Merge tag 'imx-fixes-3.10-2' of git://git.linaro.org/people/shawnguo/linux-2.6 into...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / mips / mm / tlbex.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
13 *
14 * ... and the days got worse and worse and now you see
15 * I've gone completly out of my mind.
16 *
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
20 *
21 * (Condolences to Napoleon XIV)
22 */
23
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/init.h>
30 #include <linux/cache.h>
31
32 #include <asm/cacheflush.h>
33 #include <asm/pgtable.h>
34 #include <asm/war.h>
35 #include <asm/uasm.h>
36 #include <asm/setup.h>
37
38 /*
39 * TLB load/store/modify handlers.
40 *
41 * Only the fastpath gets synthesized at runtime, the slowpath for
42 * do_page_fault remains normal asm.
43 */
44 extern void tlb_do_page_fault_0(void);
45 extern void tlb_do_page_fault_1(void);
46
47 struct work_registers {
48 int r1;
49 int r2;
50 int r3;
51 };
52
53 struct tlb_reg_save {
54 unsigned long a;
55 unsigned long b;
56 } ____cacheline_aligned_in_smp;
57
58 static struct tlb_reg_save handler_reg_save[NR_CPUS];
59
60 static inline int r45k_bvahwbug(void)
61 {
62 /* XXX: We should probe for the presence of this bug, but we don't. */
63 return 0;
64 }
65
66 static inline int r4k_250MHZhwbug(void)
67 {
68 /* XXX: We should probe for the presence of this bug, but we don't. */
69 return 0;
70 }
71
72 static inline int __maybe_unused bcm1250_m3_war(void)
73 {
74 return BCM1250_M3_WAR;
75 }
76
77 static inline int __maybe_unused r10000_llsc_war(void)
78 {
79 return R10000_LLSC_WAR;
80 }
81
82 static int use_bbit_insns(void)
83 {
84 switch (current_cpu_type()) {
85 case CPU_CAVIUM_OCTEON:
86 case CPU_CAVIUM_OCTEON_PLUS:
87 case CPU_CAVIUM_OCTEON2:
88 return 1;
89 default:
90 return 0;
91 }
92 }
93
94 static int use_lwx_insns(void)
95 {
96 switch (current_cpu_type()) {
97 case CPU_CAVIUM_OCTEON2:
98 return 1;
99 default:
100 return 0;
101 }
102 }
103 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
104 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
105 static bool scratchpad_available(void)
106 {
107 return true;
108 }
109 static int scratchpad_offset(int i)
110 {
111 /*
112 * CVMSEG starts at address -32768 and extends for
113 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
114 */
115 i += 1; /* Kernel use starts at the top and works down. */
116 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
117 }
118 #else
119 static bool scratchpad_available(void)
120 {
121 return false;
122 }
123 static int scratchpad_offset(int i)
124 {
125 BUG();
126 /* Really unreachable, but evidently some GCC want this. */
127 return 0;
128 }
129 #endif
130 /*
131 * Found by experiment: At least some revisions of the 4kc throw under
132 * some circumstances a machine check exception, triggered by invalid
133 * values in the index register. Delaying the tlbp instruction until
134 * after the next branch, plus adding an additional nop in front of
135 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
136 * why; it's not an issue caused by the core RTL.
137 *
138 */
139 static int __cpuinit m4kc_tlbp_war(void)
140 {
141 return (current_cpu_data.processor_id & 0xffff00) ==
142 (PRID_COMP_MIPS | PRID_IMP_4KC);
143 }
144
145 /* Handle labels (which must be positive integers). */
146 enum label_id {
147 label_second_part = 1,
148 label_leave,
149 label_vmalloc,
150 label_vmalloc_done,
151 label_tlbw_hazard_0,
152 label_split = label_tlbw_hazard_0 + 8,
153 label_tlbl_goaround1,
154 label_tlbl_goaround2,
155 label_nopage_tlbl,
156 label_nopage_tlbs,
157 label_nopage_tlbm,
158 label_smp_pgtable_change,
159 label_r3000_write_probe_fail,
160 label_large_segbits_fault,
161 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
162 label_tlb_huge_update,
163 #endif
164 };
165
166 UASM_L_LA(_second_part)
167 UASM_L_LA(_leave)
168 UASM_L_LA(_vmalloc)
169 UASM_L_LA(_vmalloc_done)
170 /* _tlbw_hazard_x is handled differently. */
171 UASM_L_LA(_split)
172 UASM_L_LA(_tlbl_goaround1)
173 UASM_L_LA(_tlbl_goaround2)
174 UASM_L_LA(_nopage_tlbl)
175 UASM_L_LA(_nopage_tlbs)
176 UASM_L_LA(_nopage_tlbm)
177 UASM_L_LA(_smp_pgtable_change)
178 UASM_L_LA(_r3000_write_probe_fail)
179 UASM_L_LA(_large_segbits_fault)
180 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
181 UASM_L_LA(_tlb_huge_update)
182 #endif
183
184 static int __cpuinitdata hazard_instance;
185
186 static void __cpuinit uasm_bgezl_hazard(u32 **p,
187 struct uasm_reloc **r,
188 int instance)
189 {
190 switch (instance) {
191 case 0 ... 7:
192 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
193 return;
194 default:
195 BUG();
196 }
197 }
198
199 static void __cpuinit uasm_bgezl_label(struct uasm_label **l,
200 u32 **p,
201 int instance)
202 {
203 switch (instance) {
204 case 0 ... 7:
205 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
206 break;
207 default:
208 BUG();
209 }
210 }
211
212 /*
213 * pgtable bits are assigned dynamically depending on processor feature
214 * and statically based on kernel configuration. This spits out the actual
215 * values the kernel is using. Required to make sense from disassembled
216 * TLB exception handlers.
217 */
218 static void output_pgtable_bits_defines(void)
219 {
220 #define pr_define(fmt, ...) \
221 pr_debug("#define " fmt, ##__VA_ARGS__)
222
223 pr_debug("#include <asm/asm.h>\n");
224 pr_debug("#include <asm/regdef.h>\n");
225 pr_debug("\n");
226
227 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
228 pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
229 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
230 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
231 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
232 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
233 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
234 pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
235 #endif
236 if (cpu_has_rixi) {
237 #ifdef _PAGE_NO_EXEC_SHIFT
238 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
239 #endif
240 #ifdef _PAGE_NO_READ_SHIFT
241 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
242 #endif
243 }
244 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
245 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
246 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
247 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
248 pr_debug("\n");
249 }
250
251 static inline void dump_handler(const char *symbol, const u32 *handler, int count)
252 {
253 int i;
254
255 pr_debug("LEAF(%s)\n", symbol);
256
257 pr_debug("\t.set push\n");
258 pr_debug("\t.set noreorder\n");
259
260 for (i = 0; i < count; i++)
261 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
262
263 pr_debug("\t.set\tpop\n");
264
265 pr_debug("\tEND(%s)\n", symbol);
266 }
267
268 /* The only general purpose registers allowed in TLB handlers. */
269 #define K0 26
270 #define K1 27
271
272 /* Some CP0 registers */
273 #define C0_INDEX 0, 0
274 #define C0_ENTRYLO0 2, 0
275 #define C0_TCBIND 2, 2
276 #define C0_ENTRYLO1 3, 0
277 #define C0_CONTEXT 4, 0
278 #define C0_PAGEMASK 5, 0
279 #define C0_BADVADDR 8, 0
280 #define C0_ENTRYHI 10, 0
281 #define C0_EPC 14, 0
282 #define C0_XCONTEXT 20, 0
283
284 #ifdef CONFIG_64BIT
285 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
286 #else
287 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
288 #endif
289
290 /* The worst case length of the handler is around 18 instructions for
291 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
292 * Maximum space available is 32 instructions for R3000 and 64
293 * instructions for R4000.
294 *
295 * We deliberately chose a buffer size of 128, so we won't scribble
296 * over anything important on overflow before we panic.
297 */
298 static u32 tlb_handler[128] __cpuinitdata;
299
300 /* simply assume worst case size for labels and relocs */
301 static struct uasm_label labels[128] __cpuinitdata;
302 static struct uasm_reloc relocs[128] __cpuinitdata;
303
304 #ifdef CONFIG_64BIT
305 static int check_for_high_segbits __cpuinitdata;
306 #endif
307
308 static int check_for_high_segbits __cpuinitdata;
309
310 static unsigned int kscratch_used_mask __cpuinitdata;
311
312 static int __cpuinit allocate_kscratch(void)
313 {
314 int r;
315 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
316
317 r = ffs(a);
318
319 if (r == 0)
320 return -1;
321
322 r--; /* make it zero based */
323
324 kscratch_used_mask |= (1 << r);
325
326 return r;
327 }
328
329 static int scratch_reg __cpuinitdata;
330 static int pgd_reg __cpuinitdata;
331 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
332
333 static struct work_registers __cpuinit build_get_work_registers(u32 **p)
334 {
335 struct work_registers r;
336
337 int smp_processor_id_reg;
338 int smp_processor_id_sel;
339 int smp_processor_id_shift;
340
341 if (scratch_reg > 0) {
342 /* Save in CPU local C0_KScratch? */
343 UASM_i_MTC0(p, 1, 31, scratch_reg);
344 r.r1 = K0;
345 r.r2 = K1;
346 r.r3 = 1;
347 return r;
348 }
349
350 if (num_possible_cpus() > 1) {
351 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
352 smp_processor_id_shift = 51;
353 smp_processor_id_reg = 20; /* XContext */
354 smp_processor_id_sel = 0;
355 #else
356 # ifdef CONFIG_32BIT
357 smp_processor_id_shift = 25;
358 smp_processor_id_reg = 4; /* Context */
359 smp_processor_id_sel = 0;
360 # endif
361 # ifdef CONFIG_64BIT
362 smp_processor_id_shift = 26;
363 smp_processor_id_reg = 4; /* Context */
364 smp_processor_id_sel = 0;
365 # endif
366 #endif
367 /* Get smp_processor_id */
368 UASM_i_MFC0(p, K0, smp_processor_id_reg, smp_processor_id_sel);
369 UASM_i_SRL_SAFE(p, K0, K0, smp_processor_id_shift);
370
371 /* handler_reg_save index in K0 */
372 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
373
374 UASM_i_LA(p, K1, (long)&handler_reg_save);
375 UASM_i_ADDU(p, K0, K0, K1);
376 } else {
377 UASM_i_LA(p, K0, (long)&handler_reg_save);
378 }
379 /* K0 now points to save area, save $1 and $2 */
380 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
381 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
382
383 r.r1 = K1;
384 r.r2 = 1;
385 r.r3 = 2;
386 return r;
387 }
388
389 static void __cpuinit build_restore_work_registers(u32 **p)
390 {
391 if (scratch_reg > 0) {
392 UASM_i_MFC0(p, 1, 31, scratch_reg);
393 return;
394 }
395 /* K0 already points to save area, restore $1 and $2 */
396 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
397 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
398 }
399
400 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
401
402 /*
403 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
404 * we cannot do r3000 under these circumstances.
405 *
406 * Declare pgd_current here instead of including mmu_context.h to avoid type
407 * conflicts for tlbmiss_handler_setup_pgd
408 */
409 extern unsigned long pgd_current[];
410
411 /*
412 * The R3000 TLB handler is simple.
413 */
414 static void __cpuinit build_r3000_tlb_refill_handler(void)
415 {
416 long pgdc = (long)pgd_current;
417 u32 *p;
418
419 memset(tlb_handler, 0, sizeof(tlb_handler));
420 p = tlb_handler;
421
422 uasm_i_mfc0(&p, K0, C0_BADVADDR);
423 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
424 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
425 uasm_i_srl(&p, K0, K0, 22); /* load delay */
426 uasm_i_sll(&p, K0, K0, 2);
427 uasm_i_addu(&p, K1, K1, K0);
428 uasm_i_mfc0(&p, K0, C0_CONTEXT);
429 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
430 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
431 uasm_i_addu(&p, K1, K1, K0);
432 uasm_i_lw(&p, K0, 0, K1);
433 uasm_i_nop(&p); /* load delay */
434 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
435 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
436 uasm_i_tlbwr(&p); /* cp0 delay */
437 uasm_i_jr(&p, K1);
438 uasm_i_rfe(&p); /* branch delay */
439
440 if (p > tlb_handler + 32)
441 panic("TLB refill handler space exceeded");
442
443 pr_debug("Wrote TLB refill handler (%u instructions).\n",
444 (unsigned int)(p - tlb_handler));
445
446 memcpy((void *)ebase, tlb_handler, 0x80);
447
448 dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
449 }
450 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
451
452 /*
453 * The R4000 TLB handler is much more complicated. We have two
454 * consecutive handler areas with 32 instructions space each.
455 * Since they aren't used at the same time, we can overflow in the
456 * other one.To keep things simple, we first assume linear space,
457 * then we relocate it to the final handler layout as needed.
458 */
459 static u32 final_handler[64] __cpuinitdata;
460
461 /*
462 * Hazards
463 *
464 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
465 * 2. A timing hazard exists for the TLBP instruction.
466 *
467 * stalling_instruction
468 * TLBP
469 *
470 * The JTLB is being read for the TLBP throughout the stall generated by the
471 * previous instruction. This is not really correct as the stalling instruction
472 * can modify the address used to access the JTLB. The failure symptom is that
473 * the TLBP instruction will use an address created for the stalling instruction
474 * and not the address held in C0_ENHI and thus report the wrong results.
475 *
476 * The software work-around is to not allow the instruction preceding the TLBP
477 * to stall - make it an NOP or some other instruction guaranteed not to stall.
478 *
479 * Errata 2 will not be fixed. This errata is also on the R5000.
480 *
481 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
482 */
483 static void __cpuinit __maybe_unused build_tlb_probe_entry(u32 **p)
484 {
485 switch (current_cpu_type()) {
486 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
487 case CPU_R4600:
488 case CPU_R4700:
489 case CPU_R5000:
490 case CPU_NEVADA:
491 uasm_i_nop(p);
492 uasm_i_tlbp(p);
493 break;
494
495 default:
496 uasm_i_tlbp(p);
497 break;
498 }
499 }
500
501 /*
502 * Write random or indexed TLB entry, and care about the hazards from
503 * the preceding mtc0 and for the following eret.
504 */
505 enum tlb_write_entry { tlb_random, tlb_indexed };
506
507 static void __cpuinit build_tlb_write_entry(u32 **p, struct uasm_label **l,
508 struct uasm_reloc **r,
509 enum tlb_write_entry wmode)
510 {
511 void(*tlbw)(u32 **) = NULL;
512
513 switch (wmode) {
514 case tlb_random: tlbw = uasm_i_tlbwr; break;
515 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
516 }
517
518 if (cpu_has_mips_r2) {
519 /*
520 * The architecture spec says an ehb is required here,
521 * but a number of cores do not have the hazard and
522 * using an ehb causes an expensive pipeline stall.
523 */
524 switch (current_cpu_type()) {
525 case CPU_M14KC:
526 case CPU_74K:
527 break;
528
529 default:
530 uasm_i_ehb(p);
531 break;
532 }
533 tlbw(p);
534 return;
535 }
536
537 switch (current_cpu_type()) {
538 case CPU_R4000PC:
539 case CPU_R4000SC:
540 case CPU_R4000MC:
541 case CPU_R4400PC:
542 case CPU_R4400SC:
543 case CPU_R4400MC:
544 /*
545 * This branch uses up a mtc0 hazard nop slot and saves
546 * two nops after the tlbw instruction.
547 */
548 uasm_bgezl_hazard(p, r, hazard_instance);
549 tlbw(p);
550 uasm_bgezl_label(l, p, hazard_instance);
551 hazard_instance++;
552 uasm_i_nop(p);
553 break;
554
555 case CPU_R4600:
556 case CPU_R4700:
557 uasm_i_nop(p);
558 tlbw(p);
559 uasm_i_nop(p);
560 break;
561
562 case CPU_R5000:
563 case CPU_NEVADA:
564 uasm_i_nop(p); /* QED specifies 2 nops hazard */
565 uasm_i_nop(p); /* QED specifies 2 nops hazard */
566 tlbw(p);
567 break;
568
569 case CPU_R4300:
570 case CPU_5KC:
571 case CPU_TX49XX:
572 case CPU_PR4450:
573 case CPU_XLR:
574 uasm_i_nop(p);
575 tlbw(p);
576 break;
577
578 case CPU_R10000:
579 case CPU_R12000:
580 case CPU_R14000:
581 case CPU_4KC:
582 case CPU_4KEC:
583 case CPU_M14KC:
584 case CPU_M14KEC:
585 case CPU_SB1:
586 case CPU_SB1A:
587 case CPU_4KSC:
588 case CPU_20KC:
589 case CPU_25KF:
590 case CPU_BMIPS32:
591 case CPU_BMIPS3300:
592 case CPU_BMIPS4350:
593 case CPU_BMIPS4380:
594 case CPU_BMIPS5000:
595 case CPU_LOONGSON2:
596 case CPU_R5500:
597 if (m4kc_tlbp_war())
598 uasm_i_nop(p);
599 case CPU_ALCHEMY:
600 tlbw(p);
601 break;
602
603 case CPU_RM7000:
604 uasm_i_nop(p);
605 uasm_i_nop(p);
606 uasm_i_nop(p);
607 uasm_i_nop(p);
608 tlbw(p);
609 break;
610
611 case CPU_VR4111:
612 case CPU_VR4121:
613 case CPU_VR4122:
614 case CPU_VR4181:
615 case CPU_VR4181A:
616 uasm_i_nop(p);
617 uasm_i_nop(p);
618 tlbw(p);
619 uasm_i_nop(p);
620 uasm_i_nop(p);
621 break;
622
623 case CPU_VR4131:
624 case CPU_VR4133:
625 case CPU_R5432:
626 uasm_i_nop(p);
627 uasm_i_nop(p);
628 tlbw(p);
629 break;
630
631 case CPU_JZRISC:
632 tlbw(p);
633 uasm_i_nop(p);
634 break;
635
636 default:
637 panic("No TLB refill handler yet (CPU type: %d)",
638 current_cpu_data.cputype);
639 break;
640 }
641 }
642
643 static __cpuinit __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
644 unsigned int reg)
645 {
646 if (cpu_has_rixi) {
647 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
648 } else {
649 #ifdef CONFIG_64BIT_PHYS_ADDR
650 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
651 #else
652 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
653 #endif
654 }
655 }
656
657 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
658
659 static __cpuinit void build_restore_pagemask(u32 **p,
660 struct uasm_reloc **r,
661 unsigned int tmp,
662 enum label_id lid,
663 int restore_scratch)
664 {
665 if (restore_scratch) {
666 /* Reset default page size */
667 if (PM_DEFAULT_MASK >> 16) {
668 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
669 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
670 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
671 uasm_il_b(p, r, lid);
672 } else if (PM_DEFAULT_MASK) {
673 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
674 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
675 uasm_il_b(p, r, lid);
676 } else {
677 uasm_i_mtc0(p, 0, C0_PAGEMASK);
678 uasm_il_b(p, r, lid);
679 }
680 if (scratch_reg > 0)
681 UASM_i_MFC0(p, 1, 31, scratch_reg);
682 else
683 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
684 } else {
685 /* Reset default page size */
686 if (PM_DEFAULT_MASK >> 16) {
687 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
688 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
689 uasm_il_b(p, r, lid);
690 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
691 } else if (PM_DEFAULT_MASK) {
692 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
693 uasm_il_b(p, r, lid);
694 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
695 } else {
696 uasm_il_b(p, r, lid);
697 uasm_i_mtc0(p, 0, C0_PAGEMASK);
698 }
699 }
700 }
701
702 static __cpuinit void build_huge_tlb_write_entry(u32 **p,
703 struct uasm_label **l,
704 struct uasm_reloc **r,
705 unsigned int tmp,
706 enum tlb_write_entry wmode,
707 int restore_scratch)
708 {
709 /* Set huge page tlb entry size */
710 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
711 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
712 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
713
714 build_tlb_write_entry(p, l, r, wmode);
715
716 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
717 }
718
719 /*
720 * Check if Huge PTE is present, if so then jump to LABEL.
721 */
722 static void __cpuinit
723 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
724 unsigned int pmd, int lid)
725 {
726 UASM_i_LW(p, tmp, 0, pmd);
727 if (use_bbit_insns()) {
728 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
729 } else {
730 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
731 uasm_il_bnez(p, r, tmp, lid);
732 }
733 }
734
735 static __cpuinit void build_huge_update_entries(u32 **p,
736 unsigned int pte,
737 unsigned int tmp)
738 {
739 int small_sequence;
740
741 /*
742 * A huge PTE describes an area the size of the
743 * configured huge page size. This is twice the
744 * of the large TLB entry size we intend to use.
745 * A TLB entry half the size of the configured
746 * huge page size is configured into entrylo0
747 * and entrylo1 to cover the contiguous huge PTE
748 * address space.
749 */
750 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
751
752 /* We can clobber tmp. It isn't used after this.*/
753 if (!small_sequence)
754 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
755
756 build_convert_pte_to_entrylo(p, pte);
757 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
758 /* convert to entrylo1 */
759 if (small_sequence)
760 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
761 else
762 UASM_i_ADDU(p, pte, pte, tmp);
763
764 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
765 }
766
767 static __cpuinit void build_huge_handler_tail(u32 **p,
768 struct uasm_reloc **r,
769 struct uasm_label **l,
770 unsigned int pte,
771 unsigned int ptr)
772 {
773 #ifdef CONFIG_SMP
774 UASM_i_SC(p, pte, 0, ptr);
775 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
776 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
777 #else
778 UASM_i_SW(p, pte, 0, ptr);
779 #endif
780 build_huge_update_entries(p, pte, ptr);
781 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
782 }
783 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
784
785 #ifdef CONFIG_64BIT
786 /*
787 * TMP and PTR are scratch.
788 * TMP will be clobbered, PTR will hold the pmd entry.
789 */
790 static void __cpuinit
791 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
792 unsigned int tmp, unsigned int ptr)
793 {
794 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
795 long pgdc = (long)pgd_current;
796 #endif
797 /*
798 * The vmalloc handling is not in the hotpath.
799 */
800 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
801
802 if (check_for_high_segbits) {
803 /*
804 * The kernel currently implicitely assumes that the
805 * MIPS SEGBITS parameter for the processor is
806 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
807 * allocate virtual addresses outside the maximum
808 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
809 * that doesn't prevent user code from accessing the
810 * higher xuseg addresses. Here, we make sure that
811 * everything but the lower xuseg addresses goes down
812 * the module_alloc/vmalloc path.
813 */
814 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
815 uasm_il_bnez(p, r, ptr, label_vmalloc);
816 } else {
817 uasm_il_bltz(p, r, tmp, label_vmalloc);
818 }
819 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
820
821 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
822 if (pgd_reg != -1) {
823 /* pgd is in pgd_reg */
824 UASM_i_MFC0(p, ptr, 31, pgd_reg);
825 } else {
826 /*
827 * &pgd << 11 stored in CONTEXT [23..63].
828 */
829 UASM_i_MFC0(p, ptr, C0_CONTEXT);
830
831 /* Clear lower 23 bits of context. */
832 uasm_i_dins(p, ptr, 0, 0, 23);
833
834 /* 1 0 1 0 1 << 6 xkphys cached */
835 uasm_i_ori(p, ptr, ptr, 0x540);
836 uasm_i_drotr(p, ptr, ptr, 11);
837 }
838 #elif defined(CONFIG_SMP)
839 # ifdef CONFIG_MIPS_MT_SMTC
840 /*
841 * SMTC uses TCBind value as "CPU" index
842 */
843 uasm_i_mfc0(p, ptr, C0_TCBIND);
844 uasm_i_dsrl_safe(p, ptr, ptr, 19);
845 # else
846 /*
847 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
848 * stored in CONTEXT.
849 */
850 uasm_i_dmfc0(p, ptr, C0_CONTEXT);
851 uasm_i_dsrl_safe(p, ptr, ptr, 23);
852 # endif
853 UASM_i_LA_mostly(p, tmp, pgdc);
854 uasm_i_daddu(p, ptr, ptr, tmp);
855 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
856 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
857 #else
858 UASM_i_LA_mostly(p, ptr, pgdc);
859 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
860 #endif
861
862 uasm_l_vmalloc_done(l, *p);
863
864 /* get pgd offset in bytes */
865 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
866
867 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
868 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
869 #ifndef __PAGETABLE_PMD_FOLDED
870 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
871 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
872 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
873 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
874 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
875 #endif
876 }
877
878 /*
879 * BVADDR is the faulting address, PTR is scratch.
880 * PTR will hold the pgd for vmalloc.
881 */
882 static void __cpuinit
883 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
884 unsigned int bvaddr, unsigned int ptr,
885 enum vmalloc64_mode mode)
886 {
887 long swpd = (long)swapper_pg_dir;
888 int single_insn_swpd;
889 int did_vmalloc_branch = 0;
890
891 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
892
893 uasm_l_vmalloc(l, *p);
894
895 if (mode != not_refill && check_for_high_segbits) {
896 if (single_insn_swpd) {
897 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
898 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
899 did_vmalloc_branch = 1;
900 /* fall through */
901 } else {
902 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
903 }
904 }
905 if (!did_vmalloc_branch) {
906 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
907 uasm_il_b(p, r, label_vmalloc_done);
908 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
909 } else {
910 UASM_i_LA_mostly(p, ptr, swpd);
911 uasm_il_b(p, r, label_vmalloc_done);
912 if (uasm_in_compat_space_p(swpd))
913 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
914 else
915 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
916 }
917 }
918 if (mode != not_refill && check_for_high_segbits) {
919 uasm_l_large_segbits_fault(l, *p);
920 /*
921 * We get here if we are an xsseg address, or if we are
922 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
923 *
924 * Ignoring xsseg (assume disabled so would generate
925 * (address errors?), the only remaining possibility
926 * is the upper xuseg addresses. On processors with
927 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
928 * addresses would have taken an address error. We try
929 * to mimic that here by taking a load/istream page
930 * fault.
931 */
932 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
933 uasm_i_jr(p, ptr);
934
935 if (mode == refill_scratch) {
936 if (scratch_reg > 0)
937 UASM_i_MFC0(p, 1, 31, scratch_reg);
938 else
939 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
940 } else {
941 uasm_i_nop(p);
942 }
943 }
944 }
945
946 #else /* !CONFIG_64BIT */
947
948 /*
949 * TMP and PTR are scratch.
950 * TMP will be clobbered, PTR will hold the pgd entry.
951 */
952 static void __cpuinit __maybe_unused
953 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
954 {
955 long pgdc = (long)pgd_current;
956
957 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
958 #ifdef CONFIG_SMP
959 #ifdef CONFIG_MIPS_MT_SMTC
960 /*
961 * SMTC uses TCBind value as "CPU" index
962 */
963 uasm_i_mfc0(p, ptr, C0_TCBIND);
964 UASM_i_LA_mostly(p, tmp, pgdc);
965 uasm_i_srl(p, ptr, ptr, 19);
966 #else
967 /*
968 * smp_processor_id() << 3 is stored in CONTEXT.
969 */
970 uasm_i_mfc0(p, ptr, C0_CONTEXT);
971 UASM_i_LA_mostly(p, tmp, pgdc);
972 uasm_i_srl(p, ptr, ptr, 23);
973 #endif
974 uasm_i_addu(p, ptr, tmp, ptr);
975 #else
976 UASM_i_LA_mostly(p, ptr, pgdc);
977 #endif
978 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
979 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
980 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
981 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
982 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
983 }
984
985 #endif /* !CONFIG_64BIT */
986
987 static void __cpuinit build_adjust_context(u32 **p, unsigned int ctx)
988 {
989 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
990 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
991
992 switch (current_cpu_type()) {
993 case CPU_VR41XX:
994 case CPU_VR4111:
995 case CPU_VR4121:
996 case CPU_VR4122:
997 case CPU_VR4131:
998 case CPU_VR4181:
999 case CPU_VR4181A:
1000 case CPU_VR4133:
1001 shift += 2;
1002 break;
1003
1004 default:
1005 break;
1006 }
1007
1008 if (shift)
1009 UASM_i_SRL(p, ctx, ctx, shift);
1010 uasm_i_andi(p, ctx, ctx, mask);
1011 }
1012
1013 static void __cpuinit build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1014 {
1015 /*
1016 * Bug workaround for the Nevada. It seems as if under certain
1017 * circumstances the move from cp0_context might produce a
1018 * bogus result when the mfc0 instruction and its consumer are
1019 * in a different cacheline or a load instruction, probably any
1020 * memory reference, is between them.
1021 */
1022 switch (current_cpu_type()) {
1023 case CPU_NEVADA:
1024 UASM_i_LW(p, ptr, 0, ptr);
1025 GET_CONTEXT(p, tmp); /* get context reg */
1026 break;
1027
1028 default:
1029 GET_CONTEXT(p, tmp); /* get context reg */
1030 UASM_i_LW(p, ptr, 0, ptr);
1031 break;
1032 }
1033
1034 build_adjust_context(p, tmp);
1035 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1036 }
1037
1038 static void __cpuinit build_update_entries(u32 **p, unsigned int tmp,
1039 unsigned int ptep)
1040 {
1041 /*
1042 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1043 * Kernel is a special case. Only a few CPUs use it.
1044 */
1045 #ifdef CONFIG_64BIT_PHYS_ADDR
1046 if (cpu_has_64bits) {
1047 uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
1048 uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1049 if (cpu_has_rixi) {
1050 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1051 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1052 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1053 } else {
1054 uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1055 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1056 uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1057 }
1058 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1059 } else {
1060 int pte_off_even = sizeof(pte_t) / 2;
1061 int pte_off_odd = pte_off_even + sizeof(pte_t);
1062
1063 /* The pte entries are pre-shifted */
1064 uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1065 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1066 uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1067 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1068 }
1069 #else
1070 UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1071 UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1072 if (r45k_bvahwbug())
1073 build_tlb_probe_entry(p);
1074 if (cpu_has_rixi) {
1075 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1076 if (r4k_250MHZhwbug())
1077 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1078 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1079 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1080 } else {
1081 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1082 if (r4k_250MHZhwbug())
1083 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1084 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1085 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1086 if (r45k_bvahwbug())
1087 uasm_i_mfc0(p, tmp, C0_INDEX);
1088 }
1089 if (r4k_250MHZhwbug())
1090 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1091 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1092 #endif
1093 }
1094
1095 struct mips_huge_tlb_info {
1096 int huge_pte;
1097 int restore_scratch;
1098 };
1099
1100 static struct mips_huge_tlb_info __cpuinit
1101 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1102 struct uasm_reloc **r, unsigned int tmp,
1103 unsigned int ptr, int c0_scratch)
1104 {
1105 struct mips_huge_tlb_info rv;
1106 unsigned int even, odd;
1107 int vmalloc_branch_delay_filled = 0;
1108 const int scratch = 1; /* Our extra working register */
1109
1110 rv.huge_pte = scratch;
1111 rv.restore_scratch = 0;
1112
1113 if (check_for_high_segbits) {
1114 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1115
1116 if (pgd_reg != -1)
1117 UASM_i_MFC0(p, ptr, 31, pgd_reg);
1118 else
1119 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1120
1121 if (c0_scratch >= 0)
1122 UASM_i_MTC0(p, scratch, 31, c0_scratch);
1123 else
1124 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1125
1126 uasm_i_dsrl_safe(p, scratch, tmp,
1127 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1128 uasm_il_bnez(p, r, scratch, label_vmalloc);
1129
1130 if (pgd_reg == -1) {
1131 vmalloc_branch_delay_filled = 1;
1132 /* Clear lower 23 bits of context. */
1133 uasm_i_dins(p, ptr, 0, 0, 23);
1134 }
1135 } else {
1136 if (pgd_reg != -1)
1137 UASM_i_MFC0(p, ptr, 31, pgd_reg);
1138 else
1139 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1140
1141 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1142
1143 if (c0_scratch >= 0)
1144 UASM_i_MTC0(p, scratch, 31, c0_scratch);
1145 else
1146 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1147
1148 if (pgd_reg == -1)
1149 /* Clear lower 23 bits of context. */
1150 uasm_i_dins(p, ptr, 0, 0, 23);
1151
1152 uasm_il_bltz(p, r, tmp, label_vmalloc);
1153 }
1154
1155 if (pgd_reg == -1) {
1156 vmalloc_branch_delay_filled = 1;
1157 /* 1 0 1 0 1 << 6 xkphys cached */
1158 uasm_i_ori(p, ptr, ptr, 0x540);
1159 uasm_i_drotr(p, ptr, ptr, 11);
1160 }
1161
1162 #ifdef __PAGETABLE_PMD_FOLDED
1163 #define LOC_PTEP scratch
1164 #else
1165 #define LOC_PTEP ptr
1166 #endif
1167
1168 if (!vmalloc_branch_delay_filled)
1169 /* get pgd offset in bytes */
1170 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1171
1172 uasm_l_vmalloc_done(l, *p);
1173
1174 /*
1175 * tmp ptr
1176 * fall-through case = badvaddr *pgd_current
1177 * vmalloc case = badvaddr swapper_pg_dir
1178 */
1179
1180 if (vmalloc_branch_delay_filled)
1181 /* get pgd offset in bytes */
1182 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1183
1184 #ifdef __PAGETABLE_PMD_FOLDED
1185 GET_CONTEXT(p, tmp); /* get context reg */
1186 #endif
1187 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1188
1189 if (use_lwx_insns()) {
1190 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1191 } else {
1192 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1193 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1194 }
1195
1196 #ifndef __PAGETABLE_PMD_FOLDED
1197 /* get pmd offset in bytes */
1198 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1199 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1200 GET_CONTEXT(p, tmp); /* get context reg */
1201
1202 if (use_lwx_insns()) {
1203 UASM_i_LWX(p, scratch, scratch, ptr);
1204 } else {
1205 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1206 UASM_i_LW(p, scratch, 0, ptr);
1207 }
1208 #endif
1209 /* Adjust the context during the load latency. */
1210 build_adjust_context(p, tmp);
1211
1212 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1213 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1214 /*
1215 * The in the LWX case we don't want to do the load in the
1216 * delay slot. It cannot issue in the same cycle and may be
1217 * speculative and unneeded.
1218 */
1219 if (use_lwx_insns())
1220 uasm_i_nop(p);
1221 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1222
1223
1224 /* build_update_entries */
1225 if (use_lwx_insns()) {
1226 even = ptr;
1227 odd = tmp;
1228 UASM_i_LWX(p, even, scratch, tmp);
1229 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1230 UASM_i_LWX(p, odd, scratch, tmp);
1231 } else {
1232 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1233 even = tmp;
1234 odd = ptr;
1235 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1236 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1237 }
1238 if (cpu_has_rixi) {
1239 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1240 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1241 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1242 } else {
1243 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1244 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1245 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1246 }
1247 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1248
1249 if (c0_scratch >= 0) {
1250 UASM_i_MFC0(p, scratch, 31, c0_scratch);
1251 build_tlb_write_entry(p, l, r, tlb_random);
1252 uasm_l_leave(l, *p);
1253 rv.restore_scratch = 1;
1254 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1255 build_tlb_write_entry(p, l, r, tlb_random);
1256 uasm_l_leave(l, *p);
1257 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1258 } else {
1259 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1260 build_tlb_write_entry(p, l, r, tlb_random);
1261 uasm_l_leave(l, *p);
1262 rv.restore_scratch = 1;
1263 }
1264
1265 uasm_i_eret(p); /* return from trap */
1266
1267 return rv;
1268 }
1269
1270 /*
1271 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1272 * because EXL == 0. If we wrap, we can also use the 32 instruction
1273 * slots before the XTLB refill exception handler which belong to the
1274 * unused TLB refill exception.
1275 */
1276 #define MIPS64_REFILL_INSNS 32
1277
1278 static void __cpuinit build_r4000_tlb_refill_handler(void)
1279 {
1280 u32 *p = tlb_handler;
1281 struct uasm_label *l = labels;
1282 struct uasm_reloc *r = relocs;
1283 u32 *f;
1284 unsigned int final_len;
1285 struct mips_huge_tlb_info htlb_info __maybe_unused;
1286 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1287
1288 memset(tlb_handler, 0, sizeof(tlb_handler));
1289 memset(labels, 0, sizeof(labels));
1290 memset(relocs, 0, sizeof(relocs));
1291 memset(final_handler, 0, sizeof(final_handler));
1292
1293 if ((scratch_reg > 0 || scratchpad_available()) && use_bbit_insns()) {
1294 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1295 scratch_reg);
1296 vmalloc_mode = refill_scratch;
1297 } else {
1298 htlb_info.huge_pte = K0;
1299 htlb_info.restore_scratch = 0;
1300 vmalloc_mode = refill_noscratch;
1301 /*
1302 * create the plain linear handler
1303 */
1304 if (bcm1250_m3_war()) {
1305 unsigned int segbits = 44;
1306
1307 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1308 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1309 uasm_i_xor(&p, K0, K0, K1);
1310 uasm_i_dsrl_safe(&p, K1, K0, 62);
1311 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1312 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1313 uasm_i_or(&p, K0, K0, K1);
1314 uasm_il_bnez(&p, &r, K0, label_leave);
1315 /* No need for uasm_i_nop */
1316 }
1317
1318 #ifdef CONFIG_64BIT
1319 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1320 #else
1321 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1322 #endif
1323
1324 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1325 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1326 #endif
1327
1328 build_get_ptep(&p, K0, K1);
1329 build_update_entries(&p, K0, K1);
1330 build_tlb_write_entry(&p, &l, &r, tlb_random);
1331 uasm_l_leave(&l, p);
1332 uasm_i_eret(&p); /* return from trap */
1333 }
1334 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1335 uasm_l_tlb_huge_update(&l, p);
1336 build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1337 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1338 htlb_info.restore_scratch);
1339 #endif
1340
1341 #ifdef CONFIG_64BIT
1342 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1343 #endif
1344
1345 /*
1346 * Overflow check: For the 64bit handler, we need at least one
1347 * free instruction slot for the wrap-around branch. In worst
1348 * case, if the intended insertion point is a delay slot, we
1349 * need three, with the second nop'ed and the third being
1350 * unused.
1351 */
1352 /* Loongson2 ebase is different than r4k, we have more space */
1353 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1354 if ((p - tlb_handler) > 64)
1355 panic("TLB refill handler space exceeded");
1356 #else
1357 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1358 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1359 && uasm_insn_has_bdelay(relocs,
1360 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1361 panic("TLB refill handler space exceeded");
1362 #endif
1363
1364 /*
1365 * Now fold the handler in the TLB refill handler space.
1366 */
1367 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1368 f = final_handler;
1369 /* Simplest case, just copy the handler. */
1370 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1371 final_len = p - tlb_handler;
1372 #else /* CONFIG_64BIT */
1373 f = final_handler + MIPS64_REFILL_INSNS;
1374 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1375 /* Just copy the handler. */
1376 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1377 final_len = p - tlb_handler;
1378 } else {
1379 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1380 const enum label_id ls = label_tlb_huge_update;
1381 #else
1382 const enum label_id ls = label_vmalloc;
1383 #endif
1384 u32 *split;
1385 int ov = 0;
1386 int i;
1387
1388 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1389 ;
1390 BUG_ON(i == ARRAY_SIZE(labels));
1391 split = labels[i].addr;
1392
1393 /*
1394 * See if we have overflown one way or the other.
1395 */
1396 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1397 split < p - MIPS64_REFILL_INSNS)
1398 ov = 1;
1399
1400 if (ov) {
1401 /*
1402 * Split two instructions before the end. One
1403 * for the branch and one for the instruction
1404 * in the delay slot.
1405 */
1406 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1407
1408 /*
1409 * If the branch would fall in a delay slot,
1410 * we must back up an additional instruction
1411 * so that it is no longer in a delay slot.
1412 */
1413 if (uasm_insn_has_bdelay(relocs, split - 1))
1414 split--;
1415 }
1416 /* Copy first part of the handler. */
1417 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1418 f += split - tlb_handler;
1419
1420 if (ov) {
1421 /* Insert branch. */
1422 uasm_l_split(&l, final_handler);
1423 uasm_il_b(&f, &r, label_split);
1424 if (uasm_insn_has_bdelay(relocs, split))
1425 uasm_i_nop(&f);
1426 else {
1427 uasm_copy_handler(relocs, labels,
1428 split, split + 1, f);
1429 uasm_move_labels(labels, f, f + 1, -1);
1430 f++;
1431 split++;
1432 }
1433 }
1434
1435 /* Copy the rest of the handler. */
1436 uasm_copy_handler(relocs, labels, split, p, final_handler);
1437 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1438 (p - split);
1439 }
1440 #endif /* CONFIG_64BIT */
1441
1442 uasm_resolve_relocs(relocs, labels);
1443 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1444 final_len);
1445
1446 memcpy((void *)ebase, final_handler, 0x100);
1447
1448 dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1449 }
1450
1451 /*
1452 * 128 instructions for the fastpath handler is generous and should
1453 * never be exceeded.
1454 */
1455 #define FASTPATH_SIZE 128
1456
1457 u32 handle_tlbl[FASTPATH_SIZE] __cacheline_aligned;
1458 u32 handle_tlbs[FASTPATH_SIZE] __cacheline_aligned;
1459 u32 handle_tlbm[FASTPATH_SIZE] __cacheline_aligned;
1460 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1461 u32 tlbmiss_handler_setup_pgd_array[16] __cacheline_aligned;
1462
1463 static void __cpuinit build_r4000_setup_pgd(void)
1464 {
1465 const int a0 = 4;
1466 const int a1 = 5;
1467 u32 *p = tlbmiss_handler_setup_pgd_array;
1468 struct uasm_label *l = labels;
1469 struct uasm_reloc *r = relocs;
1470
1471 memset(tlbmiss_handler_setup_pgd_array, 0, sizeof(tlbmiss_handler_setup_pgd_array));
1472 memset(labels, 0, sizeof(labels));
1473 memset(relocs, 0, sizeof(relocs));
1474
1475 pgd_reg = allocate_kscratch();
1476
1477 if (pgd_reg == -1) {
1478 /* PGD << 11 in c0_Context */
1479 /*
1480 * If it is a ckseg0 address, convert to a physical
1481 * address. Shifting right by 29 and adding 4 will
1482 * result in zero for these addresses.
1483 *
1484 */
1485 UASM_i_SRA(&p, a1, a0, 29);
1486 UASM_i_ADDIU(&p, a1, a1, 4);
1487 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1488 uasm_i_nop(&p);
1489 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1490 uasm_l_tlbl_goaround1(&l, p);
1491 UASM_i_SLL(&p, a0, a0, 11);
1492 uasm_i_jr(&p, 31);
1493 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1494 } else {
1495 /* PGD in c0_KScratch */
1496 uasm_i_jr(&p, 31);
1497 UASM_i_MTC0(&p, a0, 31, pgd_reg);
1498 }
1499 if (p - tlbmiss_handler_setup_pgd_array > ARRAY_SIZE(tlbmiss_handler_setup_pgd_array))
1500 panic("tlbmiss_handler_setup_pgd_array space exceeded");
1501 uasm_resolve_relocs(relocs, labels);
1502 pr_debug("Wrote tlbmiss_handler_setup_pgd_array (%u instructions).\n",
1503 (unsigned int)(p - tlbmiss_handler_setup_pgd_array));
1504
1505 dump_handler("tlbmiss_handler",
1506 tlbmiss_handler_setup_pgd_array,
1507 ARRAY_SIZE(tlbmiss_handler_setup_pgd_array));
1508 }
1509 #endif
1510
1511 static void __cpuinit
1512 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1513 {
1514 #ifdef CONFIG_SMP
1515 # ifdef CONFIG_64BIT_PHYS_ADDR
1516 if (cpu_has_64bits)
1517 uasm_i_lld(p, pte, 0, ptr);
1518 else
1519 # endif
1520 UASM_i_LL(p, pte, 0, ptr);
1521 #else
1522 # ifdef CONFIG_64BIT_PHYS_ADDR
1523 if (cpu_has_64bits)
1524 uasm_i_ld(p, pte, 0, ptr);
1525 else
1526 # endif
1527 UASM_i_LW(p, pte, 0, ptr);
1528 #endif
1529 }
1530
1531 static void __cpuinit
1532 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1533 unsigned int mode)
1534 {
1535 #ifdef CONFIG_64BIT_PHYS_ADDR
1536 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1537 #endif
1538
1539 uasm_i_ori(p, pte, pte, mode);
1540 #ifdef CONFIG_SMP
1541 # ifdef CONFIG_64BIT_PHYS_ADDR
1542 if (cpu_has_64bits)
1543 uasm_i_scd(p, pte, 0, ptr);
1544 else
1545 # endif
1546 UASM_i_SC(p, pte, 0, ptr);
1547
1548 if (r10000_llsc_war())
1549 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1550 else
1551 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1552
1553 # ifdef CONFIG_64BIT_PHYS_ADDR
1554 if (!cpu_has_64bits) {
1555 /* no uasm_i_nop needed */
1556 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1557 uasm_i_ori(p, pte, pte, hwmode);
1558 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1559 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1560 /* no uasm_i_nop needed */
1561 uasm_i_lw(p, pte, 0, ptr);
1562 } else
1563 uasm_i_nop(p);
1564 # else
1565 uasm_i_nop(p);
1566 # endif
1567 #else
1568 # ifdef CONFIG_64BIT_PHYS_ADDR
1569 if (cpu_has_64bits)
1570 uasm_i_sd(p, pte, 0, ptr);
1571 else
1572 # endif
1573 UASM_i_SW(p, pte, 0, ptr);
1574
1575 # ifdef CONFIG_64BIT_PHYS_ADDR
1576 if (!cpu_has_64bits) {
1577 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1578 uasm_i_ori(p, pte, pte, hwmode);
1579 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1580 uasm_i_lw(p, pte, 0, ptr);
1581 }
1582 # endif
1583 #endif
1584 }
1585
1586 /*
1587 * Check if PTE is present, if not then jump to LABEL. PTR points to
1588 * the page table where this PTE is located, PTE will be re-loaded
1589 * with it's original value.
1590 */
1591 static void __cpuinit
1592 build_pte_present(u32 **p, struct uasm_reloc **r,
1593 int pte, int ptr, int scratch, enum label_id lid)
1594 {
1595 int t = scratch >= 0 ? scratch : pte;
1596
1597 if (cpu_has_rixi) {
1598 if (use_bbit_insns()) {
1599 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1600 uasm_i_nop(p);
1601 } else {
1602 uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1603 uasm_il_beqz(p, r, t, lid);
1604 if (pte == t)
1605 /* You lose the SMP race :-(*/
1606 iPTE_LW(p, pte, ptr);
1607 }
1608 } else {
1609 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1610 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1611 uasm_il_bnez(p, r, t, lid);
1612 if (pte == t)
1613 /* You lose the SMP race :-(*/
1614 iPTE_LW(p, pte, ptr);
1615 }
1616 }
1617
1618 /* Make PTE valid, store result in PTR. */
1619 static void __cpuinit
1620 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1621 unsigned int ptr)
1622 {
1623 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1624
1625 iPTE_SW(p, r, pte, ptr, mode);
1626 }
1627
1628 /*
1629 * Check if PTE can be written to, if not branch to LABEL. Regardless
1630 * restore PTE with value from PTR when done.
1631 */
1632 static void __cpuinit
1633 build_pte_writable(u32 **p, struct uasm_reloc **r,
1634 unsigned int pte, unsigned int ptr, int scratch,
1635 enum label_id lid)
1636 {
1637 int t = scratch >= 0 ? scratch : pte;
1638
1639 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1640 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1641 uasm_il_bnez(p, r, t, lid);
1642 if (pte == t)
1643 /* You lose the SMP race :-(*/
1644 iPTE_LW(p, pte, ptr);
1645 else
1646 uasm_i_nop(p);
1647 }
1648
1649 /* Make PTE writable, update software status bits as well, then store
1650 * at PTR.
1651 */
1652 static void __cpuinit
1653 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1654 unsigned int ptr)
1655 {
1656 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1657 | _PAGE_DIRTY);
1658
1659 iPTE_SW(p, r, pte, ptr, mode);
1660 }
1661
1662 /*
1663 * Check if PTE can be modified, if not branch to LABEL. Regardless
1664 * restore PTE with value from PTR when done.
1665 */
1666 static void __cpuinit
1667 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1668 unsigned int pte, unsigned int ptr, int scratch,
1669 enum label_id lid)
1670 {
1671 if (use_bbit_insns()) {
1672 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1673 uasm_i_nop(p);
1674 } else {
1675 int t = scratch >= 0 ? scratch : pte;
1676 uasm_i_andi(p, t, pte, _PAGE_WRITE);
1677 uasm_il_beqz(p, r, t, lid);
1678 if (pte == t)
1679 /* You lose the SMP race :-(*/
1680 iPTE_LW(p, pte, ptr);
1681 }
1682 }
1683
1684 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1685
1686
1687 /*
1688 * R3000 style TLB load/store/modify handlers.
1689 */
1690
1691 /*
1692 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1693 * Then it returns.
1694 */
1695 static void __cpuinit
1696 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1697 {
1698 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1699 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1700 uasm_i_tlbwi(p);
1701 uasm_i_jr(p, tmp);
1702 uasm_i_rfe(p); /* branch delay */
1703 }
1704
1705 /*
1706 * This places the pte into ENTRYLO0 and writes it with tlbwi
1707 * or tlbwr as appropriate. This is because the index register
1708 * may have the probe fail bit set as a result of a trap on a
1709 * kseg2 access, i.e. without refill. Then it returns.
1710 */
1711 static void __cpuinit
1712 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1713 struct uasm_reloc **r, unsigned int pte,
1714 unsigned int tmp)
1715 {
1716 uasm_i_mfc0(p, tmp, C0_INDEX);
1717 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1718 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1719 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1720 uasm_i_tlbwi(p); /* cp0 delay */
1721 uasm_i_jr(p, tmp);
1722 uasm_i_rfe(p); /* branch delay */
1723 uasm_l_r3000_write_probe_fail(l, *p);
1724 uasm_i_tlbwr(p); /* cp0 delay */
1725 uasm_i_jr(p, tmp);
1726 uasm_i_rfe(p); /* branch delay */
1727 }
1728
1729 static void __cpuinit
1730 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1731 unsigned int ptr)
1732 {
1733 long pgdc = (long)pgd_current;
1734
1735 uasm_i_mfc0(p, pte, C0_BADVADDR);
1736 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1737 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1738 uasm_i_srl(p, pte, pte, 22); /* load delay */
1739 uasm_i_sll(p, pte, pte, 2);
1740 uasm_i_addu(p, ptr, ptr, pte);
1741 uasm_i_mfc0(p, pte, C0_CONTEXT);
1742 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1743 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1744 uasm_i_addu(p, ptr, ptr, pte);
1745 uasm_i_lw(p, pte, 0, ptr);
1746 uasm_i_tlbp(p); /* load delay */
1747 }
1748
1749 static void __cpuinit build_r3000_tlb_load_handler(void)
1750 {
1751 u32 *p = handle_tlbl;
1752 struct uasm_label *l = labels;
1753 struct uasm_reloc *r = relocs;
1754
1755 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1756 memset(labels, 0, sizeof(labels));
1757 memset(relocs, 0, sizeof(relocs));
1758
1759 build_r3000_tlbchange_handler_head(&p, K0, K1);
1760 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1761 uasm_i_nop(&p); /* load delay */
1762 build_make_valid(&p, &r, K0, K1);
1763 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1764
1765 uasm_l_nopage_tlbl(&l, p);
1766 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1767 uasm_i_nop(&p);
1768
1769 if ((p - handle_tlbl) > FASTPATH_SIZE)
1770 panic("TLB load handler fastpath space exceeded");
1771
1772 uasm_resolve_relocs(relocs, labels);
1773 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1774 (unsigned int)(p - handle_tlbl));
1775
1776 dump_handler("r3000_tlb_load", handle_tlbl, ARRAY_SIZE(handle_tlbl));
1777 }
1778
1779 static void __cpuinit build_r3000_tlb_store_handler(void)
1780 {
1781 u32 *p = handle_tlbs;
1782 struct uasm_label *l = labels;
1783 struct uasm_reloc *r = relocs;
1784
1785 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1786 memset(labels, 0, sizeof(labels));
1787 memset(relocs, 0, sizeof(relocs));
1788
1789 build_r3000_tlbchange_handler_head(&p, K0, K1);
1790 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1791 uasm_i_nop(&p); /* load delay */
1792 build_make_write(&p, &r, K0, K1);
1793 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1794
1795 uasm_l_nopage_tlbs(&l, p);
1796 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1797 uasm_i_nop(&p);
1798
1799 if ((p - handle_tlbs) > FASTPATH_SIZE)
1800 panic("TLB store handler fastpath space exceeded");
1801
1802 uasm_resolve_relocs(relocs, labels);
1803 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1804 (unsigned int)(p - handle_tlbs));
1805
1806 dump_handler("r3000_tlb_store", handle_tlbs, ARRAY_SIZE(handle_tlbs));
1807 }
1808
1809 static void __cpuinit build_r3000_tlb_modify_handler(void)
1810 {
1811 u32 *p = handle_tlbm;
1812 struct uasm_label *l = labels;
1813 struct uasm_reloc *r = relocs;
1814
1815 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1816 memset(labels, 0, sizeof(labels));
1817 memset(relocs, 0, sizeof(relocs));
1818
1819 build_r3000_tlbchange_handler_head(&p, K0, K1);
1820 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
1821 uasm_i_nop(&p); /* load delay */
1822 build_make_write(&p, &r, K0, K1);
1823 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1824
1825 uasm_l_nopage_tlbm(&l, p);
1826 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1827 uasm_i_nop(&p);
1828
1829 if ((p - handle_tlbm) > FASTPATH_SIZE)
1830 panic("TLB modify handler fastpath space exceeded");
1831
1832 uasm_resolve_relocs(relocs, labels);
1833 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1834 (unsigned int)(p - handle_tlbm));
1835
1836 dump_handler("r3000_tlb_modify", handle_tlbm, ARRAY_SIZE(handle_tlbm));
1837 }
1838 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1839
1840 /*
1841 * R4000 style TLB load/store/modify handlers.
1842 */
1843 static struct work_registers __cpuinit
1844 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1845 struct uasm_reloc **r)
1846 {
1847 struct work_registers wr = build_get_work_registers(p);
1848
1849 #ifdef CONFIG_64BIT
1850 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1851 #else
1852 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1853 #endif
1854
1855 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1856 /*
1857 * For huge tlb entries, pmd doesn't contain an address but
1858 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1859 * see if we need to jump to huge tlb processing.
1860 */
1861 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1862 #endif
1863
1864 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1865 UASM_i_LW(p, wr.r2, 0, wr.r2);
1866 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1867 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1868 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1869
1870 #ifdef CONFIG_SMP
1871 uasm_l_smp_pgtable_change(l, *p);
1872 #endif
1873 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1874 if (!m4kc_tlbp_war())
1875 build_tlb_probe_entry(p);
1876 return wr;
1877 }
1878
1879 static void __cpuinit
1880 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1881 struct uasm_reloc **r, unsigned int tmp,
1882 unsigned int ptr)
1883 {
1884 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1885 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1886 build_update_entries(p, tmp, ptr);
1887 build_tlb_write_entry(p, l, r, tlb_indexed);
1888 uasm_l_leave(l, *p);
1889 build_restore_work_registers(p);
1890 uasm_i_eret(p); /* return from trap */
1891
1892 #ifdef CONFIG_64BIT
1893 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1894 #endif
1895 }
1896
1897 static void __cpuinit build_r4000_tlb_load_handler(void)
1898 {
1899 u32 *p = handle_tlbl;
1900 struct uasm_label *l = labels;
1901 struct uasm_reloc *r = relocs;
1902 struct work_registers wr;
1903
1904 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1905 memset(labels, 0, sizeof(labels));
1906 memset(relocs, 0, sizeof(relocs));
1907
1908 if (bcm1250_m3_war()) {
1909 unsigned int segbits = 44;
1910
1911 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1912 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1913 uasm_i_xor(&p, K0, K0, K1);
1914 uasm_i_dsrl_safe(&p, K1, K0, 62);
1915 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1916 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1917 uasm_i_or(&p, K0, K0, K1);
1918 uasm_il_bnez(&p, &r, K0, label_leave);
1919 /* No need for uasm_i_nop */
1920 }
1921
1922 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1923 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1924 if (m4kc_tlbp_war())
1925 build_tlb_probe_entry(&p);
1926
1927 if (cpu_has_rixi) {
1928 /*
1929 * If the page is not _PAGE_VALID, RI or XI could not
1930 * have triggered it. Skip the expensive test..
1931 */
1932 if (use_bbit_insns()) {
1933 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1934 label_tlbl_goaround1);
1935 } else {
1936 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1937 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1938 }
1939 uasm_i_nop(&p);
1940
1941 uasm_i_tlbr(&p);
1942 /* Examine entrylo 0 or 1 based on ptr. */
1943 if (use_bbit_insns()) {
1944 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1945 } else {
1946 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1947 uasm_i_beqz(&p, wr.r3, 8);
1948 }
1949 /* load it in the delay slot*/
1950 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1951 /* load it if ptr is odd */
1952 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1953 /*
1954 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1955 * XI must have triggered it.
1956 */
1957 if (use_bbit_insns()) {
1958 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
1959 uasm_i_nop(&p);
1960 uasm_l_tlbl_goaround1(&l, p);
1961 } else {
1962 uasm_i_andi(&p, wr.r3, wr.r3, 2);
1963 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
1964 uasm_i_nop(&p);
1965 }
1966 uasm_l_tlbl_goaround1(&l, p);
1967 }
1968 build_make_valid(&p, &r, wr.r1, wr.r2);
1969 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
1970
1971 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1972 /*
1973 * This is the entry point when build_r4000_tlbchange_handler_head
1974 * spots a huge page.
1975 */
1976 uasm_l_tlb_huge_update(&l, p);
1977 iPTE_LW(&p, wr.r1, wr.r2);
1978 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1979 build_tlb_probe_entry(&p);
1980
1981 if (cpu_has_rixi) {
1982 /*
1983 * If the page is not _PAGE_VALID, RI or XI could not
1984 * have triggered it. Skip the expensive test..
1985 */
1986 if (use_bbit_insns()) {
1987 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1988 label_tlbl_goaround2);
1989 } else {
1990 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1991 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
1992 }
1993 uasm_i_nop(&p);
1994
1995 uasm_i_tlbr(&p);
1996 /* Examine entrylo 0 or 1 based on ptr. */
1997 if (use_bbit_insns()) {
1998 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1999 } else {
2000 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2001 uasm_i_beqz(&p, wr.r3, 8);
2002 }
2003 /* load it in the delay slot*/
2004 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2005 /* load it if ptr is odd */
2006 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2007 /*
2008 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2009 * XI must have triggered it.
2010 */
2011 if (use_bbit_insns()) {
2012 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2013 } else {
2014 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2015 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2016 }
2017 if (PM_DEFAULT_MASK == 0)
2018 uasm_i_nop(&p);
2019 /*
2020 * We clobbered C0_PAGEMASK, restore it. On the other branch
2021 * it is restored in build_huge_tlb_write_entry.
2022 */
2023 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2024
2025 uasm_l_tlbl_goaround2(&l, p);
2026 }
2027 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2028 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2029 #endif
2030
2031 uasm_l_nopage_tlbl(&l, p);
2032 build_restore_work_registers(&p);
2033 #ifdef CONFIG_CPU_MICROMIPS
2034 if ((unsigned long)tlb_do_page_fault_0 & 1) {
2035 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2036 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2037 uasm_i_jr(&p, K0);
2038 } else
2039 #endif
2040 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2041 uasm_i_nop(&p);
2042
2043 if ((p - handle_tlbl) > FASTPATH_SIZE)
2044 panic("TLB load handler fastpath space exceeded");
2045
2046 uasm_resolve_relocs(relocs, labels);
2047 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2048 (unsigned int)(p - handle_tlbl));
2049
2050 dump_handler("r4000_tlb_load", handle_tlbl, ARRAY_SIZE(handle_tlbl));
2051 }
2052
2053 static void __cpuinit build_r4000_tlb_store_handler(void)
2054 {
2055 u32 *p = handle_tlbs;
2056 struct uasm_label *l = labels;
2057 struct uasm_reloc *r = relocs;
2058 struct work_registers wr;
2059
2060 memset(handle_tlbs, 0, sizeof(handle_tlbs));
2061 memset(labels, 0, sizeof(labels));
2062 memset(relocs, 0, sizeof(relocs));
2063
2064 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2065 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2066 if (m4kc_tlbp_war())
2067 build_tlb_probe_entry(&p);
2068 build_make_write(&p, &r, wr.r1, wr.r2);
2069 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2070
2071 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2072 /*
2073 * This is the entry point when
2074 * build_r4000_tlbchange_handler_head spots a huge page.
2075 */
2076 uasm_l_tlb_huge_update(&l, p);
2077 iPTE_LW(&p, wr.r1, wr.r2);
2078 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2079 build_tlb_probe_entry(&p);
2080 uasm_i_ori(&p, wr.r1, wr.r1,
2081 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2082 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2083 #endif
2084
2085 uasm_l_nopage_tlbs(&l, p);
2086 build_restore_work_registers(&p);
2087 #ifdef CONFIG_CPU_MICROMIPS
2088 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2089 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2090 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2091 uasm_i_jr(&p, K0);
2092 } else
2093 #endif
2094 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2095 uasm_i_nop(&p);
2096
2097 if ((p - handle_tlbs) > FASTPATH_SIZE)
2098 panic("TLB store handler fastpath space exceeded");
2099
2100 uasm_resolve_relocs(relocs, labels);
2101 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2102 (unsigned int)(p - handle_tlbs));
2103
2104 dump_handler("r4000_tlb_store", handle_tlbs, ARRAY_SIZE(handle_tlbs));
2105 }
2106
2107 static void __cpuinit build_r4000_tlb_modify_handler(void)
2108 {
2109 u32 *p = handle_tlbm;
2110 struct uasm_label *l = labels;
2111 struct uasm_reloc *r = relocs;
2112 struct work_registers wr;
2113
2114 memset(handle_tlbm, 0, sizeof(handle_tlbm));
2115 memset(labels, 0, sizeof(labels));
2116 memset(relocs, 0, sizeof(relocs));
2117
2118 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2119 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2120 if (m4kc_tlbp_war())
2121 build_tlb_probe_entry(&p);
2122 /* Present and writable bits set, set accessed and dirty bits. */
2123 build_make_write(&p, &r, wr.r1, wr.r2);
2124 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2125
2126 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2127 /*
2128 * This is the entry point when
2129 * build_r4000_tlbchange_handler_head spots a huge page.
2130 */
2131 uasm_l_tlb_huge_update(&l, p);
2132 iPTE_LW(&p, wr.r1, wr.r2);
2133 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2134 build_tlb_probe_entry(&p);
2135 uasm_i_ori(&p, wr.r1, wr.r1,
2136 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2137 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2138 #endif
2139
2140 uasm_l_nopage_tlbm(&l, p);
2141 build_restore_work_registers(&p);
2142 #ifdef CONFIG_CPU_MICROMIPS
2143 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2144 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2145 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2146 uasm_i_jr(&p, K0);
2147 } else
2148 #endif
2149 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2150 uasm_i_nop(&p);
2151
2152 if ((p - handle_tlbm) > FASTPATH_SIZE)
2153 panic("TLB modify handler fastpath space exceeded");
2154
2155 uasm_resolve_relocs(relocs, labels);
2156 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2157 (unsigned int)(p - handle_tlbm));
2158
2159 dump_handler("r4000_tlb_modify", handle_tlbm, ARRAY_SIZE(handle_tlbm));
2160 }
2161
2162 void __cpuinit build_tlb_refill_handler(void)
2163 {
2164 /*
2165 * The refill handler is generated per-CPU, multi-node systems
2166 * may have local storage for it. The other handlers are only
2167 * needed once.
2168 */
2169 static int run_once = 0;
2170
2171 output_pgtable_bits_defines();
2172
2173 #ifdef CONFIG_64BIT
2174 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2175 #endif
2176
2177 switch (current_cpu_type()) {
2178 case CPU_R2000:
2179 case CPU_R3000:
2180 case CPU_R3000A:
2181 case CPU_R3081E:
2182 case CPU_TX3912:
2183 case CPU_TX3922:
2184 case CPU_TX3927:
2185 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2186 if (cpu_has_local_ebase)
2187 build_r3000_tlb_refill_handler();
2188 if (!run_once) {
2189 if (!cpu_has_local_ebase)
2190 build_r3000_tlb_refill_handler();
2191 build_r3000_tlb_load_handler();
2192 build_r3000_tlb_store_handler();
2193 build_r3000_tlb_modify_handler();
2194 run_once++;
2195 }
2196 #else
2197 panic("No R3000 TLB refill handler");
2198 #endif
2199 break;
2200
2201 case CPU_R6000:
2202 case CPU_R6000A:
2203 panic("No R6000 TLB refill handler yet");
2204 break;
2205
2206 case CPU_R8000:
2207 panic("No R8000 TLB refill handler yet");
2208 break;
2209
2210 default:
2211 if (!run_once) {
2212 scratch_reg = allocate_kscratch();
2213 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2214 build_r4000_setup_pgd();
2215 #endif
2216 build_r4000_tlb_load_handler();
2217 build_r4000_tlb_store_handler();
2218 build_r4000_tlb_modify_handler();
2219 if (!cpu_has_local_ebase)
2220 build_r4000_tlb_refill_handler();
2221 run_once++;
2222 }
2223 if (cpu_has_local_ebase)
2224 build_r4000_tlb_refill_handler();
2225 }
2226 }
2227
2228 void __cpuinit flush_tlb_handlers(void)
2229 {
2230 local_flush_icache_range((unsigned long)handle_tlbl,
2231 (unsigned long)handle_tlbl + sizeof(handle_tlbl));
2232 local_flush_icache_range((unsigned long)handle_tlbs,
2233 (unsigned long)handle_tlbs + sizeof(handle_tlbs));
2234 local_flush_icache_range((unsigned long)handle_tlbm,
2235 (unsigned long)handle_tlbm + sizeof(handle_tlbm));
2236 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2237 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd_array,
2238 (unsigned long)tlbmiss_handler_setup_pgd_array + sizeof(handle_tlbm));
2239 #endif
2240 }