include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / kernel / lparcfg.c
1 /*
2 * PowerPC64 LPAR Configuration Information Driver
3 *
4 * Dave Engebretsen engebret@us.ibm.com
5 * Copyright (c) 2003 Dave Engebretsen
6 * Will Schmidt willschm@us.ibm.com
7 * SPLPAR updates, Copyright (c) 2003 Will Schmidt IBM Corporation.
8 * seq_file updates, Copyright (c) 2004 Will Schmidt IBM Corporation.
9 * Nathan Lynch nathanl@austin.ibm.com
10 * Added lparcfg_write, Copyright (C) 2004 Nathan Lynch IBM Corporation.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 *
17 * This driver creates a proc file at /proc/ppc64/lparcfg which contains
18 * keyword - value pairs that specify the configuration of the partition.
19 */
20
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/errno.h>
24 #include <linux/proc_fs.h>
25 #include <linux/init.h>
26 #include <linux/seq_file.h>
27 #include <linux/slab.h>
28 #include <asm/uaccess.h>
29 #include <asm/iseries/hv_lp_config.h>
30 #include <asm/lppaca.h>
31 #include <asm/hvcall.h>
32 #include <asm/firmware.h>
33 #include <asm/rtas.h>
34 #include <asm/system.h>
35 #include <asm/time.h>
36 #include <asm/prom.h>
37 #include <asm/vdso_datapage.h>
38 #include <asm/vio.h>
39 #include <asm/mmu.h>
40
41 #define MODULE_VERS "1.8"
42 #define MODULE_NAME "lparcfg"
43
44 /* #define LPARCFG_DEBUG */
45
46 static struct proc_dir_entry *proc_ppc64_lparcfg;
47
48 /*
49 * Track sum of all purrs across all processors. This is used to further
50 * calculate usage values by different applications
51 */
52 static unsigned long get_purr(void)
53 {
54 unsigned long sum_purr = 0;
55 int cpu;
56
57 for_each_possible_cpu(cpu) {
58 if (firmware_has_feature(FW_FEATURE_ISERIES))
59 sum_purr += lppaca[cpu].emulated_time_base;
60 else {
61 struct cpu_usage *cu;
62
63 cu = &per_cpu(cpu_usage_array, cpu);
64 sum_purr += cu->current_tb;
65 }
66 }
67 return sum_purr;
68 }
69
70 #ifdef CONFIG_PPC_ISERIES
71
72 /*
73 * Methods used to fetch LPAR data when running on an iSeries platform.
74 */
75 static int iseries_lparcfg_data(struct seq_file *m, void *v)
76 {
77 unsigned long pool_id;
78 int shared, entitled_capacity, max_entitled_capacity;
79 int processors, max_processors;
80 unsigned long purr = get_purr();
81
82 shared = (int)(local_paca->lppaca_ptr->shared_proc);
83
84 seq_printf(m, "system_active_processors=%d\n",
85 (int)HvLpConfig_getSystemPhysicalProcessors());
86
87 seq_printf(m, "system_potential_processors=%d\n",
88 (int)HvLpConfig_getSystemPhysicalProcessors());
89
90 processors = (int)HvLpConfig_getPhysicalProcessors();
91 seq_printf(m, "partition_active_processors=%d\n", processors);
92
93 max_processors = (int)HvLpConfig_getMaxPhysicalProcessors();
94 seq_printf(m, "partition_potential_processors=%d\n", max_processors);
95
96 if (shared) {
97 entitled_capacity = HvLpConfig_getSharedProcUnits();
98 max_entitled_capacity = HvLpConfig_getMaxSharedProcUnits();
99 } else {
100 entitled_capacity = processors * 100;
101 max_entitled_capacity = max_processors * 100;
102 }
103 seq_printf(m, "partition_entitled_capacity=%d\n", entitled_capacity);
104
105 seq_printf(m, "partition_max_entitled_capacity=%d\n",
106 max_entitled_capacity);
107
108 if (shared) {
109 pool_id = HvLpConfig_getSharedPoolIndex();
110 seq_printf(m, "pool=%d\n", (int)pool_id);
111 seq_printf(m, "pool_capacity=%d\n",
112 (int)(HvLpConfig_getNumProcsInSharedPool(pool_id) *
113 100));
114 seq_printf(m, "purr=%ld\n", purr);
115 }
116
117 seq_printf(m, "shared_processor_mode=%d\n", shared);
118
119 return 0;
120 }
121
122 #else /* CONFIG_PPC_ISERIES */
123
124 static int iseries_lparcfg_data(struct seq_file *m, void *v)
125 {
126 return 0;
127 }
128
129 #endif /* CONFIG_PPC_ISERIES */
130
131 #ifdef CONFIG_PPC_PSERIES
132 /*
133 * Methods used to fetch LPAR data when running on a pSeries platform.
134 */
135 /**
136 * h_get_mpp
137 * H_GET_MPP hcall returns info in 7 parms
138 */
139 int h_get_mpp(struct hvcall_mpp_data *mpp_data)
140 {
141 int rc;
142 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
143
144 rc = plpar_hcall9(H_GET_MPP, retbuf);
145
146 mpp_data->entitled_mem = retbuf[0];
147 mpp_data->mapped_mem = retbuf[1];
148
149 mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
150 mpp_data->pool_num = retbuf[2] & 0xffff;
151
152 mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff;
153 mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff;
154 mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffff;
155
156 mpp_data->pool_size = retbuf[4];
157 mpp_data->loan_request = retbuf[5];
158 mpp_data->backing_mem = retbuf[6];
159
160 return rc;
161 }
162 EXPORT_SYMBOL(h_get_mpp);
163
164 struct hvcall_ppp_data {
165 u64 entitlement;
166 u64 unallocated_entitlement;
167 u16 group_num;
168 u16 pool_num;
169 u8 capped;
170 u8 weight;
171 u8 unallocated_weight;
172 u16 active_procs_in_pool;
173 u16 active_system_procs;
174 u16 phys_platform_procs;
175 u32 max_proc_cap_avail;
176 u32 entitled_proc_cap_avail;
177 };
178
179 /*
180 * H_GET_PPP hcall returns info in 4 parms.
181 * entitled_capacity,unallocated_capacity,
182 * aggregation, resource_capability).
183 *
184 * R4 = Entitled Processor Capacity Percentage.
185 * R5 = Unallocated Processor Capacity Percentage.
186 * R6 (AABBCCDDEEFFGGHH).
187 * XXXX - reserved (0)
188 * XXXX - reserved (0)
189 * XXXX - Group Number
190 * XXXX - Pool Number.
191 * R7 (IIJJKKLLMMNNOOPP).
192 * XX - reserved. (0)
193 * XX - bit 0-6 reserved (0). bit 7 is Capped indicator.
194 * XX - variable processor Capacity Weight
195 * XX - Unallocated Variable Processor Capacity Weight.
196 * XXXX - Active processors in Physical Processor Pool.
197 * XXXX - Processors active on platform.
198 * R8 (QQQQRRRRRRSSSSSS). if ibm,partition-performance-parameters-level >= 1
199 * XXXX - Physical platform procs allocated to virtualization.
200 * XXXXXX - Max procs capacity % available to the partitions pool.
201 * XXXXXX - Entitled procs capacity % available to the
202 * partitions pool.
203 */
204 static unsigned int h_get_ppp(struct hvcall_ppp_data *ppp_data)
205 {
206 unsigned long rc;
207 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
208
209 rc = plpar_hcall9(H_GET_PPP, retbuf);
210
211 ppp_data->entitlement = retbuf[0];
212 ppp_data->unallocated_entitlement = retbuf[1];
213
214 ppp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
215 ppp_data->pool_num = retbuf[2] & 0xffff;
216
217 ppp_data->capped = (retbuf[3] >> 6 * 8) & 0x01;
218 ppp_data->weight = (retbuf[3] >> 5 * 8) & 0xff;
219 ppp_data->unallocated_weight = (retbuf[3] >> 4 * 8) & 0xff;
220 ppp_data->active_procs_in_pool = (retbuf[3] >> 2 * 8) & 0xffff;
221 ppp_data->active_system_procs = retbuf[3] & 0xffff;
222
223 ppp_data->phys_platform_procs = retbuf[4] >> 6 * 8;
224 ppp_data->max_proc_cap_avail = (retbuf[4] >> 3 * 8) & 0xffffff;
225 ppp_data->entitled_proc_cap_avail = retbuf[4] & 0xffffff;
226
227 return rc;
228 }
229
230 static unsigned h_pic(unsigned long *pool_idle_time,
231 unsigned long *num_procs)
232 {
233 unsigned long rc;
234 unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
235
236 rc = plpar_hcall(H_PIC, retbuf);
237
238 *pool_idle_time = retbuf[0];
239 *num_procs = retbuf[1];
240
241 return rc;
242 }
243
244 /*
245 * parse_ppp_data
246 * Parse out the data returned from h_get_ppp and h_pic
247 */
248 static void parse_ppp_data(struct seq_file *m)
249 {
250 struct hvcall_ppp_data ppp_data;
251 struct device_node *root;
252 const int *perf_level;
253 int rc;
254
255 rc = h_get_ppp(&ppp_data);
256 if (rc)
257 return;
258
259 seq_printf(m, "partition_entitled_capacity=%lld\n",
260 ppp_data.entitlement);
261 seq_printf(m, "group=%d\n", ppp_data.group_num);
262 seq_printf(m, "system_active_processors=%d\n",
263 ppp_data.active_system_procs);
264
265 /* pool related entries are apropriate for shared configs */
266 if (lppaca[0].shared_proc) {
267 unsigned long pool_idle_time, pool_procs;
268
269 seq_printf(m, "pool=%d\n", ppp_data.pool_num);
270
271 /* report pool_capacity in percentage */
272 seq_printf(m, "pool_capacity=%d\n",
273 ppp_data.active_procs_in_pool * 100);
274
275 h_pic(&pool_idle_time, &pool_procs);
276 seq_printf(m, "pool_idle_time=%ld\n", pool_idle_time);
277 seq_printf(m, "pool_num_procs=%ld\n", pool_procs);
278 }
279
280 seq_printf(m, "unallocated_capacity_weight=%d\n",
281 ppp_data.unallocated_weight);
282 seq_printf(m, "capacity_weight=%d\n", ppp_data.weight);
283 seq_printf(m, "capped=%d\n", ppp_data.capped);
284 seq_printf(m, "unallocated_capacity=%lld\n",
285 ppp_data.unallocated_entitlement);
286
287 /* The last bits of information returned from h_get_ppp are only
288 * valid if the ibm,partition-performance-parameters-level
289 * property is >= 1.
290 */
291 root = of_find_node_by_path("/");
292 if (root) {
293 perf_level = of_get_property(root,
294 "ibm,partition-performance-parameters-level",
295 NULL);
296 if (perf_level && (*perf_level >= 1)) {
297 seq_printf(m,
298 "physical_procs_allocated_to_virtualization=%d\n",
299 ppp_data.phys_platform_procs);
300 seq_printf(m, "max_proc_capacity_available=%d\n",
301 ppp_data.max_proc_cap_avail);
302 seq_printf(m, "entitled_proc_capacity_available=%d\n",
303 ppp_data.entitled_proc_cap_avail);
304 }
305
306 of_node_put(root);
307 }
308 }
309
310 /**
311 * parse_mpp_data
312 * Parse out data returned from h_get_mpp
313 */
314 static void parse_mpp_data(struct seq_file *m)
315 {
316 struct hvcall_mpp_data mpp_data;
317 int rc;
318
319 rc = h_get_mpp(&mpp_data);
320 if (rc)
321 return;
322
323 seq_printf(m, "entitled_memory=%ld\n", mpp_data.entitled_mem);
324
325 if (mpp_data.mapped_mem != -1)
326 seq_printf(m, "mapped_entitled_memory=%ld\n",
327 mpp_data.mapped_mem);
328
329 seq_printf(m, "entitled_memory_group_number=%d\n", mpp_data.group_num);
330 seq_printf(m, "entitled_memory_pool_number=%d\n", mpp_data.pool_num);
331
332 seq_printf(m, "entitled_memory_weight=%d\n", mpp_data.mem_weight);
333 seq_printf(m, "unallocated_entitled_memory_weight=%d\n",
334 mpp_data.unallocated_mem_weight);
335 seq_printf(m, "unallocated_io_mapping_entitlement=%ld\n",
336 mpp_data.unallocated_entitlement);
337
338 if (mpp_data.pool_size != -1)
339 seq_printf(m, "entitled_memory_pool_size=%ld bytes\n",
340 mpp_data.pool_size);
341
342 seq_printf(m, "entitled_memory_loan_request=%ld\n",
343 mpp_data.loan_request);
344
345 seq_printf(m, "backing_memory=%ld bytes\n", mpp_data.backing_mem);
346 }
347
348 #define SPLPAR_CHARACTERISTICS_TOKEN 20
349 #define SPLPAR_MAXLENGTH 1026*(sizeof(char))
350
351 /*
352 * parse_system_parameter_string()
353 * Retrieve the potential_processors, max_entitled_capacity and friends
354 * through the get-system-parameter rtas call. Replace keyword strings as
355 * necessary.
356 */
357 static void parse_system_parameter_string(struct seq_file *m)
358 {
359 int call_status;
360
361 unsigned char *local_buffer = kmalloc(SPLPAR_MAXLENGTH, GFP_KERNEL);
362 if (!local_buffer) {
363 printk(KERN_ERR "%s %s kmalloc failure at line %d\n",
364 __FILE__, __func__, __LINE__);
365 return;
366 }
367
368 spin_lock(&rtas_data_buf_lock);
369 memset(rtas_data_buf, 0, SPLPAR_MAXLENGTH);
370 call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
371 NULL,
372 SPLPAR_CHARACTERISTICS_TOKEN,
373 __pa(rtas_data_buf),
374 RTAS_DATA_BUF_SIZE);
375 memcpy(local_buffer, rtas_data_buf, SPLPAR_MAXLENGTH);
376 spin_unlock(&rtas_data_buf_lock);
377
378 if (call_status != 0) {
379 printk(KERN_INFO
380 "%s %s Error calling get-system-parameter (0x%x)\n",
381 __FILE__, __func__, call_status);
382 } else {
383 int splpar_strlen;
384 int idx, w_idx;
385 char *workbuffer = kzalloc(SPLPAR_MAXLENGTH, GFP_KERNEL);
386 if (!workbuffer) {
387 printk(KERN_ERR "%s %s kmalloc failure at line %d\n",
388 __FILE__, __func__, __LINE__);
389 kfree(local_buffer);
390 return;
391 }
392 #ifdef LPARCFG_DEBUG
393 printk(KERN_INFO "success calling get-system-parameter\n");
394 #endif
395 splpar_strlen = local_buffer[0] * 256 + local_buffer[1];
396 local_buffer += 2; /* step over strlen value */
397
398 w_idx = 0;
399 idx = 0;
400 while ((*local_buffer) && (idx < splpar_strlen)) {
401 workbuffer[w_idx++] = local_buffer[idx++];
402 if ((local_buffer[idx] == ',')
403 || (local_buffer[idx] == '\0')) {
404 workbuffer[w_idx] = '\0';
405 if (w_idx) {
406 /* avoid the empty string */
407 seq_printf(m, "%s\n", workbuffer);
408 }
409 memset(workbuffer, 0, SPLPAR_MAXLENGTH);
410 idx++; /* skip the comma */
411 w_idx = 0;
412 } else if (local_buffer[idx] == '=') {
413 /* code here to replace workbuffer contents
414 with different keyword strings */
415 if (0 == strcmp(workbuffer, "MaxEntCap")) {
416 strcpy(workbuffer,
417 "partition_max_entitled_capacity");
418 w_idx = strlen(workbuffer);
419 }
420 if (0 == strcmp(workbuffer, "MaxPlatProcs")) {
421 strcpy(workbuffer,
422 "system_potential_processors");
423 w_idx = strlen(workbuffer);
424 }
425 }
426 }
427 kfree(workbuffer);
428 local_buffer -= 2; /* back up over strlen value */
429 }
430 kfree(local_buffer);
431 }
432
433 /* Return the number of processors in the system.
434 * This function reads through the device tree and counts
435 * the virtual processors, this does not include threads.
436 */
437 static int lparcfg_count_active_processors(void)
438 {
439 struct device_node *cpus_dn = NULL;
440 int count = 0;
441
442 while ((cpus_dn = of_find_node_by_type(cpus_dn, "cpu"))) {
443 #ifdef LPARCFG_DEBUG
444 printk(KERN_ERR "cpus_dn %p\n", cpus_dn);
445 #endif
446 count++;
447 }
448 return count;
449 }
450
451 static void pseries_cmo_data(struct seq_file *m)
452 {
453 int cpu;
454 unsigned long cmo_faults = 0;
455 unsigned long cmo_fault_time = 0;
456
457 seq_printf(m, "cmo_enabled=%d\n", firmware_has_feature(FW_FEATURE_CMO));
458
459 if (!firmware_has_feature(FW_FEATURE_CMO))
460 return;
461
462 for_each_possible_cpu(cpu) {
463 cmo_faults += lppaca[cpu].cmo_faults;
464 cmo_fault_time += lppaca[cpu].cmo_fault_time;
465 }
466
467 seq_printf(m, "cmo_faults=%lu\n", cmo_faults);
468 seq_printf(m, "cmo_fault_time_usec=%lu\n",
469 cmo_fault_time / tb_ticks_per_usec);
470 seq_printf(m, "cmo_primary_psp=%d\n", cmo_get_primary_psp());
471 seq_printf(m, "cmo_secondary_psp=%d\n", cmo_get_secondary_psp());
472 seq_printf(m, "cmo_page_size=%lu\n", cmo_get_page_size());
473 }
474
475 static void splpar_dispatch_data(struct seq_file *m)
476 {
477 int cpu;
478 unsigned long dispatches = 0;
479 unsigned long dispatch_dispersions = 0;
480
481 for_each_possible_cpu(cpu) {
482 dispatches += lppaca[cpu].yield_count;
483 dispatch_dispersions += lppaca[cpu].dispersion_count;
484 }
485
486 seq_printf(m, "dispatches=%lu\n", dispatches);
487 seq_printf(m, "dispatch_dispersions=%lu\n", dispatch_dispersions);
488 }
489
490 static int pseries_lparcfg_data(struct seq_file *m, void *v)
491 {
492 int partition_potential_processors;
493 int partition_active_processors;
494 struct device_node *rtas_node;
495 const int *lrdrp = NULL;
496
497 rtas_node = of_find_node_by_path("/rtas");
498 if (rtas_node)
499 lrdrp = of_get_property(rtas_node, "ibm,lrdr-capacity", NULL);
500
501 if (lrdrp == NULL) {
502 partition_potential_processors = vdso_data->processorCount;
503 } else {
504 partition_potential_processors = *(lrdrp + 4);
505 }
506 of_node_put(rtas_node);
507
508 partition_active_processors = lparcfg_count_active_processors();
509
510 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
511 /* this call handles the ibm,get-system-parameter contents */
512 parse_system_parameter_string(m);
513 parse_ppp_data(m);
514 parse_mpp_data(m);
515 pseries_cmo_data(m);
516 splpar_dispatch_data(m);
517
518 seq_printf(m, "purr=%ld\n", get_purr());
519 } else { /* non SPLPAR case */
520
521 seq_printf(m, "system_active_processors=%d\n",
522 partition_potential_processors);
523
524 seq_printf(m, "system_potential_processors=%d\n",
525 partition_potential_processors);
526
527 seq_printf(m, "partition_max_entitled_capacity=%d\n",
528 partition_potential_processors * 100);
529
530 seq_printf(m, "partition_entitled_capacity=%d\n",
531 partition_active_processors * 100);
532 }
533
534 seq_printf(m, "partition_active_processors=%d\n",
535 partition_active_processors);
536
537 seq_printf(m, "partition_potential_processors=%d\n",
538 partition_potential_processors);
539
540 seq_printf(m, "shared_processor_mode=%d\n", lppaca[0].shared_proc);
541
542 seq_printf(m, "slb_size=%d\n", mmu_slb_size);
543
544 return 0;
545 }
546
547 static ssize_t update_ppp(u64 *entitlement, u8 *weight)
548 {
549 struct hvcall_ppp_data ppp_data;
550 u8 new_weight;
551 u64 new_entitled;
552 ssize_t retval;
553
554 /* Get our current parameters */
555 retval = h_get_ppp(&ppp_data);
556 if (retval)
557 return retval;
558
559 if (entitlement) {
560 new_weight = ppp_data.weight;
561 new_entitled = *entitlement;
562 } else if (weight) {
563 new_weight = *weight;
564 new_entitled = ppp_data.entitlement;
565 } else
566 return -EINVAL;
567
568 pr_debug("%s: current_entitled = %llu, current_weight = %u\n",
569 __func__, ppp_data.entitlement, ppp_data.weight);
570
571 pr_debug("%s: new_entitled = %llu, new_weight = %u\n",
572 __func__, new_entitled, new_weight);
573
574 retval = plpar_hcall_norets(H_SET_PPP, new_entitled, new_weight);
575 return retval;
576 }
577
578 /**
579 * update_mpp
580 *
581 * Update the memory entitlement and weight for the partition. Caller must
582 * specify either a new entitlement or weight, not both, to be updated
583 * since the h_set_mpp call takes both entitlement and weight as parameters.
584 */
585 static ssize_t update_mpp(u64 *entitlement, u8 *weight)
586 {
587 struct hvcall_mpp_data mpp_data;
588 u64 new_entitled;
589 u8 new_weight;
590 ssize_t rc;
591
592 if (entitlement) {
593 /* Check with vio to ensure the new memory entitlement
594 * can be handled.
595 */
596 rc = vio_cmo_entitlement_update(*entitlement);
597 if (rc)
598 return rc;
599 }
600
601 rc = h_get_mpp(&mpp_data);
602 if (rc)
603 return rc;
604
605 if (entitlement) {
606 new_weight = mpp_data.mem_weight;
607 new_entitled = *entitlement;
608 } else if (weight) {
609 new_weight = *weight;
610 new_entitled = mpp_data.entitled_mem;
611 } else
612 return -EINVAL;
613
614 pr_debug("%s: current_entitled = %lu, current_weight = %u\n",
615 __func__, mpp_data.entitled_mem, mpp_data.mem_weight);
616
617 pr_debug("%s: new_entitled = %llu, new_weight = %u\n",
618 __func__, new_entitled, new_weight);
619
620 rc = plpar_hcall_norets(H_SET_MPP, new_entitled, new_weight);
621 return rc;
622 }
623
624 /*
625 * Interface for changing system parameters (variable capacity weight
626 * and entitled capacity). Format of input is "param_name=value";
627 * anything after value is ignored. Valid parameters at this time are
628 * "partition_entitled_capacity" and "capacity_weight". We use
629 * H_SET_PPP to alter parameters.
630 *
631 * This function should be invoked only on systems with
632 * FW_FEATURE_SPLPAR.
633 */
634 static ssize_t lparcfg_write(struct file *file, const char __user * buf,
635 size_t count, loff_t * off)
636 {
637 int kbuf_sz = 64;
638 char kbuf[kbuf_sz];
639 char *tmp;
640 u64 new_entitled, *new_entitled_ptr = &new_entitled;
641 u8 new_weight, *new_weight_ptr = &new_weight;
642 ssize_t retval;
643
644 if (!firmware_has_feature(FW_FEATURE_SPLPAR) ||
645 firmware_has_feature(FW_FEATURE_ISERIES))
646 return -EINVAL;
647
648 if (count > kbuf_sz)
649 return -EINVAL;
650
651 if (copy_from_user(kbuf, buf, count))
652 return -EFAULT;
653
654 kbuf[count - 1] = '\0';
655 tmp = strchr(kbuf, '=');
656 if (!tmp)
657 return -EINVAL;
658
659 *tmp++ = '\0';
660
661 if (!strcmp(kbuf, "partition_entitled_capacity")) {
662 char *endp;
663 *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
664 if (endp == tmp)
665 return -EINVAL;
666
667 retval = update_ppp(new_entitled_ptr, NULL);
668 } else if (!strcmp(kbuf, "capacity_weight")) {
669 char *endp;
670 *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
671 if (endp == tmp)
672 return -EINVAL;
673
674 retval = update_ppp(NULL, new_weight_ptr);
675 } else if (!strcmp(kbuf, "entitled_memory")) {
676 char *endp;
677 *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
678 if (endp == tmp)
679 return -EINVAL;
680
681 retval = update_mpp(new_entitled_ptr, NULL);
682 } else if (!strcmp(kbuf, "entitled_memory_weight")) {
683 char *endp;
684 *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
685 if (endp == tmp)
686 return -EINVAL;
687
688 retval = update_mpp(NULL, new_weight_ptr);
689 } else
690 return -EINVAL;
691
692 if (retval == H_SUCCESS || retval == H_CONSTRAINED) {
693 retval = count;
694 } else if (retval == H_BUSY) {
695 retval = -EBUSY;
696 } else if (retval == H_HARDWARE) {
697 retval = -EIO;
698 } else if (retval == H_PARAMETER) {
699 retval = -EINVAL;
700 }
701
702 return retval;
703 }
704
705 #else /* CONFIG_PPC_PSERIES */
706
707 static int pseries_lparcfg_data(struct seq_file *m, void *v)
708 {
709 return 0;
710 }
711
712 static ssize_t lparcfg_write(struct file *file, const char __user * buf,
713 size_t count, loff_t * off)
714 {
715 return -EINVAL;
716 }
717
718 #endif /* CONFIG_PPC_PSERIES */
719
720 static int lparcfg_data(struct seq_file *m, void *v)
721 {
722 struct device_node *rootdn;
723 const char *model = "";
724 const char *system_id = "";
725 const char *tmp;
726 const unsigned int *lp_index_ptr;
727 unsigned int lp_index = 0;
728
729 seq_printf(m, "%s %s\n", MODULE_NAME, MODULE_VERS);
730
731 rootdn = of_find_node_by_path("/");
732 if (rootdn) {
733 tmp = of_get_property(rootdn, "model", NULL);
734 if (tmp) {
735 model = tmp;
736 /* Skip "IBM," - see platforms/iseries/dt.c */
737 if (firmware_has_feature(FW_FEATURE_ISERIES))
738 model += 4;
739 }
740 tmp = of_get_property(rootdn, "system-id", NULL);
741 if (tmp) {
742 system_id = tmp;
743 /* Skip "IBM," - see platforms/iseries/dt.c */
744 if (firmware_has_feature(FW_FEATURE_ISERIES))
745 system_id += 4;
746 }
747 lp_index_ptr = of_get_property(rootdn, "ibm,partition-no",
748 NULL);
749 if (lp_index_ptr)
750 lp_index = *lp_index_ptr;
751 of_node_put(rootdn);
752 }
753 seq_printf(m, "serial_number=%s\n", system_id);
754 seq_printf(m, "system_type=%s\n", model);
755 seq_printf(m, "partition_id=%d\n", (int)lp_index);
756
757 if (firmware_has_feature(FW_FEATURE_ISERIES))
758 return iseries_lparcfg_data(m, v);
759 return pseries_lparcfg_data(m, v);
760 }
761
762 static int lparcfg_open(struct inode *inode, struct file *file)
763 {
764 return single_open(file, lparcfg_data, NULL);
765 }
766
767 static const struct file_operations lparcfg_fops = {
768 .owner = THIS_MODULE,
769 .read = seq_read,
770 .write = lparcfg_write,
771 .open = lparcfg_open,
772 .release = single_release,
773 };
774
775 static int __init lparcfg_init(void)
776 {
777 struct proc_dir_entry *ent;
778 mode_t mode = S_IRUSR | S_IRGRP | S_IROTH;
779
780 /* Allow writing if we have FW_FEATURE_SPLPAR */
781 if (firmware_has_feature(FW_FEATURE_SPLPAR) &&
782 !firmware_has_feature(FW_FEATURE_ISERIES))
783 mode |= S_IWUSR;
784
785 ent = proc_create("powerpc/lparcfg", mode, NULL, &lparcfg_fops);
786 if (!ent) {
787 printk(KERN_ERR "Failed to create powerpc/lparcfg\n");
788 return -EIO;
789 }
790
791 proc_ppc64_lparcfg = ent;
792 return 0;
793 }
794
795 static void __exit lparcfg_cleanup(void)
796 {
797 if (proc_ppc64_lparcfg)
798 remove_proc_entry("lparcfg", proc_ppc64_lparcfg->parent);
799 }
800
801 module_init(lparcfg_init);
802 module_exit(lparcfg_cleanup);
803 MODULE_DESCRIPTION("Interface for LPAR configuration data");
804 MODULE_AUTHOR("Dave Engebretsen");
805 MODULE_LICENSE("GPL");