pt_regs *regs = (struct pt_regs *)
1350 (sp + STACK_FRAME_OVERHEAD);
1351 lr = regs->link;
1352 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1353 regs->trap, (void *)regs->nip, (void *)lr);
1354 firstframe = 1;
1355 }
1356
1357 sp = newsp;
1358 } while (count++ < kstack_depth_to_print);
1359 }
1360
1361 #ifdef CONFIG_PPC64
1362 /* Called with hard IRQs off */
1363 void __ppc64_runlatch_on(void)
1364 {
1365 struct thread_info *ti = current_thread_info();
1366 unsigned long ctrl;
1367
1368 ctrl = mfspr(SPRN_CTRLF);
1369 ctrl |= CTRL_RUNLATCH;
1370 mtspr(SPRN_CTRLT, ctrl);
1371
1372 ti->local_flags |= _TLF_RUNLATCH;
1373 }
1374
1375 /* Called with hard IRQs off */
1376 void __ppc64_runlatch_off(void)
1377 {
1378 struct thread_info *ti = current_thread_info();
1379 unsigned long ctrl;
1380
1381 ti->local_flags &= ~_TLF_RUNLATCH;
1382
1383 ctrl = mfspr(SPRN_CTRLF);
1384 ctrl &= ~CTRL_RUNLATCH;
1385 mtspr(SPRN_CTRLT, ctrl);
1386 }
1387 #endif /* CONFIG_PPC64 */
1388
1389 unsigned long arch_align_stack(unsigned long sp)
1390 {
1391 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1392 sp -= get_random_int() & ~PAGE_MASK;
1393 return sp & ~0xf;
1394 }
1395
1396 static inline unsigned long brk_rnd(void)
1397 {
1398 unsigned long rnd = 0;
1399
1400 /* 8MB for 32bit, 1GB for 64bit */
1401 if (is_32bit_task())
1402 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1403 else
1404 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1405
1406 return rnd << PAGE_SHIFT;
1407 }
1408
1409 unsigned long arch_randomize_brk(struct mm_struct *mm)
1410 {
1411 unsigned long base = mm->brk;
1412 unsigned long ret;
1413
1414 #ifdef CONFIG_PPC_STD_MMU_64
1415 /*
1416 * If we are using 1TB segments and we are allowed to randomise
1417 * the heap, we can put it above 1TB so it is backed by a 1TB
1418 * segment. Otherwise the heap will be in the bottom 1TB
1419 * which always uses 256MB segments and this may result in a
1420 * performance penalty.
1421 */
1422 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1423 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1424 #endif
1425
1426 ret = PAGE_ALIGN(base + brk_rnd());
1427
1428 if (ret < mm->brk)
1429 return mm->brk;
1430
1431 return ret;
1432 }
1433
1434 unsigned long randomize_et_dyn(unsigned long base)
1435 {
1436 unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1437
1438 if (ret < base)
1439 return base;
1440
1441 return ret;
1442 }