Merge remote-tracking branch 'spi/fix/hspi' into spi-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/export.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/uaccess.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #endif
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
60
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
67
68 extern unsigned long _get_SP(void);
69
70 #ifndef CONFIG_SMP
71 struct task_struct *last_task_used_math = NULL;
72 struct task_struct *last_task_used_altivec = NULL;
73 struct task_struct *last_task_used_vsx = NULL;
74 struct task_struct *last_task_used_spe = NULL;
75 #endif
76
77 /*
78 * Make sure the floating-point register state in the
79 * the thread_struct is up to date for task tsk.
80 */
81 void flush_fp_to_thread(struct task_struct *tsk)
82 {
83 if (tsk->thread.regs) {
84 /*
85 * We need to disable preemption here because if we didn't,
86 * another process could get scheduled after the regs->msr
87 * test but before we have finished saving the FP registers
88 * to the thread_struct. That process could take over the
89 * FPU, and then when we get scheduled again we would store
90 * bogus values for the remaining FP registers.
91 */
92 preempt_disable();
93 if (tsk->thread.regs->msr & MSR_FP) {
94 #ifdef CONFIG_SMP
95 /*
96 * This should only ever be called for current or
97 * for a stopped child process. Since we save away
98 * the FP register state on context switch on SMP,
99 * there is something wrong if a stopped child appears
100 * to still have its FP state in the CPU registers.
101 */
102 BUG_ON(tsk != current);
103 #endif
104 giveup_fpu(tsk);
105 }
106 preempt_enable();
107 }
108 }
109 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
110
111 void enable_kernel_fp(void)
112 {
113 WARN_ON(preemptible());
114
115 #ifdef CONFIG_SMP
116 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
117 giveup_fpu(current);
118 else
119 giveup_fpu(NULL); /* just enables FP for kernel */
120 #else
121 giveup_fpu(last_task_used_math);
122 #endif /* CONFIG_SMP */
123 }
124 EXPORT_SYMBOL(enable_kernel_fp);
125
126 #ifdef CONFIG_ALTIVEC
127 void enable_kernel_altivec(void)
128 {
129 WARN_ON(preemptible());
130
131 #ifdef CONFIG_SMP
132 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
133 giveup_altivec(current);
134 else
135 giveup_altivec_notask();
136 #else
137 giveup_altivec(last_task_used_altivec);
138 #endif /* CONFIG_SMP */
139 }
140 EXPORT_SYMBOL(enable_kernel_altivec);
141
142 /*
143 * Make sure the VMX/Altivec register state in the
144 * the thread_struct is up to date for task tsk.
145 */
146 void flush_altivec_to_thread(struct task_struct *tsk)
147 {
148 if (tsk->thread.regs) {
149 preempt_disable();
150 if (tsk->thread.regs->msr & MSR_VEC) {
151 #ifdef CONFIG_SMP
152 BUG_ON(tsk != current);
153 #endif
154 giveup_altivec(tsk);
155 }
156 preempt_enable();
157 }
158 }
159 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
160 #endif /* CONFIG_ALTIVEC */
161
162 #ifdef CONFIG_VSX
163 #if 0
164 /* not currently used, but some crazy RAID module might want to later */
165 void enable_kernel_vsx(void)
166 {
167 WARN_ON(preemptible());
168
169 #ifdef CONFIG_SMP
170 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
171 giveup_vsx(current);
172 else
173 giveup_vsx(NULL); /* just enable vsx for kernel - force */
174 #else
175 giveup_vsx(last_task_used_vsx);
176 #endif /* CONFIG_SMP */
177 }
178 EXPORT_SYMBOL(enable_kernel_vsx);
179 #endif
180
181 void giveup_vsx(struct task_struct *tsk)
182 {
183 giveup_fpu(tsk);
184 giveup_altivec(tsk);
185 __giveup_vsx(tsk);
186 }
187
188 void flush_vsx_to_thread(struct task_struct *tsk)
189 {
190 if (tsk->thread.regs) {
191 preempt_disable();
192 if (tsk->thread.regs->msr & MSR_VSX) {
193 #ifdef CONFIG_SMP
194 BUG_ON(tsk != current);
195 #endif
196 giveup_vsx(tsk);
197 }
198 preempt_enable();
199 }
200 }
201 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
202 #endif /* CONFIG_VSX */
203
204 #ifdef CONFIG_SPE
205
206 void enable_kernel_spe(void)
207 {
208 WARN_ON(preemptible());
209
210 #ifdef CONFIG_SMP
211 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
212 giveup_spe(current);
213 else
214 giveup_spe(NULL); /* just enable SPE for kernel - force */
215 #else
216 giveup_spe(last_task_used_spe);
217 #endif /* __SMP __ */
218 }
219 EXPORT_SYMBOL(enable_kernel_spe);
220
221 void flush_spe_to_thread(struct task_struct *tsk)
222 {
223 if (tsk->thread.regs) {
224 preempt_disable();
225 if (tsk->thread.regs->msr & MSR_SPE) {
226 #ifdef CONFIG_SMP
227 BUG_ON(tsk != current);
228 #endif
229 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
230 giveup_spe(tsk);
231 }
232 preempt_enable();
233 }
234 }
235 #endif /* CONFIG_SPE */
236
237 #ifndef CONFIG_SMP
238 /*
239 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
240 * and the current task has some state, discard it.
241 */
242 void discard_lazy_cpu_state(void)
243 {
244 preempt_disable();
245 if (last_task_used_math == current)
246 last_task_used_math = NULL;
247 #ifdef CONFIG_ALTIVEC
248 if (last_task_used_altivec == current)
249 last_task_used_altivec = NULL;
250 #endif /* CONFIG_ALTIVEC */
251 #ifdef CONFIG_VSX
252 if (last_task_used_vsx == current)
253 last_task_used_vsx = NULL;
254 #endif /* CONFIG_VSX */
255 #ifdef CONFIG_SPE
256 if (last_task_used_spe == current)
257 last_task_used_spe = NULL;
258 #endif
259 preempt_enable();
260 }
261 #endif /* CONFIG_SMP */
262
263 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
264 void do_send_trap(struct pt_regs *regs, unsigned long address,
265 unsigned long error_code, int signal_code, int breakpt)
266 {
267 siginfo_t info;
268
269 current->thread.trap_nr = signal_code;
270 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
271 11, SIGSEGV) == NOTIFY_STOP)
272 return;
273
274 /* Deliver the signal to userspace */
275 info.si_signo = SIGTRAP;
276 info.si_errno = breakpt; /* breakpoint or watchpoint id */
277 info.si_code = signal_code;
278 info.si_addr = (void __user *)address;
279 force_sig_info(SIGTRAP, &info, current);
280 }
281 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
282 void do_break (struct pt_regs *regs, unsigned long address,
283 unsigned long error_code)
284 {
285 siginfo_t info;
286
287 current->thread.trap_nr = TRAP_HWBKPT;
288 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
289 11, SIGSEGV) == NOTIFY_STOP)
290 return;
291
292 if (debugger_break_match(regs))
293 return;
294
295 /* Clear the breakpoint */
296 hw_breakpoint_disable();
297
298 /* Deliver the signal to userspace */
299 info.si_signo = SIGTRAP;
300 info.si_errno = 0;
301 info.si_code = TRAP_HWBKPT;
302 info.si_addr = (void __user *)address;
303 force_sig_info(SIGTRAP, &info, current);
304 }
305 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
306
307 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
308
309 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
310 /*
311 * Set the debug registers back to their default "safe" values.
312 */
313 static void set_debug_reg_defaults(struct thread_struct *thread)
314 {
315 thread->iac1 = thread->iac2 = 0;
316 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
317 thread->iac3 = thread->iac4 = 0;
318 #endif
319 thread->dac1 = thread->dac2 = 0;
320 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
321 thread->dvc1 = thread->dvc2 = 0;
322 #endif
323 thread->dbcr0 = 0;
324 #ifdef CONFIG_BOOKE
325 /*
326 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
327 */
328 thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | \
329 DBCR1_IAC3US | DBCR1_IAC4US;
330 /*
331 * Force Data Address Compare User/Supervisor bits to be User-only
332 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
333 */
334 thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
335 #else
336 thread->dbcr1 = 0;
337 #endif
338 }
339
340 static void prime_debug_regs(struct thread_struct *thread)
341 {
342 /*
343 * We could have inherited MSR_DE from userspace, since
344 * it doesn't get cleared on exception entry. Make sure
345 * MSR_DE is clear before we enable any debug events.
346 */
347 mtmsr(mfmsr() & ~MSR_DE);
348
349 mtspr(SPRN_IAC1, thread->iac1);
350 mtspr(SPRN_IAC2, thread->iac2);
351 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
352 mtspr(SPRN_IAC3, thread->iac3);
353 mtspr(SPRN_IAC4, thread->iac4);
354 #endif
355 mtspr(SPRN_DAC1, thread->dac1);
356 mtspr(SPRN_DAC2, thread->dac2);
357 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
358 mtspr(SPRN_DVC1, thread->dvc1);
359 mtspr(SPRN_DVC2, thread->dvc2);
360 #endif
361 mtspr(SPRN_DBCR0, thread->dbcr0);
362 mtspr(SPRN_DBCR1, thread->dbcr1);
363 #ifdef CONFIG_BOOKE
364 mtspr(SPRN_DBCR2, thread->dbcr2);
365 #endif
366 }
367 /*
368 * Unless neither the old or new thread are making use of the
369 * debug registers, set the debug registers from the values
370 * stored in the new thread.
371 */
372 static void switch_booke_debug_regs(struct thread_struct *new_thread)
373 {
374 if ((current->thread.dbcr0 & DBCR0_IDM)
375 || (new_thread->dbcr0 & DBCR0_IDM))
376 prime_debug_regs(new_thread);
377 }
378 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
379 #ifndef CONFIG_HAVE_HW_BREAKPOINT
380 static void set_debug_reg_defaults(struct thread_struct *thread)
381 {
382 thread->hw_brk.address = 0;
383 thread->hw_brk.type = 0;
384 set_breakpoint(&thread->hw_brk);
385 }
386 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
387 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
388
389 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
390 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
391 {
392 mtspr(SPRN_DAC1, dabr);
393 #ifdef CONFIG_PPC_47x
394 isync();
395 #endif
396 return 0;
397 }
398 #elif defined(CONFIG_PPC_BOOK3S)
399 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
400 {
401 mtspr(SPRN_DABR, dabr);
402 mtspr(SPRN_DABRX, dabrx);
403 return 0;
404 }
405 #else
406 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
407 {
408 return -EINVAL;
409 }
410 #endif
411
412 static inline int set_dabr(struct arch_hw_breakpoint *brk)
413 {
414 unsigned long dabr, dabrx;
415
416 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
417 dabrx = ((brk->type >> 3) & 0x7);
418
419 if (ppc_md.set_dabr)
420 return ppc_md.set_dabr(dabr, dabrx);
421
422 return __set_dabr(dabr, dabrx);
423 }
424
425 static inline int set_dawr(struct arch_hw_breakpoint *brk)
426 {
427 unsigned long dawr, dawrx, mrd;
428
429 dawr = brk->address;
430
431 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
432 << (63 - 58); //* read/write bits */
433 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
434 << (63 - 59); //* translate */
435 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
436 >> 3; //* PRIM bits */
437 /* dawr length is stored in field MDR bits 48:53. Matches range in
438 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
439 0b111111=64DW.
440 brk->len is in bytes.
441 This aligns up to double word size, shifts and does the bias.
442 */
443 mrd = ((brk->len + 7) >> 3) - 1;
444 dawrx |= (mrd & 0x3f) << (63 - 53);
445
446 if (ppc_md.set_dawr)
447 return ppc_md.set_dawr(dawr, dawrx);
448 mtspr(SPRN_DAWR, dawr);
449 mtspr(SPRN_DAWRX, dawrx);
450 return 0;
451 }
452
453 int set_breakpoint(struct arch_hw_breakpoint *brk)
454 {
455 __get_cpu_var(current_brk) = *brk;
456
457 if (cpu_has_feature(CPU_FTR_DAWR))
458 return set_dawr(brk);
459
460 return set_dabr(brk);
461 }
462
463 #ifdef CONFIG_PPC64
464 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
465 #endif
466
467 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
468 struct arch_hw_breakpoint *b)
469 {
470 if (a->address != b->address)
471 return false;
472 if (a->type != b->type)
473 return false;
474 if (a->len != b->len)
475 return false;
476 return true;
477 }
478 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
479 static inline void tm_reclaim_task(struct task_struct *tsk)
480 {
481 /* We have to work out if we're switching from/to a task that's in the
482 * middle of a transaction.
483 *
484 * In switching we need to maintain a 2nd register state as
485 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
486 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
487 * (current) FPRs into oldtask->thread.transact_fpr[].
488 *
489 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
490 */
491 struct thread_struct *thr = &tsk->thread;
492
493 if (!thr->regs)
494 return;
495
496 if (!MSR_TM_ACTIVE(thr->regs->msr))
497 goto out_and_saveregs;
498
499 /* Stash the original thread MSR, as giveup_fpu et al will
500 * modify it. We hold onto it to see whether the task used
501 * FP & vector regs.
502 */
503 thr->tm_orig_msr = thr->regs->msr;
504
505 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
506 "ccr=%lx, msr=%lx, trap=%lx)\n",
507 tsk->pid, thr->regs->nip,
508 thr->regs->ccr, thr->regs->msr,
509 thr->regs->trap);
510
511 tm_reclaim(thr, thr->regs->msr, TM_CAUSE_RESCHED);
512
513 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
514 tsk->pid);
515
516 out_and_saveregs:
517 /* Always save the regs here, even if a transaction's not active.
518 * This context-switches a thread's TM info SPRs. We do it here to
519 * be consistent with the restore path (in recheckpoint) which
520 * cannot happen later in _switch().
521 */
522 tm_save_sprs(thr);
523 }
524
525 static inline void tm_recheckpoint_new_task(struct task_struct *new)
526 {
527 unsigned long msr;
528
529 if (!cpu_has_feature(CPU_FTR_TM))
530 return;
531
532 /* Recheckpoint the registers of the thread we're about to switch to.
533 *
534 * If the task was using FP, we non-lazily reload both the original and
535 * the speculative FP register states. This is because the kernel
536 * doesn't see if/when a TM rollback occurs, so if we take an FP
537 * unavoidable later, we are unable to determine which set of FP regs
538 * need to be restored.
539 */
540 if (!new->thread.regs)
541 return;
542
543 /* The TM SPRs are restored here, so that TEXASR.FS can be set
544 * before the trecheckpoint and no explosion occurs.
545 */
546 tm_restore_sprs(&new->thread);
547
548 if (!MSR_TM_ACTIVE(new->thread.regs->msr))
549 return;
550 msr = new->thread.tm_orig_msr;
551 /* Recheckpoint to restore original checkpointed register state. */
552 TM_DEBUG("*** tm_recheckpoint of pid %d "
553 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
554 new->pid, new->thread.regs->msr, msr);
555
556 /* This loads the checkpointed FP/VEC state, if used */
557 tm_recheckpoint(&new->thread, msr);
558
559 /* This loads the speculative FP/VEC state, if used */
560 if (msr & MSR_FP) {
561 do_load_up_transact_fpu(&new->thread);
562 new->thread.regs->msr |=
563 (MSR_FP | new->thread.fpexc_mode);
564 }
565 #ifdef CONFIG_ALTIVEC
566 if (msr & MSR_VEC) {
567 do_load_up_transact_altivec(&new->thread);
568 new->thread.regs->msr |= MSR_VEC;
569 }
570 #endif
571 /* We may as well turn on VSX too since all the state is restored now */
572 if (msr & MSR_VSX)
573 new->thread.regs->msr |= MSR_VSX;
574
575 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
576 "(kernel msr 0x%lx)\n",
577 new->pid, mfmsr());
578 }
579
580 static inline void __switch_to_tm(struct task_struct *prev)
581 {
582 if (cpu_has_feature(CPU_FTR_TM)) {
583 tm_enable();
584 tm_reclaim_task(prev);
585 }
586 }
587 #else
588 #define tm_recheckpoint_new_task(new)
589 #define __switch_to_tm(prev)
590 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
591
592 struct task_struct *__switch_to(struct task_struct *prev,
593 struct task_struct *new)
594 {
595 struct thread_struct *new_thread, *old_thread;
596 unsigned long flags;
597 struct task_struct *last;
598 #ifdef CONFIG_PPC_BOOK3S_64
599 struct ppc64_tlb_batch *batch;
600 #endif
601
602 __switch_to_tm(prev);
603
604 #ifdef CONFIG_SMP
605 /* avoid complexity of lazy save/restore of fpu
606 * by just saving it every time we switch out if
607 * this task used the fpu during the last quantum.
608 *
609 * If it tries to use the fpu again, it'll trap and
610 * reload its fp regs. So we don't have to do a restore
611 * every switch, just a save.
612 * -- Cort
613 */
614 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
615 giveup_fpu(prev);
616 #ifdef CONFIG_ALTIVEC
617 /*
618 * If the previous thread used altivec in the last quantum
619 * (thus changing altivec regs) then save them.
620 * We used to check the VRSAVE register but not all apps
621 * set it, so we don't rely on it now (and in fact we need
622 * to save & restore VSCR even if VRSAVE == 0). -- paulus
623 *
624 * On SMP we always save/restore altivec regs just to avoid the
625 * complexity of changing processors.
626 * -- Cort
627 */
628 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
629 giveup_altivec(prev);
630 #endif /* CONFIG_ALTIVEC */
631 #ifdef CONFIG_VSX
632 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
633 /* VMX and FPU registers are already save here */
634 __giveup_vsx(prev);
635 #endif /* CONFIG_VSX */
636 #ifdef CONFIG_SPE
637 /*
638 * If the previous thread used spe in the last quantum
639 * (thus changing spe regs) then save them.
640 *
641 * On SMP we always save/restore spe regs just to avoid the
642 * complexity of changing processors.
643 */
644 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
645 giveup_spe(prev);
646 #endif /* CONFIG_SPE */
647
648 #else /* CONFIG_SMP */
649 #ifdef CONFIG_ALTIVEC
650 /* Avoid the trap. On smp this this never happens since
651 * we don't set last_task_used_altivec -- Cort
652 */
653 if (new->thread.regs && last_task_used_altivec == new)
654 new->thread.regs->msr |= MSR_VEC;
655 #endif /* CONFIG_ALTIVEC */
656 #ifdef CONFIG_VSX
657 if (new->thread.regs && last_task_used_vsx == new)
658 new->thread.regs->msr |= MSR_VSX;
659 #endif /* CONFIG_VSX */
660 #ifdef CONFIG_SPE
661 /* Avoid the trap. On smp this this never happens since
662 * we don't set last_task_used_spe
663 */
664 if (new->thread.regs && last_task_used_spe == new)
665 new->thread.regs->msr |= MSR_SPE;
666 #endif /* CONFIG_SPE */
667
668 #endif /* CONFIG_SMP */
669
670 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
671 switch_booke_debug_regs(&new->thread);
672 #else
673 /*
674 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
675 * schedule DABR
676 */
677 #ifndef CONFIG_HAVE_HW_BREAKPOINT
678 if (unlikely(hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
679 set_breakpoint(&new->thread.hw_brk);
680 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
681 #endif
682
683
684 new_thread = &new->thread;
685 old_thread = &current->thread;
686
687 #ifdef CONFIG_PPC64
688 /*
689 * Collect processor utilization data per process
690 */
691 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
692 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
693 long unsigned start_tb, current_tb;
694 start_tb = old_thread->start_tb;
695 cu->current_tb = current_tb = mfspr(SPRN_PURR);
696 old_thread->accum_tb += (current_tb - start_tb);
697 new_thread->start_tb = current_tb;
698 }
699 #endif /* CONFIG_PPC64 */
700
701 #ifdef CONFIG_PPC_BOOK3S_64
702 batch = &__get_cpu_var(ppc64_tlb_batch);
703 if (batch->active) {
704 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
705 if (batch->index)
706 __flush_tlb_pending(batch);
707 batch->active = 0;
708 }
709 #endif /* CONFIG_PPC_BOOK3S_64 */
710
711 local_irq_save(flags);
712
713 /*
714 * We can't take a PMU exception inside _switch() since there is a
715 * window where the kernel stack SLB and the kernel stack are out
716 * of sync. Hard disable here.
717 */
718 hard_irq_disable();
719
720 tm_recheckpoint_new_task(new);
721
722 last = _switch(old_thread, new_thread);
723
724 #ifdef CONFIG_PPC_BOOK3S_64
725 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
726 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
727 batch = &__get_cpu_var(ppc64_tlb_batch);
728 batch->active = 1;
729 }
730 #endif /* CONFIG_PPC_BOOK3S_64 */
731
732 local_irq_restore(flags);
733
734 return last;
735 }
736
737 static int instructions_to_print = 16;
738
739 static void show_instructions(struct pt_regs *regs)
740 {
741 int i;
742 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
743 sizeof(int));
744
745 printk("Instruction dump:");
746
747 for (i = 0; i < instructions_to_print; i++) {
748 int instr;
749
750 if (!(i % 8))
751 printk("\n");
752
753 #if !defined(CONFIG_BOOKE)
754 /* If executing with the IMMU off, adjust pc rather
755 * than print XXXXXXXX.
756 */
757 if (!(regs->msr & MSR_IR))
758 pc = (unsigned long)phys_to_virt(pc);
759 #endif
760
761 /* We use __get_user here *only* to avoid an OOPS on a
762 * bad address because the pc *should* only be a
763 * kernel address.
764 */
765 if (!__kernel_text_address(pc) ||
766 __get_user(instr, (unsigned int __user *)pc)) {
767 printk(KERN_CONT "XXXXXXXX ");
768 } else {
769 if (regs->nip == pc)
770 printk(KERN_CONT "<%08x> ", instr);
771 else
772 printk(KERN_CONT "%08x ", instr);
773 }
774
775 pc += sizeof(int);
776 }
777
778 printk("\n");
779 }
780
781 static struct regbit {
782 unsigned long bit;
783 const char *name;
784 } msr_bits[] = {
785 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
786 {MSR_SF, "SF"},
787 {MSR_HV, "HV"},
788 #endif
789 {MSR_VEC, "VEC"},
790 {MSR_VSX, "VSX"},
791 #ifdef CONFIG_BOOKE
792 {MSR_CE, "CE"},
793 #endif
794 {MSR_EE, "EE"},
795 {MSR_PR, "PR"},
796 {MSR_FP, "FP"},
797 {MSR_ME, "ME"},
798 #ifdef CONFIG_BOOKE
799 {MSR_DE, "DE"},
800 #else
801 {MSR_SE, "SE"},
802 {MSR_BE, "BE"},
803 #endif
804 {MSR_IR, "IR"},
805 {MSR_DR, "DR"},
806 {MSR_PMM, "PMM"},
807 #ifndef CONFIG_BOOKE
808 {MSR_RI, "RI"},
809 {MSR_LE, "LE"},
810 #endif
811 {0, NULL}
812 };
813
814 static void printbits(unsigned long val, struct regbit *bits)
815 {
816 const char *sep = "";
817
818 printk("<");
819 for (; bits->bit; ++bits)
820 if (val & bits->bit) {
821 printk("%s%s", sep, bits->name);
822 sep = ",";
823 }
824 printk(">");
825 }
826
827 #ifdef CONFIG_PPC64
828 #define REG "%016lx"
829 #define REGS_PER_LINE 4
830 #define LAST_VOLATILE 13
831 #else
832 #define REG "%08lx"
833 #define REGS_PER_LINE 8
834 #define LAST_VOLATILE 12
835 #endif
836
837 void show_regs(struct pt_regs * regs)
838 {
839 int i, trap;
840
841 show_regs_print_info(KERN_DEFAULT);
842
843 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
844 regs->nip, regs->link, regs->ctr);
845 printk("REGS: %p TRAP: %04lx %s (%s)\n",
846 regs, regs->trap, print_tainted(), init_utsname()->release);
847 printk("MSR: "REG" ", regs->msr);
848 printbits(regs->msr, msr_bits);
849 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
850 #ifdef CONFIG_PPC64
851 printk("SOFTE: %ld\n", regs->softe);
852 #endif
853 trap = TRAP(regs);
854 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
855 printk("CFAR: "REG"\n", regs->orig_gpr3);
856 if (trap == 0x300 || trap == 0x600)
857 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
858 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
859 #else
860 printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
861 #endif
862
863 for (i = 0; i < 32; i++) {
864 if ((i % REGS_PER_LINE) == 0)
865 printk("\nGPR%02d: ", i);
866 printk(REG " ", regs->gpr[i]);
867 if (i == LAST_VOLATILE && !FULL_REGS(regs))
868 break;
869 }
870 printk("\n");
871 #ifdef CONFIG_KALLSYMS
872 /*
873 * Lookup NIP late so we have the best change of getting the
874 * above info out without failing
875 */
876 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
877 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
878 #endif
879 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
880 printk("PACATMSCRATCH [%llx]\n", get_paca()->tm_scratch);
881 #endif
882 show_stack(current, (unsigned long *) regs->gpr[1]);
883 if (!user_mode(regs))
884 show_instructions(regs);
885 }
886
887 void exit_thread(void)
888 {
889 discard_lazy_cpu_state();
890 }
891
892 void flush_thread(void)
893 {
894 discard_lazy_cpu_state();
895
896 #ifdef CONFIG_HAVE_HW_BREAKPOINT
897 flush_ptrace_hw_breakpoint(current);
898 #else /* CONFIG_HAVE_HW_BREAKPOINT */
899 set_debug_reg_defaults(&current->thread);
900 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
901 }
902
903 void
904 release_thread(struct task_struct *t)
905 {
906 }
907
908 /*
909 * this gets called so that we can store coprocessor state into memory and
910 * copy the current task into the new thread.
911 */
912 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
913 {
914 flush_fp_to_thread(src);
915 flush_altivec_to_thread(src);
916 flush_vsx_to_thread(src);
917 flush_spe_to_thread(src);
918 *dst = *src;
919 return 0;
920 }
921
922 /*
923 * Copy a thread..
924 */
925 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
926
927 int copy_thread(unsigned long clone_flags, unsigned long usp,
928 unsigned long arg, struct task_struct *p)
929 {
930 struct pt_regs *childregs, *kregs;
931 extern void ret_from_fork(void);
932 extern void ret_from_kernel_thread(void);
933 void (*f)(void);
934 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
935
936 /* Copy registers */
937 sp -= sizeof(struct pt_regs);
938 childregs = (struct pt_regs *) sp;
939 if (unlikely(p->flags & PF_KTHREAD)) {
940 struct thread_info *ti = (void *)task_stack_page(p);
941 memset(childregs, 0, sizeof(struct pt_regs));
942 childregs->gpr[1] = sp + sizeof(struct pt_regs);
943 childregs->gpr[14] = usp; /* function */
944 #ifdef CONFIG_PPC64
945 clear_tsk_thread_flag(p, TIF_32BIT);
946 childregs->softe = 1;
947 #endif
948 childregs->gpr[15] = arg;
949 p->thread.regs = NULL; /* no user register state */
950 ti->flags |= _TIF_RESTOREALL;
951 f = ret_from_kernel_thread;
952 } else {
953 struct pt_regs *regs = current_pt_regs();
954 CHECK_FULL_REGS(regs);
955 *childregs = *regs;
956 if (usp)
957 childregs->gpr[1] = usp;
958 p->thread.regs = childregs;
959 childregs->gpr[3] = 0; /* Result from fork() */
960 if (clone_flags & CLONE_SETTLS) {
961 #ifdef CONFIG_PPC64
962 if (!is_32bit_task())
963 childregs->gpr[13] = childregs->gpr[6];
964 else
965 #endif
966 childregs->gpr[2] = childregs->gpr[6];
967 }
968
969 f = ret_from_fork;
970 }
971 sp -= STACK_FRAME_OVERHEAD;
972
973 /*
974 * The way this works is that at some point in the future
975 * some task will call _switch to switch to the new task.
976 * That will pop off the stack frame created below and start
977 * the new task running at ret_from_fork. The new task will
978 * do some house keeping and then return from the fork or clone
979 * system call, using the stack frame created above.
980 */
981 ((unsigned long *)sp)[0] = 0;
982 sp -= sizeof(struct pt_regs);
983 kregs = (struct pt_regs *) sp;
984 sp -= STACK_FRAME_OVERHEAD;
985 p->thread.ksp = sp;
986 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
987 _ALIGN_UP(sizeof(struct thread_info), 16);
988
989 #ifdef CONFIG_HAVE_HW_BREAKPOINT
990 p->thread.ptrace_bps[0] = NULL;
991 #endif
992
993 #ifdef CONFIG_PPC_STD_MMU_64
994 if (mmu_has_feature(MMU_FTR_SLB)) {
995 unsigned long sp_vsid;
996 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
997
998 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
999 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1000 << SLB_VSID_SHIFT_1T;
1001 else
1002 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1003 << SLB_VSID_SHIFT;
1004 sp_vsid |= SLB_VSID_KERNEL | llp;
1005 p->thread.ksp_vsid = sp_vsid;
1006 }
1007 #endif /* CONFIG_PPC_STD_MMU_64 */
1008 #ifdef CONFIG_PPC64
1009 if (cpu_has_feature(CPU_FTR_DSCR)) {
1010 p->thread.dscr_inherit = current->thread.dscr_inherit;
1011 p->thread.dscr = current->thread.dscr;
1012 }
1013 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1014 p->thread.ppr = INIT_PPR;
1015 #endif
1016 /*
1017 * The PPC64 ABI makes use of a TOC to contain function
1018 * pointers. The function (ret_from_except) is actually a pointer
1019 * to the TOC entry. The first entry is a pointer to the actual
1020 * function.
1021 */
1022 #ifdef CONFIG_PPC64
1023 kregs->nip = *((unsigned long *)f);
1024 #else
1025 kregs->nip = (unsigned long)f;
1026 #endif
1027 return 0;
1028 }
1029
1030 /*
1031 * Set up a thread for executing a new program
1032 */
1033 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1034 {
1035 #ifdef CONFIG_PPC64
1036 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1037 #endif
1038
1039 /*
1040 * If we exec out of a kernel thread then thread.regs will not be
1041 * set. Do it now.
1042 */
1043 if (!current->thread.regs) {
1044 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1045 current->thread.regs = regs - 1;
1046 }
1047
1048 memset(regs->gpr, 0, sizeof(regs->gpr));
1049 regs->ctr = 0;
1050 regs->link = 0;
1051 regs->xer = 0;
1052 regs->ccr = 0;
1053 regs->gpr[1] = sp;
1054
1055 /*
1056 * We have just cleared all the nonvolatile GPRs, so make
1057 * FULL_REGS(regs) return true. This is necessary to allow
1058 * ptrace to examine the thread immediately after exec.
1059 */
1060 regs->trap &= ~1UL;
1061
1062 #ifdef CONFIG_PPC32
1063 regs->mq = 0;
1064 regs->nip = start;
1065 regs->msr = MSR_USER;
1066 #else
1067 if (!is_32bit_task()) {
1068 unsigned long entry, toc;
1069
1070 /* start is a relocated pointer to the function descriptor for
1071 * the elf _start routine. The first entry in the function
1072 * descriptor is the entry address of _start and the second
1073 * entry is the TOC value we need to use.
1074 */
1075 __get_user(entry, (unsigned long __user *)start);
1076 __get_user(toc, (unsigned long __user *)start+1);
1077
1078 /* Check whether the e_entry function descriptor entries
1079 * need to be relocated before we can use them.
1080 */
1081 if (load_addr != 0) {
1082 entry += load_addr;
1083 toc += load_addr;
1084 }
1085 regs->nip = entry;
1086 regs->gpr[2] = toc;
1087 regs->msr = MSR_USER64;
1088 } else {
1089 regs->nip = start;
1090 regs->gpr[2] = 0;
1091 regs->msr = MSR_USER32;
1092 }
1093 #endif
1094 discard_lazy_cpu_state();
1095 #ifdef CONFIG_VSX
1096 current->thread.used_vsr = 0;
1097 #endif
1098 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
1099 current->thread.fpscr.val = 0;
1100 #ifdef CONFIG_ALTIVEC
1101 memset(current->thread.vr, 0, sizeof(current->thread.vr));
1102 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
1103 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
1104 current->thread.vrsave = 0;
1105 current->thread.used_vr = 0;
1106 #endif /* CONFIG_ALTIVEC */
1107 #ifdef CONFIG_SPE
1108 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1109 current->thread.acc = 0;
1110 current->thread.spefscr = 0;
1111 current->thread.used_spe = 0;
1112 #endif /* CONFIG_SPE */
1113 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1114 if (cpu_has_feature(CPU_FTR_TM))
1115 regs->msr |= MSR_TM;
1116 current->thread.tm_tfhar = 0;
1117 current->thread.tm_texasr = 0;
1118 current->thread.tm_tfiar = 0;
1119 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1120 }
1121
1122 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1123 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1124
1125 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1126 {
1127 struct pt_regs *regs = tsk->thread.regs;
1128
1129 /* This is a bit hairy. If we are an SPE enabled processor
1130 * (have embedded fp) we store the IEEE exception enable flags in
1131 * fpexc_mode. fpexc_mode is also used for setting FP exception
1132 * mode (asyn, precise, disabled) for 'Classic' FP. */
1133 if (val & PR_FP_EXC_SW_ENABLE) {
1134 #ifdef CONFIG_SPE
1135 if (cpu_has_feature(CPU_FTR_SPE)) {
1136 tsk->thread.fpexc_mode = val &
1137 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1138 return 0;
1139 } else {
1140 return -EINVAL;
1141 }
1142 #else
1143 return -EINVAL;
1144 #endif
1145 }
1146
1147 /* on a CONFIG_SPE this does not hurt us. The bits that
1148 * __pack_fe01 use do not overlap with bits used for
1149 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1150 * on CONFIG_SPE implementations are reserved so writing to
1151 * them does not change anything */
1152 if (val > PR_FP_EXC_PRECISE)
1153 return -EINVAL;
1154 tsk->thread.fpexc_mode = __pack_fe01(val);
1155 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1156 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1157 | tsk->thread.fpexc_mode;
1158 return 0;
1159 }
1160
1161 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1162 {
1163 unsigned int val;
1164
1165 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1166 #ifdef CONFIG_SPE
1167 if (cpu_has_feature(CPU_FTR_SPE))
1168 val = tsk->thread.fpexc_mode;
1169 else
1170 return -EINVAL;
1171 #else
1172 return -EINVAL;
1173 #endif
1174 else
1175 val = __unpack_fe01(tsk->thread.fpexc_mode);
1176 return put_user(val, (unsigned int __user *) adr);
1177 }
1178
1179 int set_endian(struct task_struct *tsk, unsigned int val)
1180 {
1181 struct pt_regs *regs = tsk->thread.regs;
1182
1183 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1184 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1185 return -EINVAL;
1186
1187 if (regs == NULL)
1188 return -EINVAL;
1189
1190 if (val == PR_ENDIAN_BIG)
1191 regs->msr &= ~MSR_LE;
1192 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1193 regs->msr |= MSR_LE;
1194 else
1195 return -EINVAL;
1196
1197 return 0;
1198 }
1199
1200 int get_endian(struct task_struct *tsk, unsigned long adr)
1201 {
1202 struct pt_regs *regs = tsk->thread.regs;
1203 unsigned int val;
1204
1205 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1206 !cpu_has_feature(CPU_FTR_REAL_LE))
1207 return -EINVAL;
1208
1209 if (regs == NULL)
1210 return -EINVAL;
1211
1212 if (regs->msr & MSR_LE) {
1213 if (cpu_has_feature(CPU_FTR_REAL_LE))
1214 val = PR_ENDIAN_LITTLE;
1215 else
1216 val = PR_ENDIAN_PPC_LITTLE;
1217 } else
1218 val = PR_ENDIAN_BIG;
1219
1220 return put_user(val, (unsigned int __user *)adr);
1221 }
1222
1223 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1224 {
1225 tsk->thread.align_ctl = val;
1226 return 0;
1227 }
1228
1229 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1230 {
1231 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1232 }
1233
1234 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1235 unsigned long nbytes)
1236 {
1237 unsigned long stack_page;
1238 unsigned long cpu = task_cpu(p);
1239
1240 /*
1241 * Avoid crashing if the stack has overflowed and corrupted
1242 * task_cpu(p), which is in the thread_info struct.
1243 */
1244 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1245 stack_page = (unsigned long) hardirq_ctx[cpu];
1246 if (sp >= stack_page + sizeof(struct thread_struct)
1247 && sp <= stack_page + THREAD_SIZE - nbytes)
1248 return 1;
1249
1250 stack_page = (unsigned long) softirq_ctx[cpu];
1251 if (sp >= stack_page + sizeof(struct thread_struct)
1252 && sp <= stack_page + THREAD_SIZE - nbytes)
1253 return 1;
1254 }
1255 return 0;
1256 }
1257
1258 int validate_sp(unsigned long sp, struct task_struct *p,
1259 unsigned long nbytes)
1260 {
1261 unsigned long stack_page = (unsigned long)task_stack_page(p);
1262
1263 if (sp >= stack_page + sizeof(struct thread_struct)
1264 && sp <= stack_page + THREAD_SIZE - nbytes)
1265 return 1;
1266
1267 return valid_irq_stack(sp, p, nbytes);
1268 }
1269
1270 EXPORT_SYMBOL(validate_sp);
1271
1272 unsigned long get_wchan(struct task_struct *p)
1273 {
1274 unsigned long ip, sp;
1275 int count = 0;
1276
1277 if (!p || p == current || p->state == TASK_RUNNING)
1278 return 0;
1279
1280 sp = p->thread.ksp;
1281 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1282 return 0;
1283
1284 do {
1285 sp = *(unsigned long *)sp;
1286 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1287 return 0;
1288 if (count > 0) {
1289 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1290 if (!in_sched_functions(ip))
1291 return ip;
1292 }
1293 } while (count++ < 16);
1294 return 0;
1295 }
1296
1297 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1298
1299 void show_stack(struct task_struct *tsk, unsigned long *stack)
1300 {
1301 unsigned long sp, ip, lr, newsp;
1302 int count = 0;
1303 int firstframe = 1;
1304 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1305 int curr_frame = current->curr_ret_stack;
1306 extern void return_to_handler(void);
1307 unsigned long rth = (unsigned long)return_to_handler;
1308 unsigned long mrth = -1;
1309 #ifdef CONFIG_PPC64
1310 extern void mod_return_to_handler(void);
1311 rth = *(unsigned long *)rth;
1312 mrth = (unsigned long)mod_return_to_handler;
1313 mrth = *(unsigned long *)mrth;
1314 #endif
1315 #endif
1316
1317 sp = (unsigned long) stack;
1318 if (tsk == NULL)
1319 tsk = current;
1320 if (sp == 0) {
1321 if (tsk == current)
1322 asm("mr %0,1" : "=r" (sp));
1323 else
1324 sp = tsk->thread.ksp;
1325 }
1326
1327 lr = 0;
1328 printk("Call Trace:\n");
1329 do {
1330 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1331 return;
1332
1333 stack = (unsigned long *) sp;
1334 newsp = stack[0];
1335 ip = stack[STACK_FRAME_LR_SAVE];
1336 if (!firstframe || ip != lr) {
1337 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1338 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1339 if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1340 printk(" (%pS)",
1341 (void *)current->ret_stack[curr_frame].ret);
1342 curr_frame--;
1343 }
1344 #endif
1345 if (firstframe)
1346 printk(" (unreliable)");
1347 printk("\n");
1348 }
1349 firstframe = 0;
1350
1351 /*
1352 * See if this is an exception frame.
1353 * We look for the "regshere" marker in the current frame.
1354 */
1355 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1356 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1357 struct pt_regs *regs = (struct pt_regs *)
1358 (sp + STACK_FRAME_OVERHEAD);
1359 lr = regs->link;
1360 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1361 regs->trap, (void *)regs->nip, (void *)lr);
1362 firstframe = 1;
1363 }
1364
1365 sp = newsp;
1366 } while (count++ < kstack_depth_to_print);
1367 }
1368
1369 #ifdef CONFIG_PPC64
1370 /* Called with hard IRQs off */
1371 void __ppc64_runlatch_on(void)
1372 {
1373 struct thread_info *ti = current_thread_info();
1374 unsigned long ctrl;
1375
1376 ctrl = mfspr(SPRN_CTRLF);
1377 ctrl |= CTRL_RUNLATCH;
1378 mtspr(SPRN_CTRLT, ctrl);
1379
1380 ti->local_flags |= _TLF_RUNLATCH;
1381 }
1382
1383 /* Called with hard IRQs off */
1384 void __ppc64_runlatch_off(void)
1385 {
1386 struct thread_info *ti = current_thread_info();
1387 unsigned long ctrl;
1388
1389 ti->local_flags &= ~_TLF_RUNLATCH;
1390
1391 ctrl = mfspr(SPRN_CTRLF);
1392 ctrl &= ~CTRL_RUNLATCH;
1393 mtspr(SPRN_CTRLT, ctrl);
1394 }
1395 #endif /* CONFIG_PPC64 */
1396
1397 unsigned long arch_align_stack(unsigned long sp)
1398 {
1399 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1400 sp -= get_random_int() & ~PAGE_MASK;
1401 return sp & ~0xf;
1402 }
1403
1404 static inline unsigned long brk_rnd(void)
1405 {
1406 unsigned long rnd = 0;
1407
1408 /* 8MB for 32bit, 1GB for 64bit */
1409 if (is_32bit_task())
1410 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1411 else
1412 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1413
1414 return rnd << PAGE_SHIFT;
1415 }
1416
1417 unsigned long arch_randomize_brk(struct mm_struct *mm)
1418 {
1419 unsigned long base = mm->brk;
1420 unsigned long ret;
1421
1422 #ifdef CONFIG_PPC_STD_MMU_64
1423 /*
1424 * If we are using 1TB segments and we are allowed to randomise
1425 * the heap, we can put it above 1TB so it is backed by a 1TB
1426 * segment. Otherwise the heap will be in the bottom 1TB
1427 * which always uses 256MB segments and this may result in a
1428 * performance penalty.
1429 */
1430 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1431 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1432 #endif
1433
1434 ret = PAGE_ALIGN(base + brk_rnd());
1435
1436 if (ret < mm->brk)
1437 return mm->brk;
1438
1439 return ret;
1440 }
1441
1442 unsigned long randomize_et_dyn(unsigned long base)
1443 {
1444 unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1445
1446 if (ret < base)
1447 return base;
1448
1449 return ret;
1450 }