4b6274b47f3368b289b378703e8e9a17de5f9275
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / mips / kvm / kvm_mips_emul.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: Instruction/Exception emulation
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/kvm_host.h>
15 #include <linux/module.h>
16 #include <linux/vmalloc.h>
17 #include <linux/fs.h>
18 #include <linux/bootmem.h>
19 #include <linux/random.h>
20 #include <asm/page.h>
21 #include <asm/cacheflush.h>
22 #include <asm/cpu-info.h>
23 #include <asm/mmu_context.h>
24 #include <asm/tlbflush.h>
25 #include <asm/inst.h>
26
27 #undef CONFIG_MIPS_MT
28 #include <asm/r4kcache.h>
29 #define CONFIG_MIPS_MT
30
31 #include "kvm_mips_opcode.h"
32 #include "kvm_mips_int.h"
33 #include "kvm_mips_comm.h"
34
35 #include "trace.h"
36
37 /*
38 * Compute the return address and do emulate branch simulation, if required.
39 * This function should be called only in branch delay slot active.
40 */
41 unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
42 unsigned long instpc)
43 {
44 unsigned int dspcontrol;
45 union mips_instruction insn;
46 struct kvm_vcpu_arch *arch = &vcpu->arch;
47 long epc = instpc;
48 long nextpc = KVM_INVALID_INST;
49
50 if (epc & 3)
51 goto unaligned;
52
53 /*
54 * Read the instruction
55 */
56 insn.word = kvm_get_inst((uint32_t *) epc, vcpu);
57
58 if (insn.word == KVM_INVALID_INST)
59 return KVM_INVALID_INST;
60
61 switch (insn.i_format.opcode) {
62 /*
63 * jr and jalr are in r_format format.
64 */
65 case spec_op:
66 switch (insn.r_format.func) {
67 case jalr_op:
68 arch->gprs[insn.r_format.rd] = epc + 8;
69 /* Fall through */
70 case jr_op:
71 nextpc = arch->gprs[insn.r_format.rs];
72 break;
73 }
74 break;
75
76 /*
77 * This group contains:
78 * bltz_op, bgez_op, bltzl_op, bgezl_op,
79 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
80 */
81 case bcond_op:
82 switch (insn.i_format.rt) {
83 case bltz_op:
84 case bltzl_op:
85 if ((long)arch->gprs[insn.i_format.rs] < 0)
86 epc = epc + 4 + (insn.i_format.simmediate << 2);
87 else
88 epc += 8;
89 nextpc = epc;
90 break;
91
92 case bgez_op:
93 case bgezl_op:
94 if ((long)arch->gprs[insn.i_format.rs] >= 0)
95 epc = epc + 4 + (insn.i_format.simmediate << 2);
96 else
97 epc += 8;
98 nextpc = epc;
99 break;
100
101 case bltzal_op:
102 case bltzall_op:
103 arch->gprs[31] = epc + 8;
104 if ((long)arch->gprs[insn.i_format.rs] < 0)
105 epc = epc + 4 + (insn.i_format.simmediate << 2);
106 else
107 epc += 8;
108 nextpc = epc;
109 break;
110
111 case bgezal_op:
112 case bgezall_op:
113 arch->gprs[31] = epc + 8;
114 if ((long)arch->gprs[insn.i_format.rs] >= 0)
115 epc = epc + 4 + (insn.i_format.simmediate << 2);
116 else
117 epc += 8;
118 nextpc = epc;
119 break;
120 case bposge32_op:
121 if (!cpu_has_dsp)
122 goto sigill;
123
124 dspcontrol = rddsp(0x01);
125
126 if (dspcontrol >= 32) {
127 epc = epc + 4 + (insn.i_format.simmediate << 2);
128 } else
129 epc += 8;
130 nextpc = epc;
131 break;
132 }
133 break;
134
135 /*
136 * These are unconditional and in j_format.
137 */
138 case jal_op:
139 arch->gprs[31] = instpc + 8;
140 case j_op:
141 epc += 4;
142 epc >>= 28;
143 epc <<= 28;
144 epc |= (insn.j_format.target << 2);
145 nextpc = epc;
146 break;
147
148 /*
149 * These are conditional and in i_format.
150 */
151 case beq_op:
152 case beql_op:
153 if (arch->gprs[insn.i_format.rs] ==
154 arch->gprs[insn.i_format.rt])
155 epc = epc + 4 + (insn.i_format.simmediate << 2);
156 else
157 epc += 8;
158 nextpc = epc;
159 break;
160
161 case bne_op:
162 case bnel_op:
163 if (arch->gprs[insn.i_format.rs] !=
164 arch->gprs[insn.i_format.rt])
165 epc = epc + 4 + (insn.i_format.simmediate << 2);
166 else
167 epc += 8;
168 nextpc = epc;
169 break;
170
171 case blez_op: /* not really i_format */
172 case blezl_op:
173 /* rt field assumed to be zero */
174 if ((long)arch->gprs[insn.i_format.rs] <= 0)
175 epc = epc + 4 + (insn.i_format.simmediate << 2);
176 else
177 epc += 8;
178 nextpc = epc;
179 break;
180
181 case bgtz_op:
182 case bgtzl_op:
183 /* rt field assumed to be zero */
184 if ((long)arch->gprs[insn.i_format.rs] > 0)
185 epc = epc + 4 + (insn.i_format.simmediate << 2);
186 else
187 epc += 8;
188 nextpc = epc;
189 break;
190
191 /*
192 * And now the FPA/cp1 branch instructions.
193 */
194 case cop1_op:
195 printk("%s: unsupported cop1_op\n", __func__);
196 break;
197 }
198
199 return nextpc;
200
201 unaligned:
202 printk("%s: unaligned epc\n", __func__);
203 return nextpc;
204
205 sigill:
206 printk("%s: DSP branch but not DSP ASE\n", __func__);
207 return nextpc;
208 }
209
210 enum emulation_result update_pc(struct kvm_vcpu *vcpu, uint32_t cause)
211 {
212 unsigned long branch_pc;
213 enum emulation_result er = EMULATE_DONE;
214
215 if (cause & CAUSEF_BD) {
216 branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
217 if (branch_pc == KVM_INVALID_INST) {
218 er = EMULATE_FAIL;
219 } else {
220 vcpu->arch.pc = branch_pc;
221 kvm_debug("BD update_pc(): New PC: %#lx\n", vcpu->arch.pc);
222 }
223 } else
224 vcpu->arch.pc += 4;
225
226 kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
227
228 return er;
229 }
230
231 /* Everytime the compare register is written to, we need to decide when to fire
232 * the timer that represents timer ticks to the GUEST.
233 *
234 */
235 enum emulation_result kvm_mips_emulate_count(struct kvm_vcpu *vcpu)
236 {
237 struct mips_coproc *cop0 = vcpu->arch.cop0;
238 enum emulation_result er = EMULATE_DONE;
239
240 /* If COUNT is enabled */
241 if (!(kvm_read_c0_guest_cause(cop0) & CAUSEF_DC)) {
242 hrtimer_try_to_cancel(&vcpu->arch.comparecount_timer);
243 hrtimer_start(&vcpu->arch.comparecount_timer,
244 ktime_set(0, MS_TO_NS(10)), HRTIMER_MODE_REL);
245 } else {
246 hrtimer_try_to_cancel(&vcpu->arch.comparecount_timer);
247 }
248
249 return er;
250 }
251
252 enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
253 {
254 struct mips_coproc *cop0 = vcpu->arch.cop0;
255 enum emulation_result er = EMULATE_DONE;
256
257 if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
258 kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
259 kvm_read_c0_guest_epc(cop0));
260 kvm_clear_c0_guest_status(cop0, ST0_EXL);
261 vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
262
263 } else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
264 kvm_clear_c0_guest_status(cop0, ST0_ERL);
265 vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
266 } else {
267 printk("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
268 vcpu->arch.pc);
269 er = EMULATE_FAIL;
270 }
271
272 return er;
273 }
274
275 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
276 {
277 enum emulation_result er = EMULATE_DONE;
278
279 kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
280 vcpu->arch.pending_exceptions);
281
282 ++vcpu->stat.wait_exits;
283 trace_kvm_exit(vcpu, WAIT_EXITS);
284 if (!vcpu->arch.pending_exceptions) {
285 vcpu->arch.wait = 1;
286 kvm_vcpu_block(vcpu);
287
288 /* We we are runnable, then definitely go off to user space to check if any
289 * I/O interrupts are pending.
290 */
291 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
292 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
293 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
294 }
295 }
296
297 return er;
298 }
299
300 /* XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that we can catch
301 * this, if things ever change
302 */
303 enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
304 {
305 struct mips_coproc *cop0 = vcpu->arch.cop0;
306 enum emulation_result er = EMULATE_FAIL;
307 uint32_t pc = vcpu->arch.pc;
308
309 printk("[%#x] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
310 return er;
311 }
312
313 /* Write Guest TLB Entry @ Index */
314 enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
315 {
316 struct mips_coproc *cop0 = vcpu->arch.cop0;
317 int index = kvm_read_c0_guest_index(cop0);
318 enum emulation_result er = EMULATE_DONE;
319 struct kvm_mips_tlb *tlb = NULL;
320 uint32_t pc = vcpu->arch.pc;
321
322 if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
323 printk("%s: illegal index: %d\n", __func__, index);
324 printk
325 ("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
326 pc, index, kvm_read_c0_guest_entryhi(cop0),
327 kvm_read_c0_guest_entrylo0(cop0),
328 kvm_read_c0_guest_entrylo1(cop0),
329 kvm_read_c0_guest_pagemask(cop0));
330 index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
331 }
332
333 tlb = &vcpu->arch.guest_tlb[index];
334 #if 1
335 /* Probe the shadow host TLB for the entry being overwritten, if one matches, invalidate it */
336 kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
337 #endif
338
339 tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
340 tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
341 tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
342 tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
343
344 kvm_debug
345 ("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
346 pc, index, kvm_read_c0_guest_entryhi(cop0),
347 kvm_read_c0_guest_entrylo0(cop0), kvm_read_c0_guest_entrylo1(cop0),
348 kvm_read_c0_guest_pagemask(cop0));
349
350 return er;
351 }
352
353 /* Write Guest TLB Entry @ Random Index */
354 enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
355 {
356 struct mips_coproc *cop0 = vcpu->arch.cop0;
357 enum emulation_result er = EMULATE_DONE;
358 struct kvm_mips_tlb *tlb = NULL;
359 uint32_t pc = vcpu->arch.pc;
360 int index;
361
362 #if 1
363 get_random_bytes(&index, sizeof(index));
364 index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
365 #else
366 index = jiffies % KVM_MIPS_GUEST_TLB_SIZE;
367 #endif
368
369 if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
370 printk("%s: illegal index: %d\n", __func__, index);
371 return EMULATE_FAIL;
372 }
373
374 tlb = &vcpu->arch.guest_tlb[index];
375
376 #if 1
377 /* Probe the shadow host TLB for the entry being overwritten, if one matches, invalidate it */
378 kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
379 #endif
380
381 tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
382 tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
383 tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
384 tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
385
386 kvm_debug
387 ("[%#x] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
388 pc, index, kvm_read_c0_guest_entryhi(cop0),
389 kvm_read_c0_guest_entrylo0(cop0),
390 kvm_read_c0_guest_entrylo1(cop0));
391
392 return er;
393 }
394
395 enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
396 {
397 struct mips_coproc *cop0 = vcpu->arch.cop0;
398 long entryhi = kvm_read_c0_guest_entryhi(cop0);
399 enum emulation_result er = EMULATE_DONE;
400 uint32_t pc = vcpu->arch.pc;
401 int index = -1;
402
403 index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
404
405 kvm_write_c0_guest_index(cop0, index);
406
407 kvm_debug("[%#x] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
408 index);
409
410 return er;
411 }
412
413 enum emulation_result
414 kvm_mips_emulate_CP0(uint32_t inst, uint32_t *opc, uint32_t cause,
415 struct kvm_run *run, struct kvm_vcpu *vcpu)
416 {
417 struct mips_coproc *cop0 = vcpu->arch.cop0;
418 enum emulation_result er = EMULATE_DONE;
419 int32_t rt, rd, copz, sel, co_bit, op;
420 uint32_t pc = vcpu->arch.pc;
421 unsigned long curr_pc;
422
423 /*
424 * Update PC and hold onto current PC in case there is
425 * an error and we want to rollback the PC
426 */
427 curr_pc = vcpu->arch.pc;
428 er = update_pc(vcpu, cause);
429 if (er == EMULATE_FAIL) {
430 return er;
431 }
432
433 copz = (inst >> 21) & 0x1f;
434 rt = (inst >> 16) & 0x1f;
435 rd = (inst >> 11) & 0x1f;
436 sel = inst & 0x7;
437 co_bit = (inst >> 25) & 1;
438
439 /* Verify that the register is valid */
440 if (rd > MIPS_CP0_DESAVE) {
441 printk("Invalid rd: %d\n", rd);
442 er = EMULATE_FAIL;
443 goto done;
444 }
445
446 if (co_bit) {
447 op = (inst) & 0xff;
448
449 switch (op) {
450 case tlbr_op: /* Read indexed TLB entry */
451 er = kvm_mips_emul_tlbr(vcpu);
452 break;
453 case tlbwi_op: /* Write indexed */
454 er = kvm_mips_emul_tlbwi(vcpu);
455 break;
456 case tlbwr_op: /* Write random */
457 er = kvm_mips_emul_tlbwr(vcpu);
458 break;
459 case tlbp_op: /* TLB Probe */
460 er = kvm_mips_emul_tlbp(vcpu);
461 break;
462 case rfe_op:
463 printk("!!!COP0_RFE!!!\n");
464 break;
465 case eret_op:
466 er = kvm_mips_emul_eret(vcpu);
467 goto dont_update_pc;
468 break;
469 case wait_op:
470 er = kvm_mips_emul_wait(vcpu);
471 break;
472 }
473 } else {
474 switch (copz) {
475 case mfc_op:
476 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
477 cop0->stat[rd][sel]++;
478 #endif
479 /* Get reg */
480 if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
481 /* XXXKYMA: Run the Guest count register @ 1/4 the rate of the host */
482 vcpu->arch.gprs[rt] = (read_c0_count() >> 2);
483 } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
484 vcpu->arch.gprs[rt] = 0x0;
485 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
486 kvm_mips_trans_mfc0(inst, opc, vcpu);
487 #endif
488 }
489 else {
490 vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
491
492 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
493 kvm_mips_trans_mfc0(inst, opc, vcpu);
494 #endif
495 }
496
497 kvm_debug
498 ("[%#x] MFCz[%d][%d], vcpu->arch.gprs[%d]: %#lx\n",
499 pc, rd, sel, rt, vcpu->arch.gprs[rt]);
500
501 break;
502
503 case dmfc_op:
504 vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
505 break;
506
507 case mtc_op:
508 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
509 cop0->stat[rd][sel]++;
510 #endif
511 if ((rd == MIPS_CP0_TLB_INDEX)
512 && (vcpu->arch.gprs[rt] >=
513 KVM_MIPS_GUEST_TLB_SIZE)) {
514 printk("Invalid TLB Index: %ld",
515 vcpu->arch.gprs[rt]);
516 er = EMULATE_FAIL;
517 break;
518 }
519 #define C0_EBASE_CORE_MASK 0xff
520 if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
521 /* Preserve CORE number */
522 kvm_change_c0_guest_ebase(cop0,
523 ~(C0_EBASE_CORE_MASK),
524 vcpu->arch.gprs[rt]);
525 printk("MTCz, cop0->reg[EBASE]: %#lx\n",
526 kvm_read_c0_guest_ebase(cop0));
527 } else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
528 uint32_t nasid =
529 vcpu->arch.gprs[rt] & ASID_MASK;
530 if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0)
531 &&
532 ((kvm_read_c0_guest_entryhi(cop0) &
533 ASID_MASK) != nasid)) {
534
535 kvm_debug
536 ("MTCz, change ASID from %#lx to %#lx\n",
537 kvm_read_c0_guest_entryhi(cop0) &
538 ASID_MASK,
539 vcpu->arch.gprs[rt] & ASID_MASK);
540
541 /* Blow away the shadow host TLBs */
542 kvm_mips_flush_host_tlb(1);
543 }
544 kvm_write_c0_guest_entryhi(cop0,
545 vcpu->arch.gprs[rt]);
546 }
547 /* Are we writing to COUNT */
548 else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
549 /* Linux doesn't seem to write into COUNT, we throw an error
550 * if we notice a write to COUNT
551 */
552 /*er = EMULATE_FAIL; */
553 goto done;
554 } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
555 kvm_debug("[%#x] MTCz, COMPARE %#lx <- %#lx\n",
556 pc, kvm_read_c0_guest_compare(cop0),
557 vcpu->arch.gprs[rt]);
558
559 /* If we are writing to COMPARE */
560 /* Clear pending timer interrupt, if any */
561 kvm_mips_callbacks->dequeue_timer_int(vcpu);
562 kvm_write_c0_guest_compare(cop0,
563 vcpu->arch.gprs[rt]);
564 } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
565 kvm_write_c0_guest_status(cop0,
566 vcpu->arch.gprs[rt]);
567 /* Make sure that CU1 and NMI bits are never set */
568 kvm_clear_c0_guest_status(cop0,
569 (ST0_CU1 | ST0_NMI));
570
571 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
572 kvm_mips_trans_mtc0(inst, opc, vcpu);
573 #endif
574 } else {
575 cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
576 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
577 kvm_mips_trans_mtc0(inst, opc, vcpu);
578 #endif
579 }
580
581 kvm_debug("[%#x] MTCz, cop0->reg[%d][%d]: %#lx\n", pc,
582 rd, sel, cop0->reg[rd][sel]);
583 break;
584
585 case dmtc_op:
586 printk
587 ("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
588 vcpu->arch.pc, rt, rd, sel);
589 er = EMULATE_FAIL;
590 break;
591
592 case mfmcz_op:
593 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
594 cop0->stat[MIPS_CP0_STATUS][0]++;
595 #endif
596 if (rt != 0) {
597 vcpu->arch.gprs[rt] =
598 kvm_read_c0_guest_status(cop0);
599 }
600 /* EI */
601 if (inst & 0x20) {
602 kvm_debug("[%#lx] mfmcz_op: EI\n",
603 vcpu->arch.pc);
604 kvm_set_c0_guest_status(cop0, ST0_IE);
605 } else {
606 kvm_debug("[%#lx] mfmcz_op: DI\n",
607 vcpu->arch.pc);
608 kvm_clear_c0_guest_status(cop0, ST0_IE);
609 }
610
611 break;
612
613 case wrpgpr_op:
614 {
615 uint32_t css =
616 cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
617 uint32_t pss =
618 (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
619 /* We don't support any shadow register sets, so SRSCtl[PSS] == SRSCtl[CSS] = 0 */
620 if (css || pss) {
621 er = EMULATE_FAIL;
622 break;
623 }
624 kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
625 vcpu->arch.gprs[rt]);
626 vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
627 }
628 break;
629 default:
630 printk
631 ("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
632 vcpu->arch.pc, copz);
633 er = EMULATE_FAIL;
634 break;
635 }
636 }
637
638 done:
639 /*
640 * Rollback PC only if emulation was unsuccessful
641 */
642 if (er == EMULATE_FAIL) {
643 vcpu->arch.pc = curr_pc;
644 }
645
646 dont_update_pc:
647 /*
648 * This is for special instructions whose emulation
649 * updates the PC, so do not overwrite the PC under
650 * any circumstances
651 */
652
653 return er;
654 }
655
656 enum emulation_result
657 kvm_mips_emulate_store(uint32_t inst, uint32_t cause,
658 struct kvm_run *run, struct kvm_vcpu *vcpu)
659 {
660 enum emulation_result er = EMULATE_DO_MMIO;
661 int32_t op, base, rt, offset;
662 uint32_t bytes;
663 void *data = run->mmio.data;
664 unsigned long curr_pc;
665
666 /*
667 * Update PC and hold onto current PC in case there is
668 * an error and we want to rollback the PC
669 */
670 curr_pc = vcpu->arch.pc;
671 er = update_pc(vcpu, cause);
672 if (er == EMULATE_FAIL)
673 return er;
674
675 rt = (inst >> 16) & 0x1f;
676 base = (inst >> 21) & 0x1f;
677 offset = inst & 0xffff;
678 op = (inst >> 26) & 0x3f;
679
680 switch (op) {
681 case sb_op:
682 bytes = 1;
683 if (bytes > sizeof(run->mmio.data)) {
684 kvm_err("%s: bad MMIO length: %d\n", __func__,
685 run->mmio.len);
686 }
687 run->mmio.phys_addr =
688 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
689 host_cp0_badvaddr);
690 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
691 er = EMULATE_FAIL;
692 break;
693 }
694 run->mmio.len = bytes;
695 run->mmio.is_write = 1;
696 vcpu->mmio_needed = 1;
697 vcpu->mmio_is_write = 1;
698 *(u8 *) data = vcpu->arch.gprs[rt];
699 kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
700 vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
701 *(uint8_t *) data);
702
703 break;
704
705 case sw_op:
706 bytes = 4;
707 if (bytes > sizeof(run->mmio.data)) {
708 kvm_err("%s: bad MMIO length: %d\n", __func__,
709 run->mmio.len);
710 }
711 run->mmio.phys_addr =
712 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
713 host_cp0_badvaddr);
714 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
715 er = EMULATE_FAIL;
716 break;
717 }
718
719 run->mmio.len = bytes;
720 run->mmio.is_write = 1;
721 vcpu->mmio_needed = 1;
722 vcpu->mmio_is_write = 1;
723 *(uint32_t *) data = vcpu->arch.gprs[rt];
724
725 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
726 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
727 vcpu->arch.gprs[rt], *(uint32_t *) data);
728 break;
729
730 case sh_op:
731 bytes = 2;
732 if (bytes > sizeof(run->mmio.data)) {
733 kvm_err("%s: bad MMIO length: %d\n", __func__,
734 run->mmio.len);
735 }
736 run->mmio.phys_addr =
737 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
738 host_cp0_badvaddr);
739 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
740 er = EMULATE_FAIL;
741 break;
742 }
743
744 run->mmio.len = bytes;
745 run->mmio.is_write = 1;
746 vcpu->mmio_needed = 1;
747 vcpu->mmio_is_write = 1;
748 *(uint16_t *) data = vcpu->arch.gprs[rt];
749
750 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
751 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
752 vcpu->arch.gprs[rt], *(uint32_t *) data);
753 break;
754
755 default:
756 printk("Store not yet supported");
757 er = EMULATE_FAIL;
758 break;
759 }
760
761 /*
762 * Rollback PC if emulation was unsuccessful
763 */
764 if (er == EMULATE_FAIL) {
765 vcpu->arch.pc = curr_pc;
766 }
767
768 return er;
769 }
770
771 enum emulation_result
772 kvm_mips_emulate_load(uint32_t inst, uint32_t cause,
773 struct kvm_run *run, struct kvm_vcpu *vcpu)
774 {
775 enum emulation_result er = EMULATE_DO_MMIO;
776 int32_t op, base, rt, offset;
777 uint32_t bytes;
778
779 rt = (inst >> 16) & 0x1f;
780 base = (inst >> 21) & 0x1f;
781 offset = inst & 0xffff;
782 op = (inst >> 26) & 0x3f;
783
784 vcpu->arch.pending_load_cause = cause;
785 vcpu->arch.io_gpr = rt;
786
787 switch (op) {
788 case lw_op:
789 bytes = 4;
790 if (bytes > sizeof(run->mmio.data)) {
791 kvm_err("%s: bad MMIO length: %d\n", __func__,
792 run->mmio.len);
793 er = EMULATE_FAIL;
794 break;
795 }
796 run->mmio.phys_addr =
797 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
798 host_cp0_badvaddr);
799 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
800 er = EMULATE_FAIL;
801 break;
802 }
803
804 run->mmio.len = bytes;
805 run->mmio.is_write = 0;
806 vcpu->mmio_needed = 1;
807 vcpu->mmio_is_write = 0;
808 break;
809
810 case lh_op:
811 case lhu_op:
812 bytes = 2;
813 if (bytes > sizeof(run->mmio.data)) {
814 kvm_err("%s: bad MMIO length: %d\n", __func__,
815 run->mmio.len);
816 er = EMULATE_FAIL;
817 break;
818 }
819 run->mmio.phys_addr =
820 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
821 host_cp0_badvaddr);
822 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
823 er = EMULATE_FAIL;
824 break;
825 }
826
827 run->mmio.len = bytes;
828 run->mmio.is_write = 0;
829 vcpu->mmio_needed = 1;
830 vcpu->mmio_is_write = 0;
831
832 if (op == lh_op)
833 vcpu->mmio_needed = 2;
834 else
835 vcpu->mmio_needed = 1;
836
837 break;
838
839 case lbu_op:
840 case lb_op:
841 bytes = 1;
842 if (bytes > sizeof(run->mmio.data)) {
843 kvm_err("%s: bad MMIO length: %d\n", __func__,
844 run->mmio.len);
845 er = EMULATE_FAIL;
846 break;
847 }
848 run->mmio.phys_addr =
849 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
850 host_cp0_badvaddr);
851 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
852 er = EMULATE_FAIL;
853 break;
854 }
855
856 run->mmio.len = bytes;
857 run->mmio.is_write = 0;
858 vcpu->mmio_is_write = 0;
859
860 if (op == lb_op)
861 vcpu->mmio_needed = 2;
862 else
863 vcpu->mmio_needed = 1;
864
865 break;
866
867 default:
868 printk("Load not yet supported");
869 er = EMULATE_FAIL;
870 break;
871 }
872
873 return er;
874 }
875
876 int kvm_mips_sync_icache(unsigned long va, struct kvm_vcpu *vcpu)
877 {
878 unsigned long offset = (va & ~PAGE_MASK);
879 struct kvm *kvm = vcpu->kvm;
880 unsigned long pa;
881 gfn_t gfn;
882 pfn_t pfn;
883
884 gfn = va >> PAGE_SHIFT;
885
886 if (gfn >= kvm->arch.guest_pmap_npages) {
887 printk("%s: Invalid gfn: %#llx\n", __func__, gfn);
888 kvm_mips_dump_host_tlbs();
889 kvm_arch_vcpu_dump_regs(vcpu);
890 return -1;
891 }
892 pfn = kvm->arch.guest_pmap[gfn];
893 pa = (pfn << PAGE_SHIFT) | offset;
894
895 printk("%s: va: %#lx, unmapped: %#x\n", __func__, va, CKSEG0ADDR(pa));
896
897 mips32_SyncICache(CKSEG0ADDR(pa), 32);
898 return 0;
899 }
900
901 #define MIPS_CACHE_OP_INDEX_INV 0x0
902 #define MIPS_CACHE_OP_INDEX_LD_TAG 0x1
903 #define MIPS_CACHE_OP_INDEX_ST_TAG 0x2
904 #define MIPS_CACHE_OP_IMP 0x3
905 #define MIPS_CACHE_OP_HIT_INV 0x4
906 #define MIPS_CACHE_OP_FILL_WB_INV 0x5
907 #define MIPS_CACHE_OP_HIT_HB 0x6
908 #define MIPS_CACHE_OP_FETCH_LOCK 0x7
909
910 #define MIPS_CACHE_ICACHE 0x0
911 #define MIPS_CACHE_DCACHE 0x1
912 #define MIPS_CACHE_SEC 0x3
913
914 enum emulation_result
915 kvm_mips_emulate_cache(uint32_t inst, uint32_t *opc, uint32_t cause,
916 struct kvm_run *run, struct kvm_vcpu *vcpu)
917 {
918 struct mips_coproc *cop0 = vcpu->arch.cop0;
919 extern void (*r4k_blast_dcache) (void);
920 extern void (*r4k_blast_icache) (void);
921 enum emulation_result er = EMULATE_DONE;
922 int32_t offset, cache, op_inst, op, base;
923 struct kvm_vcpu_arch *arch = &vcpu->arch;
924 unsigned long va;
925 unsigned long curr_pc;
926
927 /*
928 * Update PC and hold onto current PC in case there is
929 * an error and we want to rollback the PC
930 */
931 curr_pc = vcpu->arch.pc;
932 er = update_pc(vcpu, cause);
933 if (er == EMULATE_FAIL)
934 return er;
935
936 base = (inst >> 21) & 0x1f;
937 op_inst = (inst >> 16) & 0x1f;
938 offset = inst & 0xffff;
939 cache = (inst >> 16) & 0x3;
940 op = (inst >> 18) & 0x7;
941
942 va = arch->gprs[base] + offset;
943
944 kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
945 cache, op, base, arch->gprs[base], offset);
946
947 /* Treat INDEX_INV as a nop, basically issued by Linux on startup to invalidate
948 * the caches entirely by stepping through all the ways/indexes
949 */
950 if (op == MIPS_CACHE_OP_INDEX_INV) {
951 kvm_debug
952 ("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
953 vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
954 arch->gprs[base], offset);
955
956 if (cache == MIPS_CACHE_DCACHE)
957 r4k_blast_dcache();
958 else if (cache == MIPS_CACHE_ICACHE)
959 r4k_blast_icache();
960 else {
961 printk("%s: unsupported CACHE INDEX operation\n",
962 __func__);
963 return EMULATE_FAIL;
964 }
965
966 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
967 kvm_mips_trans_cache_index(inst, opc, vcpu);
968 #endif
969 goto done;
970 }
971
972 preempt_disable();
973 if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
974
975 if (kvm_mips_host_tlb_lookup(vcpu, va) < 0) {
976 kvm_mips_handle_kseg0_tlb_fault(va, vcpu);
977 }
978 } else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
979 KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
980 int index;
981
982 /* If an entry already exists then skip */
983 if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0) {
984 goto skip_fault;
985 }
986
987 /* If address not in the guest TLB, then give the guest a fault, the
988 * resulting handler will do the right thing
989 */
990 index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
991 (kvm_read_c0_guest_entryhi
992 (cop0) & ASID_MASK));
993
994 if (index < 0) {
995 vcpu->arch.host_cp0_entryhi = (va & VPN2_MASK);
996 vcpu->arch.host_cp0_badvaddr = va;
997 er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
998 vcpu);
999 preempt_enable();
1000 goto dont_update_pc;
1001 } else {
1002 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
1003 /* Check if the entry is valid, if not then setup a TLB invalid exception to the guest */
1004 if (!TLB_IS_VALID(*tlb, va)) {
1005 er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
1006 run, vcpu);
1007 preempt_enable();
1008 goto dont_update_pc;
1009 } else {
1010 /* We fault an entry from the guest tlb to the shadow host TLB */
1011 kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb,
1012 NULL,
1013 NULL);
1014 }
1015 }
1016 } else {
1017 printk
1018 ("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1019 cache, op, base, arch->gprs[base], offset);
1020 er = EMULATE_FAIL;
1021 preempt_enable();
1022 goto dont_update_pc;
1023
1024 }
1025
1026 skip_fault:
1027 /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1028 if (cache == MIPS_CACHE_DCACHE
1029 && (op == MIPS_CACHE_OP_FILL_WB_INV
1030 || op == MIPS_CACHE_OP_HIT_INV)) {
1031 flush_dcache_line(va);
1032
1033 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1034 /* Replace the CACHE instruction, with a SYNCI, not the same, but avoids a trap */
1035 kvm_mips_trans_cache_va(inst, opc, vcpu);
1036 #endif
1037 } else if (op == MIPS_CACHE_OP_HIT_INV && cache == MIPS_CACHE_ICACHE) {
1038 flush_dcache_line(va);
1039 flush_icache_line(va);
1040
1041 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1042 /* Replace the CACHE instruction, with a SYNCI */
1043 kvm_mips_trans_cache_va(inst, opc, vcpu);
1044 #endif
1045 } else {
1046 printk
1047 ("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1048 cache, op, base, arch->gprs[base], offset);
1049 er = EMULATE_FAIL;
1050 preempt_enable();
1051 goto dont_update_pc;
1052 }
1053
1054 preempt_enable();
1055
1056 dont_update_pc:
1057 /*
1058 * Rollback PC
1059 */
1060 vcpu->arch.pc = curr_pc;
1061 done:
1062 return er;
1063 }
1064
1065 enum emulation_result
1066 kvm_mips_emulate_inst(unsigned long cause, uint32_t *opc,
1067 struct kvm_run *run, struct kvm_vcpu *vcpu)
1068 {
1069 enum emulation_result er = EMULATE_DONE;
1070 uint32_t inst;
1071
1072 /*
1073 * Fetch the instruction.
1074 */
1075 if (cause & CAUSEF_BD) {
1076 opc += 1;
1077 }
1078
1079 inst = kvm_get_inst(opc, vcpu);
1080
1081 switch (((union mips_instruction)inst).r_format.opcode) {
1082 case cop0_op:
1083 er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1084 break;
1085 case sb_op:
1086 case sh_op:
1087 case sw_op:
1088 er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1089 break;
1090 case lb_op:
1091 case lbu_op:
1092 case lhu_op:
1093 case lh_op:
1094 case lw_op:
1095 er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1096 break;
1097
1098 case cache_op:
1099 ++vcpu->stat.cache_exits;
1100 trace_kvm_exit(vcpu, CACHE_EXITS);
1101 er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1102 break;
1103
1104 default:
1105 printk("Instruction emulation not supported (%p/%#x)\n", opc,
1106 inst);
1107 kvm_arch_vcpu_dump_regs(vcpu);
1108 er = EMULATE_FAIL;
1109 break;
1110 }
1111
1112 return er;
1113 }
1114
1115 enum emulation_result
1116 kvm_mips_emulate_syscall(unsigned long cause, uint32_t *opc,
1117 struct kvm_run *run, struct kvm_vcpu *vcpu)
1118 {
1119 struct mips_coproc *cop0 = vcpu->arch.cop0;
1120 struct kvm_vcpu_arch *arch = &vcpu->arch;
1121 enum emulation_result er = EMULATE_DONE;
1122
1123 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1124 /* save old pc */
1125 kvm_write_c0_guest_epc(cop0, arch->pc);
1126 kvm_set_c0_guest_status(cop0, ST0_EXL);
1127
1128 if (cause & CAUSEF_BD)
1129 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1130 else
1131 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1132
1133 kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
1134
1135 kvm_change_c0_guest_cause(cop0, (0xff),
1136 (T_SYSCALL << CAUSEB_EXCCODE));
1137
1138 /* Set PC to the exception entry point */
1139 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1140
1141 } else {
1142 printk("Trying to deliver SYSCALL when EXL is already set\n");
1143 er = EMULATE_FAIL;
1144 }
1145
1146 return er;
1147 }
1148
1149 enum emulation_result
1150 kvm_mips_emulate_tlbmiss_ld(unsigned long cause, uint32_t *opc,
1151 struct kvm_run *run, struct kvm_vcpu *vcpu)
1152 {
1153 struct mips_coproc *cop0 = vcpu->arch.cop0;
1154 struct kvm_vcpu_arch *arch = &vcpu->arch;
1155 enum emulation_result er = EMULATE_DONE;
1156 unsigned long entryhi = (vcpu->arch. host_cp0_badvaddr & VPN2_MASK) |
1157 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1158
1159 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1160 /* save old pc */
1161 kvm_write_c0_guest_epc(cop0, arch->pc);
1162 kvm_set_c0_guest_status(cop0, ST0_EXL);
1163
1164 if (cause & CAUSEF_BD)
1165 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1166 else
1167 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1168
1169 kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1170 arch->pc);
1171
1172 /* set pc to the exception entry point */
1173 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1174
1175 } else {
1176 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1177 arch->pc);
1178
1179 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1180 }
1181
1182 kvm_change_c0_guest_cause(cop0, (0xff),
1183 (T_TLB_LD_MISS << CAUSEB_EXCCODE));
1184
1185 /* setup badvaddr, context and entryhi registers for the guest */
1186 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1187 /* XXXKYMA: is the context register used by linux??? */
1188 kvm_write_c0_guest_entryhi(cop0, entryhi);
1189 /* Blow away the shadow host TLBs */
1190 kvm_mips_flush_host_tlb(1);
1191
1192 return er;
1193 }
1194
1195 enum emulation_result
1196 kvm_mips_emulate_tlbinv_ld(unsigned long cause, uint32_t *opc,
1197 struct kvm_run *run, struct kvm_vcpu *vcpu)
1198 {
1199 struct mips_coproc *cop0 = vcpu->arch.cop0;
1200 struct kvm_vcpu_arch *arch = &vcpu->arch;
1201 enum emulation_result er = EMULATE_DONE;
1202 unsigned long entryhi =
1203 (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1204 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1205
1206 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1207 /* save old pc */
1208 kvm_write_c0_guest_epc(cop0, arch->pc);
1209 kvm_set_c0_guest_status(cop0, ST0_EXL);
1210
1211 if (cause & CAUSEF_BD)
1212 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1213 else
1214 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1215
1216 kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
1217 arch->pc);
1218
1219 /* set pc to the exception entry point */
1220 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1221
1222 } else {
1223 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1224 arch->pc);
1225 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1226 }
1227
1228 kvm_change_c0_guest_cause(cop0, (0xff),
1229 (T_TLB_LD_MISS << CAUSEB_EXCCODE));
1230
1231 /* setup badvaddr, context and entryhi registers for the guest */
1232 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1233 /* XXXKYMA: is the context register used by linux??? */
1234 kvm_write_c0_guest_entryhi(cop0, entryhi);
1235 /* Blow away the shadow host TLBs */
1236 kvm_mips_flush_host_tlb(1);
1237
1238 return er;
1239 }
1240
1241 enum emulation_result
1242 kvm_mips_emulate_tlbmiss_st(unsigned long cause, uint32_t *opc,
1243 struct kvm_run *run, struct kvm_vcpu *vcpu)
1244 {
1245 struct mips_coproc *cop0 = vcpu->arch.cop0;
1246 struct kvm_vcpu_arch *arch = &vcpu->arch;
1247 enum emulation_result er = EMULATE_DONE;
1248 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1249 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1250
1251 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1252 /* save old pc */
1253 kvm_write_c0_guest_epc(cop0, arch->pc);
1254 kvm_set_c0_guest_status(cop0, ST0_EXL);
1255
1256 if (cause & CAUSEF_BD)
1257 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1258 else
1259 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1260
1261 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1262 arch->pc);
1263
1264 /* Set PC to the exception entry point */
1265 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1266 } else {
1267 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1268 arch->pc);
1269 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1270 }
1271
1272 kvm_change_c0_guest_cause(cop0, (0xff),
1273 (T_TLB_ST_MISS << CAUSEB_EXCCODE));
1274
1275 /* setup badvaddr, context and entryhi registers for the guest */
1276 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1277 /* XXXKYMA: is the context register used by linux??? */
1278 kvm_write_c0_guest_entryhi(cop0, entryhi);
1279 /* Blow away the shadow host TLBs */
1280 kvm_mips_flush_host_tlb(1);
1281
1282 return er;
1283 }
1284
1285 enum emulation_result
1286 kvm_mips_emulate_tlbinv_st(unsigned long cause, uint32_t *opc,
1287 struct kvm_run *run, struct kvm_vcpu *vcpu)
1288 {
1289 struct mips_coproc *cop0 = vcpu->arch.cop0;
1290 struct kvm_vcpu_arch *arch = &vcpu->arch;
1291 enum emulation_result er = EMULATE_DONE;
1292 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1293 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1294
1295 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1296 /* save old pc */
1297 kvm_write_c0_guest_epc(cop0, arch->pc);
1298 kvm_set_c0_guest_status(cop0, ST0_EXL);
1299
1300 if (cause & CAUSEF_BD)
1301 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1302 else
1303 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1304
1305 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1306 arch->pc);
1307
1308 /* Set PC to the exception entry point */
1309 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1310 } else {
1311 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1312 arch->pc);
1313 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1314 }
1315
1316 kvm_change_c0_guest_cause(cop0, (0xff),
1317 (T_TLB_ST_MISS << CAUSEB_EXCCODE));
1318
1319 /* setup badvaddr, context and entryhi registers for the guest */
1320 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1321 /* XXXKYMA: is the context register used by linux??? */
1322 kvm_write_c0_guest_entryhi(cop0, entryhi);
1323 /* Blow away the shadow host TLBs */
1324 kvm_mips_flush_host_tlb(1);
1325
1326 return er;
1327 }
1328
1329 /* TLBMOD: store into address matching TLB with Dirty bit off */
1330 enum emulation_result
1331 kvm_mips_handle_tlbmod(unsigned long cause, uint32_t *opc,
1332 struct kvm_run *run, struct kvm_vcpu *vcpu)
1333 {
1334 enum emulation_result er = EMULATE_DONE;
1335
1336 #ifdef DEBUG
1337 /*
1338 * If address not in the guest TLB, then we are in trouble
1339 */
1340 index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
1341 if (index < 0) {
1342 /* XXXKYMA Invalidate and retry */
1343 kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
1344 kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
1345 __func__, entryhi);
1346 kvm_mips_dump_guest_tlbs(vcpu);
1347 kvm_mips_dump_host_tlbs();
1348 return EMULATE_FAIL;
1349 }
1350 #endif
1351
1352 er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
1353 return er;
1354 }
1355
1356 enum emulation_result
1357 kvm_mips_emulate_tlbmod(unsigned long cause, uint32_t *opc,
1358 struct kvm_run *run, struct kvm_vcpu *vcpu)
1359 {
1360 struct mips_coproc *cop0 = vcpu->arch.cop0;
1361 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1362 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1363 struct kvm_vcpu_arch *arch = &vcpu->arch;
1364 enum emulation_result er = EMULATE_DONE;
1365
1366 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1367 /* save old pc */
1368 kvm_write_c0_guest_epc(cop0, arch->pc);
1369 kvm_set_c0_guest_status(cop0, ST0_EXL);
1370
1371 if (cause & CAUSEF_BD)
1372 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1373 else
1374 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1375
1376 kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
1377 arch->pc);
1378
1379 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1380 } else {
1381 kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
1382 arch->pc);
1383 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1384 }
1385
1386 kvm_change_c0_guest_cause(cop0, (0xff), (T_TLB_MOD << CAUSEB_EXCCODE));
1387
1388 /* setup badvaddr, context and entryhi registers for the guest */
1389 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1390 /* XXXKYMA: is the context register used by linux??? */
1391 kvm_write_c0_guest_entryhi(cop0, entryhi);
1392 /* Blow away the shadow host TLBs */
1393 kvm_mips_flush_host_tlb(1);
1394
1395 return er;
1396 }
1397
1398 enum emulation_result
1399 kvm_mips_emulate_fpu_exc(unsigned long cause, uint32_t *opc,
1400 struct kvm_run *run, struct kvm_vcpu *vcpu)
1401 {
1402 struct mips_coproc *cop0 = vcpu->arch.cop0;
1403 struct kvm_vcpu_arch *arch = &vcpu->arch;
1404 enum emulation_result er = EMULATE_DONE;
1405
1406 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1407 /* save old pc */
1408 kvm_write_c0_guest_epc(cop0, arch->pc);
1409 kvm_set_c0_guest_status(cop0, ST0_EXL);
1410
1411 if (cause & CAUSEF_BD)
1412 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1413 else
1414 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1415
1416 }
1417
1418 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1419
1420 kvm_change_c0_guest_cause(cop0, (0xff),
1421 (T_COP_UNUSABLE << CAUSEB_EXCCODE));
1422 kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
1423
1424 return er;
1425 }
1426
1427 enum emulation_result
1428 kvm_mips_emulate_ri_exc(unsigned long cause, uint32_t *opc,
1429 struct kvm_run *run, struct kvm_vcpu *vcpu)
1430 {
1431 struct mips_coproc *cop0 = vcpu->arch.cop0;
1432 struct kvm_vcpu_arch *arch = &vcpu->arch;
1433 enum emulation_result er = EMULATE_DONE;
1434
1435 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1436 /* save old pc */
1437 kvm_write_c0_guest_epc(cop0, arch->pc);
1438 kvm_set_c0_guest_status(cop0, ST0_EXL);
1439
1440 if (cause & CAUSEF_BD)
1441 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1442 else
1443 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1444
1445 kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
1446
1447 kvm_change_c0_guest_cause(cop0, (0xff),
1448 (T_RES_INST << CAUSEB_EXCCODE));
1449
1450 /* Set PC to the exception entry point */
1451 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1452
1453 } else {
1454 kvm_err("Trying to deliver RI when EXL is already set\n");
1455 er = EMULATE_FAIL;
1456 }
1457
1458 return er;
1459 }
1460
1461 enum emulation_result
1462 kvm_mips_emulate_bp_exc(unsigned long cause, uint32_t *opc,
1463 struct kvm_run *run, struct kvm_vcpu *vcpu)
1464 {
1465 struct mips_coproc *cop0 = vcpu->arch.cop0;
1466 struct kvm_vcpu_arch *arch = &vcpu->arch;
1467 enum emulation_result er = EMULATE_DONE;
1468
1469 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1470 /* save old pc */
1471 kvm_write_c0_guest_epc(cop0, arch->pc);
1472 kvm_set_c0_guest_status(cop0, ST0_EXL);
1473
1474 if (cause & CAUSEF_BD)
1475 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1476 else
1477 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1478
1479 kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
1480
1481 kvm_change_c0_guest_cause(cop0, (0xff),
1482 (T_BREAK << CAUSEB_EXCCODE));
1483
1484 /* Set PC to the exception entry point */
1485 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1486
1487 } else {
1488 printk("Trying to deliver BP when EXL is already set\n");
1489 er = EMULATE_FAIL;
1490 }
1491
1492 return er;
1493 }
1494
1495 /*
1496 * ll/sc, rdhwr, sync emulation
1497 */
1498
1499 #define OPCODE 0xfc000000
1500 #define BASE 0x03e00000
1501 #define RT 0x001f0000
1502 #define OFFSET 0x0000ffff
1503 #define LL 0xc0000000
1504 #define SC 0xe0000000
1505 #define SPEC0 0x00000000
1506 #define SPEC3 0x7c000000
1507 #define RD 0x0000f800
1508 #define FUNC 0x0000003f
1509 #define SYNC 0x0000000f
1510 #define RDHWR 0x0000003b
1511
1512 enum emulation_result
1513 kvm_mips_handle_ri(unsigned long cause, uint32_t *opc,
1514 struct kvm_run *run, struct kvm_vcpu *vcpu)
1515 {
1516 struct mips_coproc *cop0 = vcpu->arch.cop0;
1517 struct kvm_vcpu_arch *arch = &vcpu->arch;
1518 enum emulation_result er = EMULATE_DONE;
1519 unsigned long curr_pc;
1520 uint32_t inst;
1521
1522 /*
1523 * Update PC and hold onto current PC in case there is
1524 * an error and we want to rollback the PC
1525 */
1526 curr_pc = vcpu->arch.pc;
1527 er = update_pc(vcpu, cause);
1528 if (er == EMULATE_FAIL)
1529 return er;
1530
1531 /*
1532 * Fetch the instruction.
1533 */
1534 if (cause & CAUSEF_BD)
1535 opc += 1;
1536
1537 inst = kvm_get_inst(opc, vcpu);
1538
1539 if (inst == KVM_INVALID_INST) {
1540 printk("%s: Cannot get inst @ %p\n", __func__, opc);
1541 return EMULATE_FAIL;
1542 }
1543
1544 if ((inst & OPCODE) == SPEC3 && (inst & FUNC) == RDHWR) {
1545 int rd = (inst & RD) >> 11;
1546 int rt = (inst & RT) >> 16;
1547 switch (rd) {
1548 case 0: /* CPU number */
1549 arch->gprs[rt] = 0;
1550 break;
1551 case 1: /* SYNCI length */
1552 arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
1553 current_cpu_data.icache.linesz);
1554 break;
1555 case 2: /* Read count register */
1556 printk("RDHWR: Cont register\n");
1557 arch->gprs[rt] = kvm_read_c0_guest_count(cop0);
1558 break;
1559 case 3: /* Count register resolution */
1560 switch (current_cpu_data.cputype) {
1561 case CPU_20KC:
1562 case CPU_25KF:
1563 arch->gprs[rt] = 1;
1564 break;
1565 default:
1566 arch->gprs[rt] = 2;
1567 }
1568 break;
1569 case 29:
1570 #if 1
1571 arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
1572 #else
1573 /* UserLocal not implemented */
1574 er = kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
1575 #endif
1576 break;
1577
1578 default:
1579 printk("RDHWR not supported\n");
1580 er = EMULATE_FAIL;
1581 break;
1582 }
1583 } else {
1584 printk("Emulate RI not supported @ %p: %#x\n", opc, inst);
1585 er = EMULATE_FAIL;
1586 }
1587
1588 /*
1589 * Rollback PC only if emulation was unsuccessful
1590 */
1591 if (er == EMULATE_FAIL) {
1592 vcpu->arch.pc = curr_pc;
1593 }
1594 return er;
1595 }
1596
1597 enum emulation_result
1598 kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu, struct kvm_run *run)
1599 {
1600 unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
1601 enum emulation_result er = EMULATE_DONE;
1602 unsigned long curr_pc;
1603
1604 if (run->mmio.len > sizeof(*gpr)) {
1605 printk("Bad MMIO length: %d", run->mmio.len);
1606 er = EMULATE_FAIL;
1607 goto done;
1608 }
1609
1610 /*
1611 * Update PC and hold onto current PC in case there is
1612 * an error and we want to rollback the PC
1613 */
1614 curr_pc = vcpu->arch.pc;
1615 er = update_pc(vcpu, vcpu->arch.pending_load_cause);
1616 if (er == EMULATE_FAIL)
1617 return er;
1618
1619 switch (run->mmio.len) {
1620 case 4:
1621 *gpr = *(int32_t *) run->mmio.data;
1622 break;
1623
1624 case 2:
1625 if (vcpu->mmio_needed == 2)
1626 *gpr = *(int16_t *) run->mmio.data;
1627 else
1628 *gpr = *(int16_t *) run->mmio.data;
1629
1630 break;
1631 case 1:
1632 if (vcpu->mmio_needed == 2)
1633 *gpr = *(int8_t *) run->mmio.data;
1634 else
1635 *gpr = *(u8 *) run->mmio.data;
1636 break;
1637 }
1638
1639 if (vcpu->arch.pending_load_cause & CAUSEF_BD)
1640 kvm_debug
1641 ("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
1642 vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
1643 vcpu->mmio_needed);
1644
1645 done:
1646 return er;
1647 }
1648
1649 static enum emulation_result
1650 kvm_mips_emulate_exc(unsigned long cause, uint32_t *opc,
1651 struct kvm_run *run, struct kvm_vcpu *vcpu)
1652 {
1653 uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1654 struct mips_coproc *cop0 = vcpu->arch.cop0;
1655 struct kvm_vcpu_arch *arch = &vcpu->arch;
1656 enum emulation_result er = EMULATE_DONE;
1657
1658 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1659 /* save old pc */
1660 kvm_write_c0_guest_epc(cop0, arch->pc);
1661 kvm_set_c0_guest_status(cop0, ST0_EXL);
1662
1663 if (cause & CAUSEF_BD)
1664 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1665 else
1666 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1667
1668 kvm_change_c0_guest_cause(cop0, (0xff),
1669 (exccode << CAUSEB_EXCCODE));
1670
1671 /* Set PC to the exception entry point */
1672 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1673 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1674
1675 kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
1676 exccode, kvm_read_c0_guest_epc(cop0),
1677 kvm_read_c0_guest_badvaddr(cop0));
1678 } else {
1679 printk("Trying to deliver EXC when EXL is already set\n");
1680 er = EMULATE_FAIL;
1681 }
1682
1683 return er;
1684 }
1685
1686 enum emulation_result
1687 kvm_mips_check_privilege(unsigned long cause, uint32_t *opc,
1688 struct kvm_run *run, struct kvm_vcpu *vcpu)
1689 {
1690 enum emulation_result er = EMULATE_DONE;
1691 uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1692 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1693
1694 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
1695
1696 if (usermode) {
1697 switch (exccode) {
1698 case T_INT:
1699 case T_SYSCALL:
1700 case T_BREAK:
1701 case T_RES_INST:
1702 break;
1703
1704 case T_COP_UNUSABLE:
1705 if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
1706 er = EMULATE_PRIV_FAIL;
1707 break;
1708
1709 case T_TLB_MOD:
1710 break;
1711
1712 case T_TLB_LD_MISS:
1713 /* We we are accessing Guest kernel space, then send an address error exception to the guest */
1714 if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
1715 printk("%s: LD MISS @ %#lx\n", __func__,
1716 badvaddr);
1717 cause &= ~0xff;
1718 cause |= (T_ADDR_ERR_LD << CAUSEB_EXCCODE);
1719 er = EMULATE_PRIV_FAIL;
1720 }
1721 break;
1722
1723 case T_TLB_ST_MISS:
1724 /* We we are accessing Guest kernel space, then send an address error exception to the guest */
1725 if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
1726 printk("%s: ST MISS @ %#lx\n", __func__,
1727 badvaddr);
1728 cause &= ~0xff;
1729 cause |= (T_ADDR_ERR_ST << CAUSEB_EXCCODE);
1730 er = EMULATE_PRIV_FAIL;
1731 }
1732 break;
1733
1734 case T_ADDR_ERR_ST:
1735 printk("%s: address error ST @ %#lx\n", __func__,
1736 badvaddr);
1737 if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
1738 cause &= ~0xff;
1739 cause |= (T_TLB_ST_MISS << CAUSEB_EXCCODE);
1740 }
1741 er = EMULATE_PRIV_FAIL;
1742 break;
1743 case T_ADDR_ERR_LD:
1744 printk("%s: address error LD @ %#lx\n", __func__,
1745 badvaddr);
1746 if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
1747 cause &= ~0xff;
1748 cause |= (T_TLB_LD_MISS << CAUSEB_EXCCODE);
1749 }
1750 er = EMULATE_PRIV_FAIL;
1751 break;
1752 default:
1753 er = EMULATE_PRIV_FAIL;
1754 break;
1755 }
1756 }
1757
1758 if (er == EMULATE_PRIV_FAIL) {
1759 kvm_mips_emulate_exc(cause, opc, run, vcpu);
1760 }
1761 return er;
1762 }
1763
1764 /* User Address (UA) fault, this could happen if
1765 * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
1766 * case we pass on the fault to the guest kernel and let it handle it.
1767 * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
1768 * case we inject the TLB from the Guest TLB into the shadow host TLB
1769 */
1770 enum emulation_result
1771 kvm_mips_handle_tlbmiss(unsigned long cause, uint32_t *opc,
1772 struct kvm_run *run, struct kvm_vcpu *vcpu)
1773 {
1774 enum emulation_result er = EMULATE_DONE;
1775 uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1776 unsigned long va = vcpu->arch.host_cp0_badvaddr;
1777 int index;
1778
1779 kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx, entryhi: %#lx\n",
1780 vcpu->arch.host_cp0_badvaddr, vcpu->arch.host_cp0_entryhi);
1781
1782 /* KVM would not have got the exception if this entry was valid in the shadow host TLB
1783 * Check the Guest TLB, if the entry is not there then send the guest an
1784 * exception. The guest exc handler should then inject an entry into the
1785 * guest TLB
1786 */
1787 index = kvm_mips_guest_tlb_lookup(vcpu,
1788 (va & VPN2_MASK) |
1789 (kvm_read_c0_guest_entryhi
1790 (vcpu->arch.cop0) & ASID_MASK));
1791 if (index < 0) {
1792 if (exccode == T_TLB_LD_MISS) {
1793 er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
1794 } else if (exccode == T_TLB_ST_MISS) {
1795 er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
1796 } else {
1797 printk("%s: invalid exc code: %d\n", __func__, exccode);
1798 er = EMULATE_FAIL;
1799 }
1800 } else {
1801 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
1802
1803 /* Check if the entry is valid, if not then setup a TLB invalid exception to the guest */
1804 if (!TLB_IS_VALID(*tlb, va)) {
1805 if (exccode == T_TLB_LD_MISS) {
1806 er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
1807 vcpu);
1808 } else if (exccode == T_TLB_ST_MISS) {
1809 er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
1810 vcpu);
1811 } else {
1812 printk("%s: invalid exc code: %d\n", __func__,
1813 exccode);
1814 er = EMULATE_FAIL;
1815 }
1816 } else {
1817 #ifdef DEBUG
1818 kvm_debug
1819 ("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
1820 tlb->tlb_hi, tlb->tlb_lo0, tlb->tlb_lo1);
1821 #endif
1822 /* OK we have a Guest TLB entry, now inject it into the shadow host TLB */
1823 kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, NULL,
1824 NULL);
1825 }
1826 }
1827
1828 return er;
1829 }