Merge tag 'fcoe' into fixes
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / mips / mm / tlbex.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
13 *
14 * ... and the days got worse and worse and now you see
15 * I've gone completly out of my mind.
16 *
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
20 *
21 * (Condolences to Napoleon XIV)
22 */
23
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/init.h>
30 #include <linux/cache.h>
31
32 #include <asm/mmu_context.h>
33 #include <asm/cacheflush.h>
34 #include <asm/pgtable.h>
35 #include <asm/war.h>
36 #include <asm/uasm.h>
37 #include <asm/setup.h>
38
39 /*
40 * TLB load/store/modify handlers.
41 *
42 * Only the fastpath gets synthesized at runtime, the slowpath for
43 * do_page_fault remains normal asm.
44 */
45 extern void tlb_do_page_fault_0(void);
46 extern void tlb_do_page_fault_1(void);
47
48 struct work_registers {
49 int r1;
50 int r2;
51 int r3;
52 };
53
54 struct tlb_reg_save {
55 unsigned long a;
56 unsigned long b;
57 } ____cacheline_aligned_in_smp;
58
59 static struct tlb_reg_save handler_reg_save[NR_CPUS];
60
61 static inline int r45k_bvahwbug(void)
62 {
63 /* XXX: We should probe for the presence of this bug, but we don't. */
64 return 0;
65 }
66
67 static inline int r4k_250MHZhwbug(void)
68 {
69 /* XXX: We should probe for the presence of this bug, but we don't. */
70 return 0;
71 }
72
73 static inline int __maybe_unused bcm1250_m3_war(void)
74 {
75 return BCM1250_M3_WAR;
76 }
77
78 static inline int __maybe_unused r10000_llsc_war(void)
79 {
80 return R10000_LLSC_WAR;
81 }
82
83 static int use_bbit_insns(void)
84 {
85 switch (current_cpu_type()) {
86 case CPU_CAVIUM_OCTEON:
87 case CPU_CAVIUM_OCTEON_PLUS:
88 case CPU_CAVIUM_OCTEON2:
89 return 1;
90 default:
91 return 0;
92 }
93 }
94
95 static int use_lwx_insns(void)
96 {
97 switch (current_cpu_type()) {
98 case CPU_CAVIUM_OCTEON2:
99 return 1;
100 default:
101 return 0;
102 }
103 }
104 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
105 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
106 static bool scratchpad_available(void)
107 {
108 return true;
109 }
110 static int scratchpad_offset(int i)
111 {
112 /*
113 * CVMSEG starts at address -32768 and extends for
114 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
115 */
116 i += 1; /* Kernel use starts at the top and works down. */
117 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
118 }
119 #else
120 static bool scratchpad_available(void)
121 {
122 return false;
123 }
124 static int scratchpad_offset(int i)
125 {
126 BUG();
127 /* Really unreachable, but evidently some GCC want this. */
128 return 0;
129 }
130 #endif
131 /*
132 * Found by experiment: At least some revisions of the 4kc throw under
133 * some circumstances a machine check exception, triggered by invalid
134 * values in the index register. Delaying the tlbp instruction until
135 * after the next branch, plus adding an additional nop in front of
136 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
137 * why; it's not an issue caused by the core RTL.
138 *
139 */
140 static int __cpuinit m4kc_tlbp_war(void)
141 {
142 return (current_cpu_data.processor_id & 0xffff00) ==
143 (PRID_COMP_MIPS | PRID_IMP_4KC);
144 }
145
146 /* Handle labels (which must be positive integers). */
147 enum label_id {
148 label_second_part = 1,
149 label_leave,
150 label_vmalloc,
151 label_vmalloc_done,
152 label_tlbw_hazard_0,
153 label_split = label_tlbw_hazard_0 + 8,
154 label_tlbl_goaround1,
155 label_tlbl_goaround2,
156 label_nopage_tlbl,
157 label_nopage_tlbs,
158 label_nopage_tlbm,
159 label_smp_pgtable_change,
160 label_r3000_write_probe_fail,
161 label_large_segbits_fault,
162 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
163 label_tlb_huge_update,
164 #endif
165 };
166
167 UASM_L_LA(_second_part)
168 UASM_L_LA(_leave)
169 UASM_L_LA(_vmalloc)
170 UASM_L_LA(_vmalloc_done)
171 /* _tlbw_hazard_x is handled differently. */
172 UASM_L_LA(_split)
173 UASM_L_LA(_tlbl_goaround1)
174 UASM_L_LA(_tlbl_goaround2)
175 UASM_L_LA(_nopage_tlbl)
176 UASM_L_LA(_nopage_tlbs)
177 UASM_L_LA(_nopage_tlbm)
178 UASM_L_LA(_smp_pgtable_change)
179 UASM_L_LA(_r3000_write_probe_fail)
180 UASM_L_LA(_large_segbits_fault)
181 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
182 UASM_L_LA(_tlb_huge_update)
183 #endif
184
185 static int __cpuinitdata hazard_instance;
186
187 static void __cpuinit uasm_bgezl_hazard(u32 **p,
188 struct uasm_reloc **r,
189 int instance)
190 {
191 switch (instance) {
192 case 0 ... 7:
193 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
194 return;
195 default:
196 BUG();
197 }
198 }
199
200 static void __cpuinit uasm_bgezl_label(struct uasm_label **l,
201 u32 **p,
202 int instance)
203 {
204 switch (instance) {
205 case 0 ... 7:
206 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
207 break;
208 default:
209 BUG();
210 }
211 }
212
213 /*
214 * pgtable bits are assigned dynamically depending on processor feature
215 * and statically based on kernel configuration. This spits out the actual
216 * values the kernel is using. Required to make sense from disassembled
217 * TLB exception handlers.
218 */
219 static void output_pgtable_bits_defines(void)
220 {
221 #define pr_define(fmt, ...) \
222 pr_debug("#define " fmt, ##__VA_ARGS__)
223
224 pr_debug("#include <asm/asm.h>\n");
225 pr_debug("#include <asm/regdef.h>\n");
226 pr_debug("\n");
227
228 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
229 pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
230 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
231 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
232 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
233 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
234 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
235 pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
236 #endif
237 if (cpu_has_rixi) {
238 #ifdef _PAGE_NO_EXEC_SHIFT
239 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
240 #endif
241 #ifdef _PAGE_NO_READ_SHIFT
242 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
243 #endif
244 }
245 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
246 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
247 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
248 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
249 pr_debug("\n");
250 }
251
252 static inline void dump_handler(const char *symbol, const u32 *handler, int count)
253 {
254 int i;
255
256 pr_debug("LEAF(%s)\n", symbol);
257
258 pr_debug("\t.set push\n");
259 pr_debug("\t.set noreorder\n");
260
261 for (i = 0; i < count; i++)
262 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
263
264 pr_debug("\t.set\tpop\n");
265
266 pr_debug("\tEND(%s)\n", symbol);
267 }
268
269 /* The only general purpose registers allowed in TLB handlers. */
270 #define K0 26
271 #define K1 27
272
273 /* Some CP0 registers */
274 #define C0_INDEX 0, 0
275 #define C0_ENTRYLO0 2, 0
276 #define C0_TCBIND 2, 2
277 #define C0_ENTRYLO1 3, 0
278 #define C0_CONTEXT 4, 0
279 #define C0_PAGEMASK 5, 0
280 #define C0_BADVADDR 8, 0
281 #define C0_ENTRYHI 10, 0
282 #define C0_EPC 14, 0
283 #define C0_XCONTEXT 20, 0
284
285 #ifdef CONFIG_64BIT
286 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
287 #else
288 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
289 #endif
290
291 /* The worst case length of the handler is around 18 instructions for
292 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
293 * Maximum space available is 32 instructions for R3000 and 64
294 * instructions for R4000.
295 *
296 * We deliberately chose a buffer size of 128, so we won't scribble
297 * over anything important on overflow before we panic.
298 */
299 static u32 tlb_handler[128] __cpuinitdata;
300
301 /* simply assume worst case size for labels and relocs */
302 static struct uasm_label labels[128] __cpuinitdata;
303 static struct uasm_reloc relocs[128] __cpuinitdata;
304
305 #ifdef CONFIG_64BIT
306 static int check_for_high_segbits __cpuinitdata;
307 #endif
308
309 static void __cpuinit insn_fixup(unsigned int **start, unsigned int **stop,
310 unsigned int i_const)
311 {
312 unsigned int **p;
313
314 for (p = start; p < stop; p++) {
315 #ifndef CONFIG_CPU_MICROMIPS
316 unsigned int *ip;
317
318 ip = *p;
319 *ip = (*ip & 0xffff0000) | i_const;
320 #else
321 unsigned short *ip;
322
323 ip = ((unsigned short *)((unsigned int)*p - 1));
324 if ((*ip & 0xf000) == 0x4000) {
325 *ip &= 0xfff1;
326 *ip |= (i_const << 1);
327 } else if ((*ip & 0xf000) == 0x6000) {
328 *ip &= 0xfff1;
329 *ip |= ((i_const >> 2) << 1);
330 } else {
331 ip++;
332 *ip = i_const;
333 }
334 #endif
335 local_flush_icache_range((unsigned long)ip,
336 (unsigned long)ip + sizeof(*ip));
337 }
338 }
339
340 #define asid_insn_fixup(section, const) \
341 do { \
342 extern unsigned int *__start_ ## section; \
343 extern unsigned int *__stop_ ## section; \
344 insn_fixup(&__start_ ## section, &__stop_ ## section, const); \
345 } while(0)
346
347 /*
348 * Caller is assumed to flush the caches before the first context switch.
349 */
350 static void __cpuinit setup_asid(unsigned int inc, unsigned int mask,
351 unsigned int version_mask,
352 unsigned int first_version)
353 {
354 extern asmlinkage void handle_ri_rdhwr_vivt(void);
355 unsigned long *vivt_exc;
356
357 #ifdef CONFIG_CPU_MICROMIPS
358 /*
359 * Worst case optimised microMIPS addiu instructions support
360 * only a 3-bit immediate value.
361 */
362 if(inc > 7)
363 panic("Invalid ASID increment value!");
364 #endif
365 asid_insn_fixup(__asid_inc, inc);
366 asid_insn_fixup(__asid_mask, mask);
367 asid_insn_fixup(__asid_version_mask, version_mask);
368 asid_insn_fixup(__asid_first_version, first_version);
369
370 /* Patch up the 'handle_ri_rdhwr_vivt' handler. */
371 vivt_exc = (unsigned long *) &handle_ri_rdhwr_vivt;
372 #ifdef CONFIG_CPU_MICROMIPS
373 vivt_exc = (unsigned long *)((unsigned long) vivt_exc - 1);
374 #endif
375 vivt_exc++;
376 *vivt_exc = (*vivt_exc & ~mask) | mask;
377
378 current_cpu_data.asid_cache = first_version;
379 }
380
381 static int check_for_high_segbits __cpuinitdata;
382
383 static unsigned int kscratch_used_mask __cpuinitdata;
384
385 static int __cpuinit allocate_kscratch(void)
386 {
387 int r;
388 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
389
390 r = ffs(a);
391
392 if (r == 0)
393 return -1;
394
395 r--; /* make it zero based */
396
397 kscratch_used_mask |= (1 << r);
398
399 return r;
400 }
401
402 static int scratch_reg __cpuinitdata;
403 static int pgd_reg __cpuinitdata;
404 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
405
406 static struct work_registers __cpuinit build_get_work_registers(u32 **p)
407 {
408 struct work_registers r;
409
410 int smp_processor_id_reg;
411 int smp_processor_id_sel;
412 int smp_processor_id_shift;
413
414 if (scratch_reg > 0) {
415 /* Save in CPU local C0_KScratch? */
416 UASM_i_MTC0(p, 1, 31, scratch_reg);
417 r.r1 = K0;
418 r.r2 = K1;
419 r.r3 = 1;
420 return r;
421 }
422
423 if (num_possible_cpus() > 1) {
424 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
425 smp_processor_id_shift = 51;
426 smp_processor_id_reg = 20; /* XContext */
427 smp_processor_id_sel = 0;
428 #else
429 # ifdef CONFIG_32BIT
430 smp_processor_id_shift = 25;
431 smp_processor_id_reg = 4; /* Context */
432 smp_processor_id_sel = 0;
433 # endif
434 # ifdef CONFIG_64BIT
435 smp_processor_id_shift = 26;
436 smp_processor_id_reg = 4; /* Context */
437 smp_processor_id_sel = 0;
438 # endif
439 #endif
440 /* Get smp_processor_id */
441 UASM_i_MFC0(p, K0, smp_processor_id_reg, smp_processor_id_sel);
442 UASM_i_SRL_SAFE(p, K0, K0, smp_processor_id_shift);
443
444 /* handler_reg_save index in K0 */
445 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
446
447 UASM_i_LA(p, K1, (long)&handler_reg_save);
448 UASM_i_ADDU(p, K0, K0, K1);
449 } else {
450 UASM_i_LA(p, K0, (long)&handler_reg_save);
451 }
452 /* K0 now points to save area, save $1 and $2 */
453 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
454 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
455
456 r.r1 = K1;
457 r.r2 = 1;
458 r.r3 = 2;
459 return r;
460 }
461
462 static void __cpuinit build_restore_work_registers(u32 **p)
463 {
464 if (scratch_reg > 0) {
465 UASM_i_MFC0(p, 1, 31, scratch_reg);
466 return;
467 }
468 /* K0 already points to save area, restore $1 and $2 */
469 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
470 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
471 }
472
473 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
474
475 /*
476 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
477 * we cannot do r3000 under these circumstances.
478 *
479 * Declare pgd_current here instead of including mmu_context.h to avoid type
480 * conflicts for tlbmiss_handler_setup_pgd
481 */
482 extern unsigned long pgd_current[];
483
484 /*
485 * The R3000 TLB handler is simple.
486 */
487 static void __cpuinit build_r3000_tlb_refill_handler(void)
488 {
489 long pgdc = (long)pgd_current;
490 u32 *p;
491
492 memset(tlb_handler, 0, sizeof(tlb_handler));
493 p = tlb_handler;
494
495 uasm_i_mfc0(&p, K0, C0_BADVADDR);
496 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
497 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
498 uasm_i_srl(&p, K0, K0, 22); /* load delay */
499 uasm_i_sll(&p, K0, K0, 2);
500 uasm_i_addu(&p, K1, K1, K0);
501 uasm_i_mfc0(&p, K0, C0_CONTEXT);
502 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
503 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
504 uasm_i_addu(&p, K1, K1, K0);
505 uasm_i_lw(&p, K0, 0, K1);
506 uasm_i_nop(&p); /* load delay */
507 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
508 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
509 uasm_i_tlbwr(&p); /* cp0 delay */
510 uasm_i_jr(&p, K1);
511 uasm_i_rfe(&p); /* branch delay */
512
513 if (p > tlb_handler + 32)
514 panic("TLB refill handler space exceeded");
515
516 pr_debug("Wrote TLB refill handler (%u instructions).\n",
517 (unsigned int)(p - tlb_handler));
518
519 memcpy((void *)ebase, tlb_handler, 0x80);
520
521 dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
522 }
523 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
524
525 /*
526 * The R4000 TLB handler is much more complicated. We have two
527 * consecutive handler areas with 32 instructions space each.
528 * Since they aren't used at the same time, we can overflow in the
529 * other one.To keep things simple, we first assume linear space,
530 * then we relocate it to the final handler layout as needed.
531 */
532 static u32 final_handler[64] __cpuinitdata;
533
534 /*
535 * Hazards
536 *
537 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
538 * 2. A timing hazard exists for the TLBP instruction.
539 *
540 * stalling_instruction
541 * TLBP
542 *
543 * The JTLB is being read for the TLBP throughout the stall generated by the
544 * previous instruction. This is not really correct as the stalling instruction
545 * can modify the address used to access the JTLB. The failure symptom is that
546 * the TLBP instruction will use an address created for the stalling instruction
547 * and not the address held in C0_ENHI and thus report the wrong results.
548 *
549 * The software work-around is to not allow the instruction preceding the TLBP
550 * to stall - make it an NOP or some other instruction guaranteed not to stall.
551 *
552 * Errata 2 will not be fixed. This errata is also on the R5000.
553 *
554 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
555 */
556 static void __cpuinit __maybe_unused build_tlb_probe_entry(u32 **p)
557 {
558 switch (current_cpu_type()) {
559 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
560 case CPU_R4600:
561 case CPU_R4700:
562 case CPU_R5000:
563 case CPU_NEVADA:
564 uasm_i_nop(p);
565 uasm_i_tlbp(p);
566 break;
567
568 default:
569 uasm_i_tlbp(p);
570 break;
571 }
572 }
573
574 /*
575 * Write random or indexed TLB entry, and care about the hazards from
576 * the preceding mtc0 and for the following eret.
577 */
578 enum tlb_write_entry { tlb_random, tlb_indexed };
579
580 static void __cpuinit build_tlb_write_entry(u32 **p, struct uasm_label **l,
581 struct uasm_reloc **r,
582 enum tlb_write_entry wmode)
583 {
584 void(*tlbw)(u32 **) = NULL;
585
586 switch (wmode) {
587 case tlb_random: tlbw = uasm_i_tlbwr; break;
588 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
589 }
590
591 if (cpu_has_mips_r2) {
592 /*
593 * The architecture spec says an ehb is required here,
594 * but a number of cores do not have the hazard and
595 * using an ehb causes an expensive pipeline stall.
596 */
597 switch (current_cpu_type()) {
598 case CPU_M14KC:
599 case CPU_74K:
600 break;
601
602 default:
603 uasm_i_ehb(p);
604 break;
605 }
606 tlbw(p);
607 return;
608 }
609
610 switch (current_cpu_type()) {
611 case CPU_R4000PC:
612 case CPU_R4000SC:
613 case CPU_R4000MC:
614 case CPU_R4400PC:
615 case CPU_R4400SC:
616 case CPU_R4400MC:
617 /*
618 * This branch uses up a mtc0 hazard nop slot and saves
619 * two nops after the tlbw instruction.
620 */
621 uasm_bgezl_hazard(p, r, hazard_instance);
622 tlbw(p);
623 uasm_bgezl_label(l, p, hazard_instance);
624 hazard_instance++;
625 uasm_i_nop(p);
626 break;
627
628 case CPU_R4600:
629 case CPU_R4700:
630 uasm_i_nop(p);
631 tlbw(p);
632 uasm_i_nop(p);
633 break;
634
635 case CPU_R5000:
636 case CPU_NEVADA:
637 uasm_i_nop(p); /* QED specifies 2 nops hazard */
638 uasm_i_nop(p); /* QED specifies 2 nops hazard */
639 tlbw(p);
640 break;
641
642 case CPU_R4300:
643 case CPU_5KC:
644 case CPU_TX49XX:
645 case CPU_PR4450:
646 case CPU_XLR:
647 uasm_i_nop(p);
648 tlbw(p);
649 break;
650
651 case CPU_R10000:
652 case CPU_R12000:
653 case CPU_R14000:
654 case CPU_4KC:
655 case CPU_4KEC:
656 case CPU_M14KC:
657 case CPU_M14KEC:
658 case CPU_SB1:
659 case CPU_SB1A:
660 case CPU_4KSC:
661 case CPU_20KC:
662 case CPU_25KF:
663 case CPU_BMIPS32:
664 case CPU_BMIPS3300:
665 case CPU_BMIPS4350:
666 case CPU_BMIPS4380:
667 case CPU_BMIPS5000:
668 case CPU_LOONGSON2:
669 case CPU_R5500:
670 if (m4kc_tlbp_war())
671 uasm_i_nop(p);
672 case CPU_ALCHEMY:
673 tlbw(p);
674 break;
675
676 case CPU_RM7000:
677 uasm_i_nop(p);
678 uasm_i_nop(p);
679 uasm_i_nop(p);
680 uasm_i_nop(p);
681 tlbw(p);
682 break;
683
684 case CPU_VR4111:
685 case CPU_VR4121:
686 case CPU_VR4122:
687 case CPU_VR4181:
688 case CPU_VR4181A:
689 uasm_i_nop(p);
690 uasm_i_nop(p);
691 tlbw(p);
692 uasm_i_nop(p);
693 uasm_i_nop(p);
694 break;
695
696 case CPU_VR4131:
697 case CPU_VR4133:
698 case CPU_R5432:
699 uasm_i_nop(p);
700 uasm_i_nop(p);
701 tlbw(p);
702 break;
703
704 case CPU_JZRISC:
705 tlbw(p);
706 uasm_i_nop(p);
707 break;
708
709 default:
710 panic("No TLB refill handler yet (CPU type: %d)",
711 current_cpu_data.cputype);
712 break;
713 }
714 }
715
716 static __cpuinit __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
717 unsigned int reg)
718 {
719 if (cpu_has_rixi) {
720 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
721 } else {
722 #ifdef CONFIG_64BIT_PHYS_ADDR
723 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
724 #else
725 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
726 #endif
727 }
728 }
729
730 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
731
732 static __cpuinit void build_restore_pagemask(u32 **p,
733 struct uasm_reloc **r,
734 unsigned int tmp,
735 enum label_id lid,
736 int restore_scratch)
737 {
738 if (restore_scratch) {
739 /* Reset default page size */
740 if (PM_DEFAULT_MASK >> 16) {
741 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
742 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
743 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
744 uasm_il_b(p, r, lid);
745 } else if (PM_DEFAULT_MASK) {
746 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
747 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
748 uasm_il_b(p, r, lid);
749 } else {
750 uasm_i_mtc0(p, 0, C0_PAGEMASK);
751 uasm_il_b(p, r, lid);
752 }
753 if (scratch_reg > 0)
754 UASM_i_MFC0(p, 1, 31, scratch_reg);
755 else
756 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
757 } else {
758 /* Reset default page size */
759 if (PM_DEFAULT_MASK >> 16) {
760 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
761 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
762 uasm_il_b(p, r, lid);
763 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
764 } else if (PM_DEFAULT_MASK) {
765 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
766 uasm_il_b(p, r, lid);
767 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
768 } else {
769 uasm_il_b(p, r, lid);
770 uasm_i_mtc0(p, 0, C0_PAGEMASK);
771 }
772 }
773 }
774
775 static __cpuinit void build_huge_tlb_write_entry(u32 **p,
776 struct uasm_label **l,
777 struct uasm_reloc **r,
778 unsigned int tmp,
779 enum tlb_write_entry wmode,
780 int restore_scratch)
781 {
782 /* Set huge page tlb entry size */
783 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
784 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
785 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
786
787 build_tlb_write_entry(p, l, r, wmode);
788
789 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
790 }
791
792 /*
793 * Check if Huge PTE is present, if so then jump to LABEL.
794 */
795 static void __cpuinit
796 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
797 unsigned int pmd, int lid)
798 {
799 UASM_i_LW(p, tmp, 0, pmd);
800 if (use_bbit_insns()) {
801 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
802 } else {
803 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
804 uasm_il_bnez(p, r, tmp, lid);
805 }
806 }
807
808 static __cpuinit void build_huge_update_entries(u32 **p,
809 unsigned int pte,
810 unsigned int tmp)
811 {
812 int small_sequence;
813
814 /*
815 * A huge PTE describes an area the size of the
816 * configured huge page size. This is twice the
817 * of the large TLB entry size we intend to use.
818 * A TLB entry half the size of the configured
819 * huge page size is configured into entrylo0
820 * and entrylo1 to cover the contiguous huge PTE
821 * address space.
822 */
823 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
824
825 /* We can clobber tmp. It isn't used after this.*/
826 if (!small_sequence)
827 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
828
829 build_convert_pte_to_entrylo(p, pte);
830 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
831 /* convert to entrylo1 */
832 if (small_sequence)
833 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
834 else
835 UASM_i_ADDU(p, pte, pte, tmp);
836
837 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
838 }
839
840 static __cpuinit void build_huge_handler_tail(u32 **p,
841 struct uasm_reloc **r,
842 struct uasm_label **l,
843 unsigned int pte,
844 unsigned int ptr)
845 {
846 #ifdef CONFIG_SMP
847 UASM_i_SC(p, pte, 0, ptr);
848 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
849 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
850 #else
851 UASM_i_SW(p, pte, 0, ptr);
852 #endif
853 build_huge_update_entries(p, pte, ptr);
854 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
855 }
856 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
857
858 #ifdef CONFIG_64BIT
859 /*
860 * TMP and PTR are scratch.
861 * TMP will be clobbered, PTR will hold the pmd entry.
862 */
863 static void __cpuinit
864 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
865 unsigned int tmp, unsigned int ptr)
866 {
867 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
868 long pgdc = (long)pgd_current;
869 #endif
870 /*
871 * The vmalloc handling is not in the hotpath.
872 */
873 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
874
875 if (check_for_high_segbits) {
876 /*
877 * The kernel currently implicitely assumes that the
878 * MIPS SEGBITS parameter for the processor is
879 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
880 * allocate virtual addresses outside the maximum
881 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
882 * that doesn't prevent user code from accessing the
883 * higher xuseg addresses. Here, we make sure that
884 * everything but the lower xuseg addresses goes down
885 * the module_alloc/vmalloc path.
886 */
887 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
888 uasm_il_bnez(p, r, ptr, label_vmalloc);
889 } else {
890 uasm_il_bltz(p, r, tmp, label_vmalloc);
891 }
892 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
893
894 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
895 if (pgd_reg != -1) {
896 /* pgd is in pgd_reg */
897 UASM_i_MFC0(p, ptr, 31, pgd_reg);
898 } else {
899 /*
900 * &pgd << 11 stored in CONTEXT [23..63].
901 */
902 UASM_i_MFC0(p, ptr, C0_CONTEXT);
903
904 /* Clear lower 23 bits of context. */
905 uasm_i_dins(p, ptr, 0, 0, 23);
906
907 /* 1 0 1 0 1 << 6 xkphys cached */
908 uasm_i_ori(p, ptr, ptr, 0x540);
909 uasm_i_drotr(p, ptr, ptr, 11);
910 }
911 #elif defined(CONFIG_SMP)
912 # ifdef CONFIG_MIPS_MT_SMTC
913 /*
914 * SMTC uses TCBind value as "CPU" index
915 */
916 uasm_i_mfc0(p, ptr, C0_TCBIND);
917 uasm_i_dsrl_safe(p, ptr, ptr, 19);
918 # else
919 /*
920 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
921 * stored in CONTEXT.
922 */
923 uasm_i_dmfc0(p, ptr, C0_CONTEXT);
924 uasm_i_dsrl_safe(p, ptr, ptr, 23);
925 # endif
926 UASM_i_LA_mostly(p, tmp, pgdc);
927 uasm_i_daddu(p, ptr, ptr, tmp);
928 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
929 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
930 #else
931 UASM_i_LA_mostly(p, ptr, pgdc);
932 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
933 #endif
934
935 uasm_l_vmalloc_done(l, *p);
936
937 /* get pgd offset in bytes */
938 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
939
940 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
941 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
942 #ifndef __PAGETABLE_PMD_FOLDED
943 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
944 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
945 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
946 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
947 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
948 #endif
949 }
950
951 /*
952 * BVADDR is the faulting address, PTR is scratch.
953 * PTR will hold the pgd for vmalloc.
954 */
955 static void __cpuinit
956 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
957 unsigned int bvaddr, unsigned int ptr,
958 enum vmalloc64_mode mode)
959 {
960 long swpd = (long)swapper_pg_dir;
961 int single_insn_swpd;
962 int did_vmalloc_branch = 0;
963
964 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
965
966 uasm_l_vmalloc(l, *p);
967
968 if (mode != not_refill && check_for_high_segbits) {
969 if (single_insn_swpd) {
970 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
971 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
972 did_vmalloc_branch = 1;
973 /* fall through */
974 } else {
975 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
976 }
977 }
978 if (!did_vmalloc_branch) {
979 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
980 uasm_il_b(p, r, label_vmalloc_done);
981 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
982 } else {
983 UASM_i_LA_mostly(p, ptr, swpd);
984 uasm_il_b(p, r, label_vmalloc_done);
985 if (uasm_in_compat_space_p(swpd))
986 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
987 else
988 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
989 }
990 }
991 if (mode != not_refill && check_for_high_segbits) {
992 uasm_l_large_segbits_fault(l, *p);
993 /*
994 * We get here if we are an xsseg address, or if we are
995 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
996 *
997 * Ignoring xsseg (assume disabled so would generate
998 * (address errors?), the only remaining possibility
999 * is the upper xuseg addresses. On processors with
1000 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
1001 * addresses would have taken an address error. We try
1002 * to mimic that here by taking a load/istream page
1003 * fault.
1004 */
1005 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
1006 uasm_i_jr(p, ptr);
1007
1008 if (mode == refill_scratch) {
1009 if (scratch_reg > 0)
1010 UASM_i_MFC0(p, 1, 31, scratch_reg);
1011 else
1012 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
1013 } else {
1014 uasm_i_nop(p);
1015 }
1016 }
1017 }
1018
1019 #else /* !CONFIG_64BIT */
1020
1021 /*
1022 * TMP and PTR are scratch.
1023 * TMP will be clobbered, PTR will hold the pgd entry.
1024 */
1025 static void __cpuinit __maybe_unused
1026 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
1027 {
1028 long pgdc = (long)pgd_current;
1029
1030 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
1031 #ifdef CONFIG_SMP
1032 #ifdef CONFIG_MIPS_MT_SMTC
1033 /*
1034 * SMTC uses TCBind value as "CPU" index
1035 */
1036 uasm_i_mfc0(p, ptr, C0_TCBIND);
1037 UASM_i_LA_mostly(p, tmp, pgdc);
1038 uasm_i_srl(p, ptr, ptr, 19);
1039 #else
1040 /*
1041 * smp_processor_id() << 3 is stored in CONTEXT.
1042 */
1043 uasm_i_mfc0(p, ptr, C0_CONTEXT);
1044 UASM_i_LA_mostly(p, tmp, pgdc);
1045 uasm_i_srl(p, ptr, ptr, 23);
1046 #endif
1047 uasm_i_addu(p, ptr, tmp, ptr);
1048 #else
1049 UASM_i_LA_mostly(p, ptr, pgdc);
1050 #endif
1051 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
1052 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1053 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
1054 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
1055 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
1056 }
1057
1058 #endif /* !CONFIG_64BIT */
1059
1060 static void __cpuinit build_adjust_context(u32 **p, unsigned int ctx)
1061 {
1062 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
1063 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
1064
1065 switch (current_cpu_type()) {
1066 case CPU_VR41XX:
1067 case CPU_VR4111:
1068 case CPU_VR4121:
1069 case CPU_VR4122:
1070 case CPU_VR4131:
1071 case CPU_VR4181:
1072 case CPU_VR4181A:
1073 case CPU_VR4133:
1074 shift += 2;
1075 break;
1076
1077 default:
1078 break;
1079 }
1080
1081 if (shift)
1082 UASM_i_SRL(p, ctx, ctx, shift);
1083 uasm_i_andi(p, ctx, ctx, mask);
1084 }
1085
1086 static void __cpuinit build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1087 {
1088 /*
1089 * Bug workaround for the Nevada. It seems as if under certain
1090 * circumstances the move from cp0_context might produce a
1091 * bogus result when the mfc0 instruction and its consumer are
1092 * in a different cacheline or a load instruction, probably any
1093 * memory reference, is between them.
1094 */
1095 switch (current_cpu_type()) {
1096 case CPU_NEVADA:
1097 UASM_i_LW(p, ptr, 0, ptr);
1098 GET_CONTEXT(p, tmp); /* get context reg */
1099 break;
1100
1101 default:
1102 GET_CONTEXT(p, tmp); /* get context reg */
1103 UASM_i_LW(p, ptr, 0, ptr);
1104 break;
1105 }
1106
1107 build_adjust_context(p, tmp);
1108 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1109 }
1110
1111 static void __cpuinit build_update_entries(u32 **p, unsigned int tmp,
1112 unsigned int ptep)
1113 {
1114 /*
1115 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1116 * Kernel is a special case. Only a few CPUs use it.
1117 */
1118 #ifdef CONFIG_64BIT_PHYS_ADDR
1119 if (cpu_has_64bits) {
1120 uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
1121 uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1122 if (cpu_has_rixi) {
1123 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1124 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1125 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1126 } else {
1127 uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1128 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1129 uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1130 }
1131 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1132 } else {
1133 int pte_off_even = sizeof(pte_t) / 2;
1134 int pte_off_odd = pte_off_even + sizeof(pte_t);
1135
1136 /* The pte entries are pre-shifted */
1137 uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1138 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1139 uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1140 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1141 }
1142 #else
1143 UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1144 UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1145 if (r45k_bvahwbug())
1146 build_tlb_probe_entry(p);
1147 if (cpu_has_rixi) {
1148 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1149 if (r4k_250MHZhwbug())
1150 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1151 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1152 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1153 } else {
1154 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1155 if (r4k_250MHZhwbug())
1156 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1157 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1158 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1159 if (r45k_bvahwbug())
1160 uasm_i_mfc0(p, tmp, C0_INDEX);
1161 }
1162 if (r4k_250MHZhwbug())
1163 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1164 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1165 #endif
1166 }
1167
1168 struct mips_huge_tlb_info {
1169 int huge_pte;
1170 int restore_scratch;
1171 };
1172
1173 static struct mips_huge_tlb_info __cpuinit
1174 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1175 struct uasm_reloc **r, unsigned int tmp,
1176 unsigned int ptr, int c0_scratch)
1177 {
1178 struct mips_huge_tlb_info rv;
1179 unsigned int even, odd;
1180 int vmalloc_branch_delay_filled = 0;
1181 const int scratch = 1; /* Our extra working register */
1182
1183 rv.huge_pte = scratch;
1184 rv.restore_scratch = 0;
1185
1186 if (check_for_high_segbits) {
1187 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1188
1189 if (pgd_reg != -1)
1190 UASM_i_MFC0(p, ptr, 31, pgd_reg);
1191 else
1192 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1193
1194 if (c0_scratch >= 0)
1195 UASM_i_MTC0(p, scratch, 31, c0_scratch);
1196 else
1197 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1198
1199 uasm_i_dsrl_safe(p, scratch, tmp,
1200 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1201 uasm_il_bnez(p, r, scratch, label_vmalloc);
1202
1203 if (pgd_reg == -1) {
1204 vmalloc_branch_delay_filled = 1;
1205 /* Clear lower 23 bits of context. */
1206 uasm_i_dins(p, ptr, 0, 0, 23);
1207 }
1208 } else {
1209 if (pgd_reg != -1)
1210 UASM_i_MFC0(p, ptr, 31, pgd_reg);
1211 else
1212 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1213
1214 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1215
1216 if (c0_scratch >= 0)
1217 UASM_i_MTC0(p, scratch, 31, c0_scratch);
1218 else
1219 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1220
1221 if (pgd_reg == -1)
1222 /* Clear lower 23 bits of context. */
1223 uasm_i_dins(p, ptr, 0, 0, 23);
1224
1225 uasm_il_bltz(p, r, tmp, label_vmalloc);
1226 }
1227
1228 if (pgd_reg == -1) {
1229 vmalloc_branch_delay_filled = 1;
1230 /* 1 0 1 0 1 << 6 xkphys cached */
1231 uasm_i_ori(p, ptr, ptr, 0x540);
1232 uasm_i_drotr(p, ptr, ptr, 11);
1233 }
1234
1235 #ifdef __PAGETABLE_PMD_FOLDED
1236 #define LOC_PTEP scratch
1237 #else
1238 #define LOC_PTEP ptr
1239 #endif
1240
1241 if (!vmalloc_branch_delay_filled)
1242 /* get pgd offset in bytes */
1243 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1244
1245 uasm_l_vmalloc_done(l, *p);
1246
1247 /*
1248 * tmp ptr
1249 * fall-through case = badvaddr *pgd_current
1250 * vmalloc case = badvaddr swapper_pg_dir
1251 */
1252
1253 if (vmalloc_branch_delay_filled)
1254 /* get pgd offset in bytes */
1255 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1256
1257 #ifdef __PAGETABLE_PMD_FOLDED
1258 GET_CONTEXT(p, tmp); /* get context reg */
1259 #endif
1260 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1261
1262 if (use_lwx_insns()) {
1263 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1264 } else {
1265 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1266 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1267 }
1268
1269 #ifndef __PAGETABLE_PMD_FOLDED
1270 /* get pmd offset in bytes */
1271 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1272 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1273 GET_CONTEXT(p, tmp); /* get context reg */
1274
1275 if (use_lwx_insns()) {
1276 UASM_i_LWX(p, scratch, scratch, ptr);
1277 } else {
1278 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1279 UASM_i_LW(p, scratch, 0, ptr);
1280 }
1281 #endif
1282 /* Adjust the context during the load latency. */
1283 build_adjust_context(p, tmp);
1284
1285 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1286 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1287 /*
1288 * The in the LWX case we don't want to do the load in the
1289 * delay slot. It cannot issue in the same cycle and may be
1290 * speculative and unneeded.
1291 */
1292 if (use_lwx_insns())
1293 uasm_i_nop(p);
1294 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1295
1296
1297 /* build_update_entries */
1298 if (use_lwx_insns()) {
1299 even = ptr;
1300 odd = tmp;
1301 UASM_i_LWX(p, even, scratch, tmp);
1302 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1303 UASM_i_LWX(p, odd, scratch, tmp);
1304 } else {
1305 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1306 even = tmp;
1307 odd = ptr;
1308 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1309 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1310 }
1311 if (cpu_has_rixi) {
1312 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1313 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1314 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1315 } else {
1316 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1317 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1318 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1319 }
1320 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1321
1322 if (c0_scratch >= 0) {
1323 UASM_i_MFC0(p, scratch, 31, c0_scratch);
1324 build_tlb_write_entry(p, l, r, tlb_random);
1325 uasm_l_leave(l, *p);
1326 rv.restore_scratch = 1;
1327 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1328 build_tlb_write_entry(p, l, r, tlb_random);
1329 uasm_l_leave(l, *p);
1330 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1331 } else {
1332 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1333 build_tlb_write_entry(p, l, r, tlb_random);
1334 uasm_l_leave(l, *p);
1335 rv.restore_scratch = 1;
1336 }
1337
1338 uasm_i_eret(p); /* return from trap */
1339
1340 return rv;
1341 }
1342
1343 /*
1344 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1345 * because EXL == 0. If we wrap, we can also use the 32 instruction
1346 * slots before the XTLB refill exception handler which belong to the
1347 * unused TLB refill exception.
1348 */
1349 #define MIPS64_REFILL_INSNS 32
1350
1351 static void __cpuinit build_r4000_tlb_refill_handler(void)
1352 {
1353 u32 *p = tlb_handler;
1354 struct uasm_label *l = labels;
1355 struct uasm_reloc *r = relocs;
1356 u32 *f;
1357 unsigned int final_len;
1358 struct mips_huge_tlb_info htlb_info __maybe_unused;
1359 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1360
1361 memset(tlb_handler, 0, sizeof(tlb_handler));
1362 memset(labels, 0, sizeof(labels));
1363 memset(relocs, 0, sizeof(relocs));
1364 memset(final_handler, 0, sizeof(final_handler));
1365
1366 if ((scratch_reg > 0 || scratchpad_available()) && use_bbit_insns()) {
1367 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1368 scratch_reg);
1369 vmalloc_mode = refill_scratch;
1370 } else {
1371 htlb_info.huge_pte = K0;
1372 htlb_info.restore_scratch = 0;
1373 vmalloc_mode = refill_noscratch;
1374 /*
1375 * create the plain linear handler
1376 */
1377 if (bcm1250_m3_war()) {
1378 unsigned int segbits = 44;
1379
1380 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1381 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1382 uasm_i_xor(&p, K0, K0, K1);
1383 uasm_i_dsrl_safe(&p, K1, K0, 62);
1384 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1385 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1386 uasm_i_or(&p, K0, K0, K1);
1387 uasm_il_bnez(&p, &r, K0, label_leave);
1388 /* No need for uasm_i_nop */
1389 }
1390
1391 #ifdef CONFIG_64BIT
1392 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1393 #else
1394 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1395 #endif
1396
1397 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1398 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1399 #endif
1400
1401 build_get_ptep(&p, K0, K1);
1402 build_update_entries(&p, K0, K1);
1403 build_tlb_write_entry(&p, &l, &r, tlb_random);
1404 uasm_l_leave(&l, p);
1405 uasm_i_eret(&p); /* return from trap */
1406 }
1407 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1408 uasm_l_tlb_huge_update(&l, p);
1409 build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1410 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1411 htlb_info.restore_scratch);
1412 #endif
1413
1414 #ifdef CONFIG_64BIT
1415 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1416 #endif
1417
1418 /*
1419 * Overflow check: For the 64bit handler, we need at least one
1420 * free instruction slot for the wrap-around branch. In worst
1421 * case, if the intended insertion point is a delay slot, we
1422 * need three, with the second nop'ed and the third being
1423 * unused.
1424 */
1425 /* Loongson2 ebase is different than r4k, we have more space */
1426 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1427 if ((p - tlb_handler) > 64)
1428 panic("TLB refill handler space exceeded");
1429 #else
1430 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1431 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1432 && uasm_insn_has_bdelay(relocs,
1433 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1434 panic("TLB refill handler space exceeded");
1435 #endif
1436
1437 /*
1438 * Now fold the handler in the TLB refill handler space.
1439 */
1440 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1441 f = final_handler;
1442 /* Simplest case, just copy the handler. */
1443 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1444 final_len = p - tlb_handler;
1445 #else /* CONFIG_64BIT */
1446 f = final_handler + MIPS64_REFILL_INSNS;
1447 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1448 /* Just copy the handler. */
1449 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1450 final_len = p - tlb_handler;
1451 } else {
1452 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1453 const enum label_id ls = label_tlb_huge_update;
1454 #else
1455 const enum label_id ls = label_vmalloc;
1456 #endif
1457 u32 *split;
1458 int ov = 0;
1459 int i;
1460
1461 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1462 ;
1463 BUG_ON(i == ARRAY_SIZE(labels));
1464 split = labels[i].addr;
1465
1466 /*
1467 * See if we have overflown one way or the other.
1468 */
1469 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1470 split < p - MIPS64_REFILL_INSNS)
1471 ov = 1;
1472
1473 if (ov) {
1474 /*
1475 * Split two instructions before the end. One
1476 * for the branch and one for the instruction
1477 * in the delay slot.
1478 */
1479 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1480
1481 /*
1482 * If the branch would fall in a delay slot,
1483 * we must back up an additional instruction
1484 * so that it is no longer in a delay slot.
1485 */
1486 if (uasm_insn_has_bdelay(relocs, split - 1))
1487 split--;
1488 }
1489 /* Copy first part of the handler. */
1490 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1491 f += split - tlb_handler;
1492
1493 if (ov) {
1494 /* Insert branch. */
1495 uasm_l_split(&l, final_handler);
1496 uasm_il_b(&f, &r, label_split);
1497 if (uasm_insn_has_bdelay(relocs, split))
1498 uasm_i_nop(&f);
1499 else {
1500 uasm_copy_handler(relocs, labels,
1501 split, split + 1, f);
1502 uasm_move_labels(labels, f, f + 1, -1);
1503 f++;
1504 split++;
1505 }
1506 }
1507
1508 /* Copy the rest of the handler. */
1509 uasm_copy_handler(relocs, labels, split, p, final_handler);
1510 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1511 (p - split);
1512 }
1513 #endif /* CONFIG_64BIT */
1514
1515 uasm_resolve_relocs(relocs, labels);
1516 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1517 final_len);
1518
1519 memcpy((void *)ebase, final_handler, 0x100);
1520
1521 dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1522 }
1523
1524 /*
1525 * 128 instructions for the fastpath handler is generous and should
1526 * never be exceeded.
1527 */
1528 #define FASTPATH_SIZE 128
1529
1530 u32 handle_tlbl[FASTPATH_SIZE] __cacheline_aligned;
1531 u32 handle_tlbs[FASTPATH_SIZE] __cacheline_aligned;
1532 u32 handle_tlbm[FASTPATH_SIZE] __cacheline_aligned;
1533 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1534 u32 tlbmiss_handler_setup_pgd_array[16] __cacheline_aligned;
1535
1536 static void __cpuinit build_r4000_setup_pgd(void)
1537 {
1538 const int a0 = 4;
1539 const int a1 = 5;
1540 u32 *p = tlbmiss_handler_setup_pgd_array;
1541 struct uasm_label *l = labels;
1542 struct uasm_reloc *r = relocs;
1543
1544 memset(tlbmiss_handler_setup_pgd_array, 0, sizeof(tlbmiss_handler_setup_pgd_array));
1545 memset(labels, 0, sizeof(labels));
1546 memset(relocs, 0, sizeof(relocs));
1547
1548 pgd_reg = allocate_kscratch();
1549
1550 if (pgd_reg == -1) {
1551 /* PGD << 11 in c0_Context */
1552 /*
1553 * If it is a ckseg0 address, convert to a physical
1554 * address. Shifting right by 29 and adding 4 will
1555 * result in zero for these addresses.
1556 *
1557 */
1558 UASM_i_SRA(&p, a1, a0, 29);
1559 UASM_i_ADDIU(&p, a1, a1, 4);
1560 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1561 uasm_i_nop(&p);
1562 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1563 uasm_l_tlbl_goaround1(&l, p);
1564 UASM_i_SLL(&p, a0, a0, 11);
1565 uasm_i_jr(&p, 31);
1566 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1567 } else {
1568 /* PGD in c0_KScratch */
1569 uasm_i_jr(&p, 31);
1570 UASM_i_MTC0(&p, a0, 31, pgd_reg);
1571 }
1572 if (p - tlbmiss_handler_setup_pgd_array > ARRAY_SIZE(tlbmiss_handler_setup_pgd_array))
1573 panic("tlbmiss_handler_setup_pgd_array space exceeded");
1574 uasm_resolve_relocs(relocs, labels);
1575 pr_debug("Wrote tlbmiss_handler_setup_pgd_array (%u instructions).\n",
1576 (unsigned int)(p - tlbmiss_handler_setup_pgd_array));
1577
1578 dump_handler("tlbmiss_handler",
1579 tlbmiss_handler_setup_pgd_array,
1580 ARRAY_SIZE(tlbmiss_handler_setup_pgd_array));
1581 }
1582 #endif
1583
1584 static void __cpuinit
1585 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1586 {
1587 #ifdef CONFIG_SMP
1588 # ifdef CONFIG_64BIT_PHYS_ADDR
1589 if (cpu_has_64bits)
1590 uasm_i_lld(p, pte, 0, ptr);
1591 else
1592 # endif
1593 UASM_i_LL(p, pte, 0, ptr);
1594 #else
1595 # ifdef CONFIG_64BIT_PHYS_ADDR
1596 if (cpu_has_64bits)
1597 uasm_i_ld(p, pte, 0, ptr);
1598 else
1599 # endif
1600 UASM_i_LW(p, pte, 0, ptr);
1601 #endif
1602 }
1603
1604 static void __cpuinit
1605 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1606 unsigned int mode)
1607 {
1608 #ifdef CONFIG_64BIT_PHYS_ADDR
1609 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1610 #endif
1611
1612 uasm_i_ori(p, pte, pte, mode);
1613 #ifdef CONFIG_SMP
1614 # ifdef CONFIG_64BIT_PHYS_ADDR
1615 if (cpu_has_64bits)
1616 uasm_i_scd(p, pte, 0, ptr);
1617 else
1618 # endif
1619 UASM_i_SC(p, pte, 0, ptr);
1620
1621 if (r10000_llsc_war())
1622 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1623 else
1624 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1625
1626 # ifdef CONFIG_64BIT_PHYS_ADDR
1627 if (!cpu_has_64bits) {
1628 /* no uasm_i_nop needed */
1629 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1630 uasm_i_ori(p, pte, pte, hwmode);
1631 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1632 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1633 /* no uasm_i_nop needed */
1634 uasm_i_lw(p, pte, 0, ptr);
1635 } else
1636 uasm_i_nop(p);
1637 # else
1638 uasm_i_nop(p);
1639 # endif
1640 #else
1641 # ifdef CONFIG_64BIT_PHYS_ADDR
1642 if (cpu_has_64bits)
1643 uasm_i_sd(p, pte, 0, ptr);
1644 else
1645 # endif
1646 UASM_i_SW(p, pte, 0, ptr);
1647
1648 # ifdef CONFIG_64BIT_PHYS_ADDR
1649 if (!cpu_has_64bits) {
1650 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1651 uasm_i_ori(p, pte, pte, hwmode);
1652 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1653 uasm_i_lw(p, pte, 0, ptr);
1654 }
1655 # endif
1656 #endif
1657 }
1658
1659 /*
1660 * Check if PTE is present, if not then jump to LABEL. PTR points to
1661 * the page table where this PTE is located, PTE will be re-loaded
1662 * with it's original value.
1663 */
1664 static void __cpuinit
1665 build_pte_present(u32 **p, struct uasm_reloc **r,
1666 int pte, int ptr, int scratch, enum label_id lid)
1667 {
1668 int t = scratch >= 0 ? scratch : pte;
1669
1670 if (cpu_has_rixi) {
1671 if (use_bbit_insns()) {
1672 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1673 uasm_i_nop(p);
1674 } else {
1675 uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1676 uasm_il_beqz(p, r, t, lid);
1677 if (pte == t)
1678 /* You lose the SMP race :-(*/
1679 iPTE_LW(p, pte, ptr);
1680 }
1681 } else {
1682 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1683 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1684 uasm_il_bnez(p, r, t, lid);
1685 if (pte == t)
1686 /* You lose the SMP race :-(*/
1687 iPTE_LW(p, pte, ptr);
1688 }
1689 }
1690
1691 /* Make PTE valid, store result in PTR. */
1692 static void __cpuinit
1693 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1694 unsigned int ptr)
1695 {
1696 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1697
1698 iPTE_SW(p, r, pte, ptr, mode);
1699 }
1700
1701 /*
1702 * Check if PTE can be written to, if not branch to LABEL. Regardless
1703 * restore PTE with value from PTR when done.
1704 */
1705 static void __cpuinit
1706 build_pte_writable(u32 **p, struct uasm_reloc **r,
1707 unsigned int pte, unsigned int ptr, int scratch,
1708 enum label_id lid)
1709 {
1710 int t = scratch >= 0 ? scratch : pte;
1711
1712 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1713 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1714 uasm_il_bnez(p, r, t, lid);
1715 if (pte == t)
1716 /* You lose the SMP race :-(*/
1717 iPTE_LW(p, pte, ptr);
1718 else
1719 uasm_i_nop(p);
1720 }
1721
1722 /* Make PTE writable, update software status bits as well, then store
1723 * at PTR.
1724 */
1725 static void __cpuinit
1726 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1727 unsigned int ptr)
1728 {
1729 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1730 | _PAGE_DIRTY);
1731
1732 iPTE_SW(p, r, pte, ptr, mode);
1733 }
1734
1735 /*
1736 * Check if PTE can be modified, if not branch to LABEL. Regardless
1737 * restore PTE with value from PTR when done.
1738 */
1739 static void __cpuinit
1740 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1741 unsigned int pte, unsigned int ptr, int scratch,
1742 enum label_id lid)
1743 {
1744 if (use_bbit_insns()) {
1745 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1746 uasm_i_nop(p);
1747 } else {
1748 int t = scratch >= 0 ? scratch : pte;
1749 uasm_i_andi(p, t, pte, _PAGE_WRITE);
1750 uasm_il_beqz(p, r, t, lid);
1751 if (pte == t)
1752 /* You lose the SMP race :-(*/
1753 iPTE_LW(p, pte, ptr);
1754 }
1755 }
1756
1757 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1758
1759
1760 /*
1761 * R3000 style TLB load/store/modify handlers.
1762 */
1763
1764 /*
1765 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1766 * Then it returns.
1767 */
1768 static void __cpuinit
1769 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1770 {
1771 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1772 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1773 uasm_i_tlbwi(p);
1774 uasm_i_jr(p, tmp);
1775 uasm_i_rfe(p); /* branch delay */
1776 }
1777
1778 /*
1779 * This places the pte into ENTRYLO0 and writes it with tlbwi
1780 * or tlbwr as appropriate. This is because the index register
1781 * may have the probe fail bit set as a result of a trap on a
1782 * kseg2 access, i.e. without refill. Then it returns.
1783 */
1784 static void __cpuinit
1785 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1786 struct uasm_reloc **r, unsigned int pte,
1787 unsigned int tmp)
1788 {
1789 uasm_i_mfc0(p, tmp, C0_INDEX);
1790 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1791 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1792 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1793 uasm_i_tlbwi(p); /* cp0 delay */
1794 uasm_i_jr(p, tmp);
1795 uasm_i_rfe(p); /* branch delay */
1796 uasm_l_r3000_write_probe_fail(l, *p);
1797 uasm_i_tlbwr(p); /* cp0 delay */
1798 uasm_i_jr(p, tmp);
1799 uasm_i_rfe(p); /* branch delay */
1800 }
1801
1802 static void __cpuinit
1803 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1804 unsigned int ptr)
1805 {
1806 long pgdc = (long)pgd_current;
1807
1808 uasm_i_mfc0(p, pte, C0_BADVADDR);
1809 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1810 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1811 uasm_i_srl(p, pte, pte, 22); /* load delay */
1812 uasm_i_sll(p, pte, pte, 2);
1813 uasm_i_addu(p, ptr, ptr, pte);
1814 uasm_i_mfc0(p, pte, C0_CONTEXT);
1815 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1816 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1817 uasm_i_addu(p, ptr, ptr, pte);
1818 uasm_i_lw(p, pte, 0, ptr);
1819 uasm_i_tlbp(p); /* load delay */
1820 }
1821
1822 static void __cpuinit build_r3000_tlb_load_handler(void)
1823 {
1824 u32 *p = handle_tlbl;
1825 struct uasm_label *l = labels;
1826 struct uasm_reloc *r = relocs;
1827
1828 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1829 memset(labels, 0, sizeof(labels));
1830 memset(relocs, 0, sizeof(relocs));
1831
1832 build_r3000_tlbchange_handler_head(&p, K0, K1);
1833 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1834 uasm_i_nop(&p); /* load delay */
1835 build_make_valid(&p, &r, K0, K1);
1836 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1837
1838 uasm_l_nopage_tlbl(&l, p);
1839 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1840 uasm_i_nop(&p);
1841
1842 if ((p - handle_tlbl) > FASTPATH_SIZE)
1843 panic("TLB load handler fastpath space exceeded");
1844
1845 uasm_resolve_relocs(relocs, labels);
1846 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1847 (unsigned int)(p - handle_tlbl));
1848
1849 dump_handler("r3000_tlb_load", handle_tlbl, ARRAY_SIZE(handle_tlbl));
1850 }
1851
1852 static void __cpuinit build_r3000_tlb_store_handler(void)
1853 {
1854 u32 *p = handle_tlbs;
1855 struct uasm_label *l = labels;
1856 struct uasm_reloc *r = relocs;
1857
1858 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1859 memset(labels, 0, sizeof(labels));
1860 memset(relocs, 0, sizeof(relocs));
1861
1862 build_r3000_tlbchange_handler_head(&p, K0, K1);
1863 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1864 uasm_i_nop(&p); /* load delay */
1865 build_make_write(&p, &r, K0, K1);
1866 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1867
1868 uasm_l_nopage_tlbs(&l, p);
1869 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1870 uasm_i_nop(&p);
1871
1872 if ((p - handle_tlbs) > FASTPATH_SIZE)
1873 panic("TLB store handler fastpath space exceeded");
1874
1875 uasm_resolve_relocs(relocs, labels);
1876 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1877 (unsigned int)(p - handle_tlbs));
1878
1879 dump_handler("r3000_tlb_store", handle_tlbs, ARRAY_SIZE(handle_tlbs));
1880 }
1881
1882 static void __cpuinit build_r3000_tlb_modify_handler(void)
1883 {
1884 u32 *p = handle_tlbm;
1885 struct uasm_label *l = labels;
1886 struct uasm_reloc *r = relocs;
1887
1888 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1889 memset(labels, 0, sizeof(labels));
1890 memset(relocs, 0, sizeof(relocs));
1891
1892 build_r3000_tlbchange_handler_head(&p, K0, K1);
1893 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
1894 uasm_i_nop(&p); /* load delay */
1895 build_make_write(&p, &r, K0, K1);
1896 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1897
1898 uasm_l_nopage_tlbm(&l, p);
1899 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1900 uasm_i_nop(&p);
1901
1902 if ((p - handle_tlbm) > FASTPATH_SIZE)
1903 panic("TLB modify handler fastpath space exceeded");
1904
1905 uasm_resolve_relocs(relocs, labels);
1906 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1907 (unsigned int)(p - handle_tlbm));
1908
1909 dump_handler("r3000_tlb_modify", handle_tlbm, ARRAY_SIZE(handle_tlbm));
1910 }
1911 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1912
1913 /*
1914 * R4000 style TLB load/store/modify handlers.
1915 */
1916 static struct work_registers __cpuinit
1917 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1918 struct uasm_reloc **r)
1919 {
1920 struct work_registers wr = build_get_work_registers(p);
1921
1922 #ifdef CONFIG_64BIT
1923 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1924 #else
1925 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1926 #endif
1927
1928 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1929 /*
1930 * For huge tlb entries, pmd doesn't contain an address but
1931 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1932 * see if we need to jump to huge tlb processing.
1933 */
1934 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1935 #endif
1936
1937 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1938 UASM_i_LW(p, wr.r2, 0, wr.r2);
1939 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1940 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1941 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1942
1943 #ifdef CONFIG_SMP
1944 uasm_l_smp_pgtable_change(l, *p);
1945 #endif
1946 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1947 if (!m4kc_tlbp_war())
1948 build_tlb_probe_entry(p);
1949 return wr;
1950 }
1951
1952 static void __cpuinit
1953 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1954 struct uasm_reloc **r, unsigned int tmp,
1955 unsigned int ptr)
1956 {
1957 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1958 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1959 build_update_entries(p, tmp, ptr);
1960 build_tlb_write_entry(p, l, r, tlb_indexed);
1961 uasm_l_leave(l, *p);
1962 build_restore_work_registers(p);
1963 uasm_i_eret(p); /* return from trap */
1964
1965 #ifdef CONFIG_64BIT
1966 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1967 #endif
1968 }
1969
1970 static void __cpuinit build_r4000_tlb_load_handler(void)
1971 {
1972 u32 *p = handle_tlbl;
1973 struct uasm_label *l = labels;
1974 struct uasm_reloc *r = relocs;
1975 struct work_registers wr;
1976
1977 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1978 memset(labels, 0, sizeof(labels));
1979 memset(relocs, 0, sizeof(relocs));
1980
1981 if (bcm1250_m3_war()) {
1982 unsigned int segbits = 44;
1983
1984 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1985 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1986 uasm_i_xor(&p, K0, K0, K1);
1987 uasm_i_dsrl_safe(&p, K1, K0, 62);
1988 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1989 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1990 uasm_i_or(&p, K0, K0, K1);
1991 uasm_il_bnez(&p, &r, K0, label_leave);
1992 /* No need for uasm_i_nop */
1993 }
1994
1995 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1996 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1997 if (m4kc_tlbp_war())
1998 build_tlb_probe_entry(&p);
1999
2000 if (cpu_has_rixi) {
2001 /*
2002 * If the page is not _PAGE_VALID, RI or XI could not
2003 * have triggered it. Skip the expensive test..
2004 */
2005 if (use_bbit_insns()) {
2006 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2007 label_tlbl_goaround1);
2008 } else {
2009 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2010 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
2011 }
2012 uasm_i_nop(&p);
2013
2014 uasm_i_tlbr(&p);
2015 /* Examine entrylo 0 or 1 based on ptr. */
2016 if (use_bbit_insns()) {
2017 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2018 } else {
2019 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2020 uasm_i_beqz(&p, wr.r3, 8);
2021 }
2022 /* load it in the delay slot*/
2023 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2024 /* load it if ptr is odd */
2025 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2026 /*
2027 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2028 * XI must have triggered it.
2029 */
2030 if (use_bbit_insns()) {
2031 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
2032 uasm_i_nop(&p);
2033 uasm_l_tlbl_goaround1(&l, p);
2034 } else {
2035 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2036 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
2037 uasm_i_nop(&p);
2038 }
2039 uasm_l_tlbl_goaround1(&l, p);
2040 }
2041 build_make_valid(&p, &r, wr.r1, wr.r2);
2042 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2043
2044 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2045 /*
2046 * This is the entry point when build_r4000_tlbchange_handler_head
2047 * spots a huge page.
2048 */
2049 uasm_l_tlb_huge_update(&l, p);
2050 iPTE_LW(&p, wr.r1, wr.r2);
2051 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2052 build_tlb_probe_entry(&p);
2053
2054 if (cpu_has_rixi) {
2055 /*
2056 * If the page is not _PAGE_VALID, RI or XI could not
2057 * have triggered it. Skip the expensive test..
2058 */
2059 if (use_bbit_insns()) {
2060 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2061 label_tlbl_goaround2);
2062 } else {
2063 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2064 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2065 }
2066 uasm_i_nop(&p);
2067
2068 uasm_i_tlbr(&p);
2069 /* Examine entrylo 0 or 1 based on ptr. */
2070 if (use_bbit_insns()) {
2071 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2072 } else {
2073 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2074 uasm_i_beqz(&p, wr.r3, 8);
2075 }
2076 /* load it in the delay slot*/
2077 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2078 /* load it if ptr is odd */
2079 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2080 /*
2081 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2082 * XI must have triggered it.
2083 */
2084 if (use_bbit_insns()) {
2085 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2086 } else {
2087 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2088 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2089 }
2090 if (PM_DEFAULT_MASK == 0)
2091 uasm_i_nop(&p);
2092 /*
2093 * We clobbered C0_PAGEMASK, restore it. On the other branch
2094 * it is restored in build_huge_tlb_write_entry.
2095 */
2096 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2097
2098 uasm_l_tlbl_goaround2(&l, p);
2099 }
2100 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2101 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2102 #endif
2103
2104 uasm_l_nopage_tlbl(&l, p);
2105 build_restore_work_registers(&p);
2106 #ifdef CONFIG_CPU_MICROMIPS
2107 if ((unsigned long)tlb_do_page_fault_0 & 1) {
2108 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2109 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2110 uasm_i_jr(&p, K0);
2111 } else
2112 #endif
2113 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2114 uasm_i_nop(&p);
2115
2116 if ((p - handle_tlbl) > FASTPATH_SIZE)
2117 panic("TLB load handler fastpath space exceeded");
2118
2119 uasm_resolve_relocs(relocs, labels);
2120 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2121 (unsigned int)(p - handle_tlbl));
2122
2123 dump_handler("r4000_tlb_load", handle_tlbl, ARRAY_SIZE(handle_tlbl));
2124 }
2125
2126 static void __cpuinit build_r4000_tlb_store_handler(void)
2127 {
2128 u32 *p = handle_tlbs;
2129 struct uasm_label *l = labels;
2130 struct uasm_reloc *r = relocs;
2131 struct work_registers wr;
2132
2133 memset(handle_tlbs, 0, sizeof(handle_tlbs));
2134 memset(labels, 0, sizeof(labels));
2135 memset(relocs, 0, sizeof(relocs));
2136
2137 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2138 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2139 if (m4kc_tlbp_war())
2140 build_tlb_probe_entry(&p);
2141 build_make_write(&p, &r, wr.r1, wr.r2);
2142 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2143
2144 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2145 /*
2146 * This is the entry point when
2147 * build_r4000_tlbchange_handler_head spots a huge page.
2148 */
2149 uasm_l_tlb_huge_update(&l, p);
2150 iPTE_LW(&p, wr.r1, wr.r2);
2151 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2152 build_tlb_probe_entry(&p);
2153 uasm_i_ori(&p, wr.r1, wr.r1,
2154 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2155 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2156 #endif
2157
2158 uasm_l_nopage_tlbs(&l, p);
2159 build_restore_work_registers(&p);
2160 #ifdef CONFIG_CPU_MICROMIPS
2161 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2162 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2163 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2164 uasm_i_jr(&p, K0);
2165 } else
2166 #endif
2167 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2168 uasm_i_nop(&p);
2169
2170 if ((p - handle_tlbs) > FASTPATH_SIZE)
2171 panic("TLB store handler fastpath space exceeded");
2172
2173 uasm_resolve_relocs(relocs, labels);
2174 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2175 (unsigned int)(p - handle_tlbs));
2176
2177 dump_handler("r4000_tlb_store", handle_tlbs, ARRAY_SIZE(handle_tlbs));
2178 }
2179
2180 static void __cpuinit build_r4000_tlb_modify_handler(void)
2181 {
2182 u32 *p = handle_tlbm;
2183 struct uasm_label *l = labels;
2184 struct uasm_reloc *r = relocs;
2185 struct work_registers wr;
2186
2187 memset(handle_tlbm, 0, sizeof(handle_tlbm));
2188 memset(labels, 0, sizeof(labels));
2189 memset(relocs, 0, sizeof(relocs));
2190
2191 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2192 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2193 if (m4kc_tlbp_war())
2194 build_tlb_probe_entry(&p);
2195 /* Present and writable bits set, set accessed and dirty bits. */
2196 build_make_write(&p, &r, wr.r1, wr.r2);
2197 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2198
2199 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2200 /*
2201 * This is the entry point when
2202 * build_r4000_tlbchange_handler_head spots a huge page.
2203 */
2204 uasm_l_tlb_huge_update(&l, p);
2205 iPTE_LW(&p, wr.r1, wr.r2);
2206 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2207 build_tlb_probe_entry(&p);
2208 uasm_i_ori(&p, wr.r1, wr.r1,
2209 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2210 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2211 #endif
2212
2213 uasm_l_nopage_tlbm(&l, p);
2214 build_restore_work_registers(&p);
2215 #ifdef CONFIG_CPU_MICROMIPS
2216 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2217 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2218 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2219 uasm_i_jr(&p, K0);
2220 } else
2221 #endif
2222 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2223 uasm_i_nop(&p);
2224
2225 if ((p - handle_tlbm) > FASTPATH_SIZE)
2226 panic("TLB modify handler fastpath space exceeded");
2227
2228 uasm_resolve_relocs(relocs, labels);
2229 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2230 (unsigned int)(p - handle_tlbm));
2231
2232 dump_handler("r4000_tlb_modify", handle_tlbm, ARRAY_SIZE(handle_tlbm));
2233 }
2234
2235 void __cpuinit build_tlb_refill_handler(void)
2236 {
2237 /*
2238 * The refill handler is generated per-CPU, multi-node systems
2239 * may have local storage for it. The other handlers are only
2240 * needed once.
2241 */
2242 static int run_once = 0;
2243
2244 output_pgtable_bits_defines();
2245
2246 #ifdef CONFIG_64BIT
2247 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2248 #endif
2249
2250 switch (current_cpu_type()) {
2251 case CPU_R2000:
2252 case CPU_R3000:
2253 case CPU_R3000A:
2254 case CPU_R3081E:
2255 case CPU_TX3912:
2256 case CPU_TX3922:
2257 case CPU_TX3927:
2258 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2259 setup_asid(0x40, 0xfc0, 0xf000, ASID_FIRST_VERSION_R3000);
2260 if (cpu_has_local_ebase)
2261 build_r3000_tlb_refill_handler();
2262 if (!run_once) {
2263 if (!cpu_has_local_ebase)
2264 build_r3000_tlb_refill_handler();
2265 build_r3000_tlb_load_handler();
2266 build_r3000_tlb_store_handler();
2267 build_r3000_tlb_modify_handler();
2268 run_once++;
2269 }
2270 #else
2271 panic("No R3000 TLB refill handler");
2272 #endif
2273 break;
2274
2275 case CPU_R6000:
2276 case CPU_R6000A:
2277 panic("No R6000 TLB refill handler yet");
2278 break;
2279
2280 case CPU_R8000:
2281 panic("No R8000 TLB refill handler yet");
2282 break;
2283
2284 default:
2285 #ifndef CONFIG_MIPS_MT_SMTC
2286 setup_asid(0x1, 0xff, 0xff00, ASID_FIRST_VERSION_R4000);
2287 #else
2288 setup_asid(0x1, smtc_asid_mask, 0xff00, ASID_FIRST_VERSION_R4000);
2289 #endif
2290 if (!run_once) {
2291 scratch_reg = allocate_kscratch();
2292 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2293 build_r4000_setup_pgd();
2294 #endif
2295 build_r4000_tlb_load_handler();
2296 build_r4000_tlb_store_handler();
2297 build_r4000_tlb_modify_handler();
2298 if (!cpu_has_local_ebase)
2299 build_r4000_tlb_refill_handler();
2300 run_once++;
2301 }
2302 if (cpu_has_local_ebase)
2303 build_r4000_tlb_refill_handler();
2304 }
2305 }
2306
2307 void __cpuinit flush_tlb_handlers(void)
2308 {
2309 local_flush_icache_range((unsigned long)handle_tlbl,
2310 (unsigned long)handle_tlbl + sizeof(handle_tlbl));
2311 local_flush_icache_range((unsigned long)handle_tlbs,
2312 (unsigned long)handle_tlbs + sizeof(handle_tlbs));
2313 local_flush_icache_range((unsigned long)handle_tlbm,
2314 (unsigned long)handle_tlbm + sizeof(handle_tlbm));
2315 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2316 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd_array,
2317 (unsigned long)tlbmiss_handler_setup_pgd_array + sizeof(handle_tlbm));
2318 #endif
2319 }