Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / mips / kernel / traps.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 */
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/kexec.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/mm.h>
21 #include <linux/sched.h>
22 #include <linux/smp.h>
23 #include <linux/spinlock.h>
24 #include <linux/kallsyms.h>
25 #include <linux/bootmem.h>
26 #include <linux/interrupt.h>
27 #include <linux/ptrace.h>
28 #include <linux/kgdb.h>
29 #include <linux/kdebug.h>
30 #include <linux/kprobes.h>
31 #include <linux/notifier.h>
32 #include <linux/kdb.h>
33 #include <linux/irq.h>
34 #include <linux/perf_event.h>
35
36 #include <asm/bootinfo.h>
37 #include <asm/branch.h>
38 #include <asm/break.h>
39 #include <asm/cop2.h>
40 #include <asm/cpu.h>
41 #include <asm/dsp.h>
42 #include <asm/fpu.h>
43 #include <asm/fpu_emulator.h>
44 #include <asm/mipsregs.h>
45 #include <asm/mipsmtregs.h>
46 #include <asm/module.h>
47 #include <asm/pgtable.h>
48 #include <asm/ptrace.h>
49 #include <asm/sections.h>
50 #include <asm/tlbdebug.h>
51 #include <asm/traps.h>
52 #include <asm/uaccess.h>
53 #include <asm/watch.h>
54 #include <asm/mmu_context.h>
55 #include <asm/types.h>
56 #include <asm/stacktrace.h>
57 #include <asm/uasm.h>
58
59 extern void check_wait(void);
60 extern asmlinkage void r4k_wait(void);
61 extern asmlinkage void rollback_handle_int(void);
62 extern asmlinkage void handle_int(void);
63 extern u32 handle_tlbl[];
64 extern u32 handle_tlbs[];
65 extern u32 handle_tlbm[];
66 extern asmlinkage void handle_adel(void);
67 extern asmlinkage void handle_ades(void);
68 extern asmlinkage void handle_ibe(void);
69 extern asmlinkage void handle_dbe(void);
70 extern asmlinkage void handle_sys(void);
71 extern asmlinkage void handle_bp(void);
72 extern asmlinkage void handle_ri(void);
73 extern asmlinkage void handle_ri_rdhwr_vivt(void);
74 extern asmlinkage void handle_ri_rdhwr(void);
75 extern asmlinkage void handle_cpu(void);
76 extern asmlinkage void handle_ov(void);
77 extern asmlinkage void handle_tr(void);
78 extern asmlinkage void handle_fpe(void);
79 extern asmlinkage void handle_mdmx(void);
80 extern asmlinkage void handle_watch(void);
81 extern asmlinkage void handle_mt(void);
82 extern asmlinkage void handle_dsp(void);
83 extern asmlinkage void handle_mcheck(void);
84 extern asmlinkage void handle_reserved(void);
85
86 void (*board_be_init)(void);
87 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
88 void (*board_nmi_handler_setup)(void);
89 void (*board_ejtag_handler_setup)(void);
90 void (*board_bind_eic_interrupt)(int irq, int regset);
91 void (*board_ebase_setup)(void);
92 void __cpuinitdata(*board_cache_error_setup)(void);
93
94 static void show_raw_backtrace(unsigned long reg29)
95 {
96 unsigned long *sp = (unsigned long *)(reg29 & ~3);
97 unsigned long addr;
98
99 printk("Call Trace:");
100 #ifdef CONFIG_KALLSYMS
101 printk("\n");
102 #endif
103 while (!kstack_end(sp)) {
104 unsigned long __user *p =
105 (unsigned long __user *)(unsigned long)sp++;
106 if (__get_user(addr, p)) {
107 printk(" (Bad stack address)");
108 break;
109 }
110 if (__kernel_text_address(addr))
111 print_ip_sym(addr);
112 }
113 printk("\n");
114 }
115
116 #ifdef CONFIG_KALLSYMS
117 int raw_show_trace;
118 static int __init set_raw_show_trace(char *str)
119 {
120 raw_show_trace = 1;
121 return 1;
122 }
123 __setup("raw_show_trace", set_raw_show_trace);
124 #endif
125
126 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
127 {
128 unsigned long sp = regs->regs[29];
129 unsigned long ra = regs->regs[31];
130 unsigned long pc = regs->cp0_epc;
131
132 if (!task)
133 task = current;
134
135 if (raw_show_trace || !__kernel_text_address(pc)) {
136 show_raw_backtrace(sp);
137 return;
138 }
139 printk("Call Trace:\n");
140 do {
141 print_ip_sym(pc);
142 pc = unwind_stack(task, &sp, pc, &ra);
143 } while (pc);
144 printk("\n");
145 }
146
147 /*
148 * This routine abuses get_user()/put_user() to reference pointers
149 * with at least a bit of error checking ...
150 */
151 static void show_stacktrace(struct task_struct *task,
152 const struct pt_regs *regs)
153 {
154 const int field = 2 * sizeof(unsigned long);
155 long stackdata;
156 int i;
157 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
158
159 printk("Stack :");
160 i = 0;
161 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
162 if (i && ((i % (64 / field)) == 0))
163 printk("\n ");
164 if (i > 39) {
165 printk(" ...");
166 break;
167 }
168
169 if (__get_user(stackdata, sp++)) {
170 printk(" (Bad stack address)");
171 break;
172 }
173
174 printk(" %0*lx", field, stackdata);
175 i++;
176 }
177 printk("\n");
178 show_backtrace(task, regs);
179 }
180
181 void show_stack(struct task_struct *task, unsigned long *sp)
182 {
183 struct pt_regs regs;
184 if (sp) {
185 regs.regs[29] = (unsigned long)sp;
186 regs.regs[31] = 0;
187 regs.cp0_epc = 0;
188 } else {
189 if (task && task != current) {
190 regs.regs[29] = task->thread.reg29;
191 regs.regs[31] = 0;
192 regs.cp0_epc = task->thread.reg31;
193 #ifdef CONFIG_KGDB_KDB
194 } else if (atomic_read(&kgdb_active) != -1 &&
195 kdb_current_regs) {
196 memcpy(&regs, kdb_current_regs, sizeof(regs));
197 #endif /* CONFIG_KGDB_KDB */
198 } else {
199 prepare_frametrace(&regs);
200 }
201 }
202 show_stacktrace(task, &regs);
203 }
204
205 static void show_code(unsigned int __user *pc)
206 {
207 long i;
208 unsigned short __user *pc16 = NULL;
209
210 printk("\nCode:");
211
212 if ((unsigned long)pc & 1)
213 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
214 for(i = -3 ; i < 6 ; i++) {
215 unsigned int insn;
216 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
217 printk(" (Bad address in epc)\n");
218 break;
219 }
220 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
221 }
222 }
223
224 static void __show_regs(const struct pt_regs *regs)
225 {
226 const int field = 2 * sizeof(unsigned long);
227 unsigned int cause = regs->cp0_cause;
228 int i;
229
230 show_regs_print_info(KERN_DEFAULT);
231
232 /*
233 * Saved main processor registers
234 */
235 for (i = 0; i < 32; ) {
236 if ((i % 4) == 0)
237 printk("$%2d :", i);
238 if (i == 0)
239 printk(" %0*lx", field, 0UL);
240 else if (i == 26 || i == 27)
241 printk(" %*s", field, "");
242 else
243 printk(" %0*lx", field, regs->regs[i]);
244
245 i++;
246 if ((i % 4) == 0)
247 printk("\n");
248 }
249
250 #ifdef CONFIG_CPU_HAS_SMARTMIPS
251 printk("Acx : %0*lx\n", field, regs->acx);
252 #endif
253 printk("Hi : %0*lx\n", field, regs->hi);
254 printk("Lo : %0*lx\n", field, regs->lo);
255
256 /*
257 * Saved cp0 registers
258 */
259 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
260 (void *) regs->cp0_epc);
261 printk(" %s\n", print_tainted());
262 printk("ra : %0*lx %pS\n", field, regs->regs[31],
263 (void *) regs->regs[31]);
264
265 printk("Status: %08x ", (uint32_t) regs->cp0_status);
266
267 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
268 if (regs->cp0_status & ST0_KUO)
269 printk("KUo ");
270 if (regs->cp0_status & ST0_IEO)
271 printk("IEo ");
272 if (regs->cp0_status & ST0_KUP)
273 printk("KUp ");
274 if (regs->cp0_status & ST0_IEP)
275 printk("IEp ");
276 if (regs->cp0_status & ST0_KUC)
277 printk("KUc ");
278 if (regs->cp0_status & ST0_IEC)
279 printk("IEc ");
280 } else {
281 if (regs->cp0_status & ST0_KX)
282 printk("KX ");
283 if (regs->cp0_status & ST0_SX)
284 printk("SX ");
285 if (regs->cp0_status & ST0_UX)
286 printk("UX ");
287 switch (regs->cp0_status & ST0_KSU) {
288 case KSU_USER:
289 printk("USER ");
290 break;
291 case KSU_SUPERVISOR:
292 printk("SUPERVISOR ");
293 break;
294 case KSU_KERNEL:
295 printk("KERNEL ");
296 break;
297 default:
298 printk("BAD_MODE ");
299 break;
300 }
301 if (regs->cp0_status & ST0_ERL)
302 printk("ERL ");
303 if (regs->cp0_status & ST0_EXL)
304 printk("EXL ");
305 if (regs->cp0_status & ST0_IE)
306 printk("IE ");
307 }
308 printk("\n");
309
310 printk("Cause : %08x\n", cause);
311
312 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
313 if (1 <= cause && cause <= 5)
314 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
315
316 printk("PrId : %08x (%s)\n", read_c0_prid(),
317 cpu_name_string());
318 }
319
320 /*
321 * FIXME: really the generic show_regs should take a const pointer argument.
322 */
323 void show_regs(struct pt_regs *regs)
324 {
325 __show_regs((struct pt_regs *)regs);
326 }
327
328 void show_registers(struct pt_regs *regs)
329 {
330 const int field = 2 * sizeof(unsigned long);
331
332 __show_regs(regs);
333 print_modules();
334 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
335 current->comm, current->pid, current_thread_info(), current,
336 field, current_thread_info()->tp_value);
337 if (cpu_has_userlocal) {
338 unsigned long tls;
339
340 tls = read_c0_userlocal();
341 if (tls != current_thread_info()->tp_value)
342 printk("*HwTLS: %0*lx\n", field, tls);
343 }
344
345 show_stacktrace(current, regs);
346 show_code((unsigned int __user *) regs->cp0_epc);
347 printk("\n");
348 }
349
350 static int regs_to_trapnr(struct pt_regs *regs)
351 {
352 return (regs->cp0_cause >> 2) & 0x1f;
353 }
354
355 static DEFINE_RAW_SPINLOCK(die_lock);
356
357 void __noreturn die(const char *str, struct pt_regs *regs)
358 {
359 static int die_counter;
360 int sig = SIGSEGV;
361 #ifdef CONFIG_MIPS_MT_SMTC
362 unsigned long dvpret;
363 #endif /* CONFIG_MIPS_MT_SMTC */
364
365 oops_enter();
366
367 if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP)
368 sig = 0;
369
370 console_verbose();
371 raw_spin_lock_irq(&die_lock);
372 #ifdef CONFIG_MIPS_MT_SMTC
373 dvpret = dvpe();
374 #endif /* CONFIG_MIPS_MT_SMTC */
375 bust_spinlocks(1);
376 #ifdef CONFIG_MIPS_MT_SMTC
377 mips_mt_regdump(dvpret);
378 #endif /* CONFIG_MIPS_MT_SMTC */
379
380 printk("%s[#%d]:\n", str, ++die_counter);
381 show_registers(regs);
382 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
383 raw_spin_unlock_irq(&die_lock);
384
385 oops_exit();
386
387 if (in_interrupt())
388 panic("Fatal exception in interrupt");
389
390 if (panic_on_oops) {
391 printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
392 ssleep(5);
393 panic("Fatal exception");
394 }
395
396 if (regs && kexec_should_crash(current))
397 crash_kexec(regs);
398
399 do_exit(sig);
400 }
401
402 extern struct exception_table_entry __start___dbe_table[];
403 extern struct exception_table_entry __stop___dbe_table[];
404
405 __asm__(
406 " .section __dbe_table, \"a\"\n"
407 " .previous \n");
408
409 /* Given an address, look for it in the exception tables. */
410 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
411 {
412 const struct exception_table_entry *e;
413
414 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
415 if (!e)
416 e = search_module_dbetables(addr);
417 return e;
418 }
419
420 asmlinkage void do_be(struct pt_regs *regs)
421 {
422 const int field = 2 * sizeof(unsigned long);
423 const struct exception_table_entry *fixup = NULL;
424 int data = regs->cp0_cause & 4;
425 int action = MIPS_BE_FATAL;
426
427 /* XXX For now. Fixme, this searches the wrong table ... */
428 if (data && !user_mode(regs))
429 fixup = search_dbe_tables(exception_epc(regs));
430
431 if (fixup)
432 action = MIPS_BE_FIXUP;
433
434 if (board_be_handler)
435 action = board_be_handler(regs, fixup != NULL);
436
437 switch (action) {
438 case MIPS_BE_DISCARD:
439 return;
440 case MIPS_BE_FIXUP:
441 if (fixup) {
442 regs->cp0_epc = fixup->nextinsn;
443 return;
444 }
445 break;
446 default:
447 break;
448 }
449
450 /*
451 * Assume it would be too dangerous to continue ...
452 */
453 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
454 data ? "Data" : "Instruction",
455 field, regs->cp0_epc, field, regs->regs[31]);
456 if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS)
457 == NOTIFY_STOP)
458 return;
459
460 die_if_kernel("Oops", regs);
461 force_sig(SIGBUS, current);
462 }
463
464 /*
465 * ll/sc, rdhwr, sync emulation
466 */
467
468 #define OPCODE 0xfc000000
469 #define BASE 0x03e00000
470 #define RT 0x001f0000
471 #define OFFSET 0x0000ffff
472 #define LL 0xc0000000
473 #define SC 0xe0000000
474 #define SPEC0 0x00000000
475 #define SPEC3 0x7c000000
476 #define RD 0x0000f800
477 #define FUNC 0x0000003f
478 #define SYNC 0x0000000f
479 #define RDHWR 0x0000003b
480
481 /* microMIPS definitions */
482 #define MM_POOL32A_FUNC 0xfc00ffff
483 #define MM_RDHWR 0x00006b3c
484 #define MM_RS 0x001f0000
485 #define MM_RT 0x03e00000
486
487 /*
488 * The ll_bit is cleared by r*_switch.S
489 */
490
491 unsigned int ll_bit;
492 struct task_struct *ll_task;
493
494 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
495 {
496 unsigned long value, __user *vaddr;
497 long offset;
498
499 /*
500 * analyse the ll instruction that just caused a ri exception
501 * and put the referenced address to addr.
502 */
503
504 /* sign extend offset */
505 offset = opcode & OFFSET;
506 offset <<= 16;
507 offset >>= 16;
508
509 vaddr = (unsigned long __user *)
510 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
511
512 if ((unsigned long)vaddr & 3)
513 return SIGBUS;
514 if (get_user(value, vaddr))
515 return SIGSEGV;
516
517 preempt_disable();
518
519 if (ll_task == NULL || ll_task == current) {
520 ll_bit = 1;
521 } else {
522 ll_bit = 0;
523 }
524 ll_task = current;
525
526 preempt_enable();
527
528 regs->regs[(opcode & RT) >> 16] = value;
529
530 return 0;
531 }
532
533 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
534 {
535 unsigned long __user *vaddr;
536 unsigned long reg;
537 long offset;
538
539 /*
540 * analyse the sc instruction that just caused a ri exception
541 * and put the referenced address to addr.
542 */
543
544 /* sign extend offset */
545 offset = opcode & OFFSET;
546 offset <<= 16;
547 offset >>= 16;
548
549 vaddr = (unsigned long __user *)
550 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
551 reg = (opcode & RT) >> 16;
552
553 if ((unsigned long)vaddr & 3)
554 return SIGBUS;
555
556 preempt_disable();
557
558 if (ll_bit == 0 || ll_task != current) {
559 regs->regs[reg] = 0;
560 preempt_enable();
561 return 0;
562 }
563
564 preempt_enable();
565
566 if (put_user(regs->regs[reg], vaddr))
567 return SIGSEGV;
568
569 regs->regs[reg] = 1;
570
571 return 0;
572 }
573
574 /*
575 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
576 * opcodes are supposed to result in coprocessor unusable exceptions if
577 * executed on ll/sc-less processors. That's the theory. In practice a
578 * few processors such as NEC's VR4100 throw reserved instruction exceptions
579 * instead, so we're doing the emulation thing in both exception handlers.
580 */
581 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
582 {
583 if ((opcode & OPCODE) == LL) {
584 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
585 1, regs, 0);
586 return simulate_ll(regs, opcode);
587 }
588 if ((opcode & OPCODE) == SC) {
589 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
590 1, regs, 0);
591 return simulate_sc(regs, opcode);
592 }
593
594 return -1; /* Must be something else ... */
595 }
596
597 /*
598 * Simulate trapping 'rdhwr' instructions to provide user accessible
599 * registers not implemented in hardware.
600 */
601 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
602 {
603 struct thread_info *ti = task_thread_info(current);
604
605 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
606 1, regs, 0);
607 switch (rd) {
608 case 0: /* CPU number */
609 regs->regs[rt] = smp_processor_id();
610 return 0;
611 case 1: /* SYNCI length */
612 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
613 current_cpu_data.icache.linesz);
614 return 0;
615 case 2: /* Read count register */
616 regs->regs[rt] = read_c0_count();
617 return 0;
618 case 3: /* Count register resolution */
619 switch (current_cpu_data.cputype) {
620 case CPU_20KC:
621 case CPU_25KF:
622 regs->regs[rt] = 1;
623 break;
624 default:
625 regs->regs[rt] = 2;
626 }
627 return 0;
628 case 29:
629 regs->regs[rt] = ti->tp_value;
630 return 0;
631 default:
632 return -1;
633 }
634 }
635
636 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
637 {
638 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
639 int rd = (opcode & RD) >> 11;
640 int rt = (opcode & RT) >> 16;
641
642 simulate_rdhwr(regs, rd, rt);
643 return 0;
644 }
645
646 /* Not ours. */
647 return -1;
648 }
649
650 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
651 {
652 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
653 int rd = (opcode & MM_RS) >> 16;
654 int rt = (opcode & MM_RT) >> 21;
655 simulate_rdhwr(regs, rd, rt);
656 return 0;
657 }
658
659 /* Not ours. */
660 return -1;
661 }
662
663 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
664 {
665 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
666 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
667 1, regs, 0);
668 return 0;
669 }
670
671 return -1; /* Must be something else ... */
672 }
673
674 asmlinkage void do_ov(struct pt_regs *regs)
675 {
676 siginfo_t info;
677
678 die_if_kernel("Integer overflow", regs);
679
680 info.si_code = FPE_INTOVF;
681 info.si_signo = SIGFPE;
682 info.si_errno = 0;
683 info.si_addr = (void __user *) regs->cp0_epc;
684 force_sig_info(SIGFPE, &info, current);
685 }
686
687 int process_fpemu_return(int sig, void __user *fault_addr)
688 {
689 if (sig == SIGSEGV || sig == SIGBUS) {
690 struct siginfo si = {0};
691 si.si_addr = fault_addr;
692 si.si_signo = sig;
693 if (sig == SIGSEGV) {
694 if (find_vma(current->mm, (unsigned long)fault_addr))
695 si.si_code = SEGV_ACCERR;
696 else
697 si.si_code = SEGV_MAPERR;
698 } else {
699 si.si_code = BUS_ADRERR;
700 }
701 force_sig_info(sig, &si, current);
702 return 1;
703 } else if (sig) {
704 force_sig(sig, current);
705 return 1;
706 } else {
707 return 0;
708 }
709 }
710
711 /*
712 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
713 */
714 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
715 {
716 siginfo_t info = {0};
717
718 if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE)
719 == NOTIFY_STOP)
720 return;
721 die_if_kernel("FP exception in kernel code", regs);
722
723 if (fcr31 & FPU_CSR_UNI_X) {
724 int sig;
725 void __user *fault_addr = NULL;
726
727 /*
728 * Unimplemented operation exception. If we've got the full
729 * software emulator on-board, let's use it...
730 *
731 * Force FPU to dump state into task/thread context. We're
732 * moving a lot of data here for what is probably a single
733 * instruction, but the alternative is to pre-decode the FP
734 * register operands before invoking the emulator, which seems
735 * a bit extreme for what should be an infrequent event.
736 */
737 /* Ensure 'resume' not overwrite saved fp context again. */
738 lose_fpu(1);
739
740 /* Run the emulator */
741 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
742 &fault_addr);
743
744 /*
745 * We can't allow the emulated instruction to leave any of
746 * the cause bit set in $fcr31.
747 */
748 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
749
750 /* Restore the hardware register state */
751 own_fpu(1); /* Using the FPU again. */
752
753 /* If something went wrong, signal */
754 process_fpemu_return(sig, fault_addr);
755
756 return;
757 } else if (fcr31 & FPU_CSR_INV_X)
758 info.si_code = FPE_FLTINV;
759 else if (fcr31 & FPU_CSR_DIV_X)
760 info.si_code = FPE_FLTDIV;
761 else if (fcr31 & FPU_CSR_OVF_X)
762 info.si_code = FPE_FLTOVF;
763 else if (fcr31 & FPU_CSR_UDF_X)
764 info.si_code = FPE_FLTUND;
765 else if (fcr31 & FPU_CSR_INE_X)
766 info.si_code = FPE_FLTRES;
767 else
768 info.si_code = __SI_FAULT;
769 info.si_signo = SIGFPE;
770 info.si_errno = 0;
771 info.si_addr = (void __user *) regs->cp0_epc;
772 force_sig_info(SIGFPE, &info, current);
773 }
774
775 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
776 const char *str)
777 {
778 siginfo_t info;
779 char b[40];
780
781 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
782 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
783 return;
784 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
785
786 if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
787 return;
788
789 /*
790 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
791 * insns, even for trap and break codes that indicate arithmetic
792 * failures. Weird ...
793 * But should we continue the brokenness??? --macro
794 */
795 switch (code) {
796 case BRK_OVERFLOW:
797 case BRK_DIVZERO:
798 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
799 die_if_kernel(b, regs);
800 if (code == BRK_DIVZERO)
801 info.si_code = FPE_INTDIV;
802 else
803 info.si_code = FPE_INTOVF;
804 info.si_signo = SIGFPE;
805 info.si_errno = 0;
806 info.si_addr = (void __user *) regs->cp0_epc;
807 force_sig_info(SIGFPE, &info, current);
808 break;
809 case BRK_BUG:
810 die_if_kernel("Kernel bug detected", regs);
811 force_sig(SIGTRAP, current);
812 break;
813 case BRK_MEMU:
814 /*
815 * Address errors may be deliberately induced by the FPU
816 * emulator to retake control of the CPU after executing the
817 * instruction in the delay slot of an emulated branch.
818 *
819 * Terminate if exception was recognized as a delay slot return
820 * otherwise handle as normal.
821 */
822 if (do_dsemulret(regs))
823 return;
824
825 die_if_kernel("Math emu break/trap", regs);
826 force_sig(SIGTRAP, current);
827 break;
828 default:
829 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
830 die_if_kernel(b, regs);
831 force_sig(SIGTRAP, current);
832 }
833 }
834
835 asmlinkage void do_bp(struct pt_regs *regs)
836 {
837 unsigned int opcode, bcode;
838 unsigned long epc;
839 u16 instr[2];
840
841 if (get_isa16_mode(regs->cp0_epc)) {
842 /* Calculate EPC. */
843 epc = exception_epc(regs);
844 if (cpu_has_mmips) {
845 if ((__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc)) ||
846 (__get_user(instr[1], (u16 __user *)msk_isa16_mode(epc + 2)))))
847 goto out_sigsegv;
848 opcode = (instr[0] << 16) | instr[1];
849 } else {
850 /* MIPS16e mode */
851 if (__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc)))
852 goto out_sigsegv;
853 bcode = (instr[0] >> 6) & 0x3f;
854 do_trap_or_bp(regs, bcode, "Break");
855 return;
856 }
857 } else {
858 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
859 goto out_sigsegv;
860 }
861
862 /*
863 * There is the ancient bug in the MIPS assemblers that the break
864 * code starts left to bit 16 instead to bit 6 in the opcode.
865 * Gas is bug-compatible, but not always, grrr...
866 * We handle both cases with a simple heuristics. --macro
867 */
868 bcode = ((opcode >> 6) & ((1 << 20) - 1));
869 if (bcode >= (1 << 10))
870 bcode >>= 10;
871
872 /*
873 * notify the kprobe handlers, if instruction is likely to
874 * pertain to them.
875 */
876 switch (bcode) {
877 case BRK_KPROBE_BP:
878 if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
879 return;
880 else
881 break;
882 case BRK_KPROBE_SSTEPBP:
883 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
884 return;
885 else
886 break;
887 default:
888 break;
889 }
890
891 do_trap_or_bp(regs, bcode, "Break");
892 return;
893
894 out_sigsegv:
895 force_sig(SIGSEGV, current);
896 }
897
898 asmlinkage void do_tr(struct pt_regs *regs)
899 {
900 unsigned int opcode, tcode = 0;
901 u16 instr[2];
902 unsigned long epc = exception_epc(regs);
903
904 if ((__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc))) ||
905 (__get_user(instr[1], (u16 __user *)msk_isa16_mode(epc + 2))))
906 goto out_sigsegv;
907 opcode = (instr[0] << 16) | instr[1];
908
909 /* Immediate versions don't provide a code. */
910 if (!(opcode & OPCODE)) {
911 if (get_isa16_mode(regs->cp0_epc))
912 /* microMIPS */
913 tcode = (opcode >> 12) & 0x1f;
914 else
915 tcode = ((opcode >> 6) & ((1 << 10) - 1));
916 }
917
918 do_trap_or_bp(regs, tcode, "Trap");
919 return;
920
921 out_sigsegv:
922 force_sig(SIGSEGV, current);
923 }
924
925 asmlinkage void do_ri(struct pt_regs *regs)
926 {
927 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
928 unsigned long old_epc = regs->cp0_epc;
929 unsigned long old31 = regs->regs[31];
930 unsigned int opcode = 0;
931 int status = -1;
932
933 if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL)
934 == NOTIFY_STOP)
935 return;
936
937 die_if_kernel("Reserved instruction in kernel code", regs);
938
939 if (unlikely(compute_return_epc(regs) < 0))
940 return;
941
942 if (get_isa16_mode(regs->cp0_epc)) {
943 unsigned short mmop[2] = { 0 };
944
945 if (unlikely(get_user(mmop[0], epc) < 0))
946 status = SIGSEGV;
947 if (unlikely(get_user(mmop[1], epc) < 0))
948 status = SIGSEGV;
949 opcode = (mmop[0] << 16) | mmop[1];
950
951 if (status < 0)
952 status = simulate_rdhwr_mm(regs, opcode);
953 } else {
954 if (unlikely(get_user(opcode, epc) < 0))
955 status = SIGSEGV;
956
957 if (!cpu_has_llsc && status < 0)
958 status = simulate_llsc(regs, opcode);
959
960 if (status < 0)
961 status = simulate_rdhwr_normal(regs, opcode);
962
963 if (status < 0)
964 status = simulate_sync(regs, opcode);
965 }
966
967 if (status < 0)
968 status = SIGILL;
969
970 if (unlikely(status > 0)) {
971 regs->cp0_epc = old_epc; /* Undo skip-over. */
972 regs->regs[31] = old31;
973 force_sig(status, current);
974 }
975 }
976
977 /*
978 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
979 * emulated more than some threshold number of instructions, force migration to
980 * a "CPU" that has FP support.
981 */
982 static void mt_ase_fp_affinity(void)
983 {
984 #ifdef CONFIG_MIPS_MT_FPAFF
985 if (mt_fpemul_threshold > 0 &&
986 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
987 /*
988 * If there's no FPU present, or if the application has already
989 * restricted the allowed set to exclude any CPUs with FPUs,
990 * we'll skip the procedure.
991 */
992 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
993 cpumask_t tmask;
994
995 current->thread.user_cpus_allowed
996 = current->cpus_allowed;
997 cpus_and(tmask, current->cpus_allowed,
998 mt_fpu_cpumask);
999 set_cpus_allowed_ptr(current, &tmask);
1000 set_thread_flag(TIF_FPUBOUND);
1001 }
1002 }
1003 #endif /* CONFIG_MIPS_MT_FPAFF */
1004 }
1005
1006 /*
1007 * No lock; only written during early bootup by CPU 0.
1008 */
1009 static RAW_NOTIFIER_HEAD(cu2_chain);
1010
1011 int __ref register_cu2_notifier(struct notifier_block *nb)
1012 {
1013 return raw_notifier_chain_register(&cu2_chain, nb);
1014 }
1015
1016 int cu2_notifier_call_chain(unsigned long val, void *v)
1017 {
1018 return raw_notifier_call_chain(&cu2_chain, val, v);
1019 }
1020
1021 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1022 void *data)
1023 {
1024 struct pt_regs *regs = data;
1025
1026 switch (action) {
1027 default:
1028 die_if_kernel("Unhandled kernel unaligned access or invalid "
1029 "instruction", regs);
1030 /* Fall through */
1031
1032 case CU2_EXCEPTION:
1033 force_sig(SIGILL, current);
1034 }
1035
1036 return NOTIFY_OK;
1037 }
1038
1039 asmlinkage void do_cpu(struct pt_regs *regs)
1040 {
1041 unsigned int __user *epc;
1042 unsigned long old_epc, old31;
1043 unsigned int opcode;
1044 unsigned int cpid;
1045 int status;
1046 unsigned long __maybe_unused flags;
1047
1048 die_if_kernel("do_cpu invoked from kernel context!", regs);
1049
1050 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1051
1052 switch (cpid) {
1053 case 0:
1054 epc = (unsigned int __user *)exception_epc(regs);
1055 old_epc = regs->cp0_epc;
1056 old31 = regs->regs[31];
1057 opcode = 0;
1058 status = -1;
1059
1060 if (unlikely(compute_return_epc(regs) < 0))
1061 return;
1062
1063 if (get_isa16_mode(regs->cp0_epc)) {
1064 unsigned short mmop[2] = { 0 };
1065
1066 if (unlikely(get_user(mmop[0], epc) < 0))
1067 status = SIGSEGV;
1068 if (unlikely(get_user(mmop[1], epc) < 0))
1069 status = SIGSEGV;
1070 opcode = (mmop[0] << 16) | mmop[1];
1071
1072 if (status < 0)
1073 status = simulate_rdhwr_mm(regs, opcode);
1074 } else {
1075 if (unlikely(get_user(opcode, epc) < 0))
1076 status = SIGSEGV;
1077
1078 if (!cpu_has_llsc && status < 0)
1079 status = simulate_llsc(regs, opcode);
1080
1081 if (status < 0)
1082 status = simulate_rdhwr_normal(regs, opcode);
1083 }
1084
1085 if (status < 0)
1086 status = SIGILL;
1087
1088 if (unlikely(status > 0)) {
1089 regs->cp0_epc = old_epc; /* Undo skip-over. */
1090 regs->regs[31] = old31;
1091 force_sig(status, current);
1092 }
1093
1094 return;
1095
1096 case 3:
1097 /*
1098 * Old (MIPS I and MIPS II) processors will set this code
1099 * for COP1X opcode instructions that replaced the original
1100 * COP3 space. We don't limit COP1 space instructions in
1101 * the emulator according to the CPU ISA, so we want to
1102 * treat COP1X instructions consistently regardless of which
1103 * code the CPU chose. Therefore we redirect this trap to
1104 * the FP emulator too.
1105 *
1106 * Then some newer FPU-less processors use this code
1107 * erroneously too, so they are covered by this choice
1108 * as well.
1109 */
1110 if (raw_cpu_has_fpu)
1111 break;
1112 /* Fall through. */
1113
1114 case 1:
1115 if (used_math()) /* Using the FPU again. */
1116 own_fpu(1);
1117 else { /* First time FPU user. */
1118 init_fpu();
1119 set_used_math();
1120 }
1121
1122 if (!raw_cpu_has_fpu) {
1123 int sig;
1124 void __user *fault_addr = NULL;
1125 sig = fpu_emulator_cop1Handler(regs,
1126 &current->thread.fpu,
1127 0, &fault_addr);
1128 if (!process_fpemu_return(sig, fault_addr))
1129 mt_ase_fp_affinity();
1130 }
1131
1132 return;
1133
1134 case 2:
1135 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1136 return;
1137 }
1138
1139 force_sig(SIGILL, current);
1140 }
1141
1142 asmlinkage void do_mdmx(struct pt_regs *regs)
1143 {
1144 force_sig(SIGILL, current);
1145 }
1146
1147 /*
1148 * Called with interrupts disabled.
1149 */
1150 asmlinkage void do_watch(struct pt_regs *regs)
1151 {
1152 u32 cause;
1153
1154 /*
1155 * Clear WP (bit 22) bit of cause register so we don't loop
1156 * forever.
1157 */
1158 cause = read_c0_cause();
1159 cause &= ~(1 << 22);
1160 write_c0_cause(cause);
1161
1162 /*
1163 * If the current thread has the watch registers loaded, save
1164 * their values and send SIGTRAP. Otherwise another thread
1165 * left the registers set, clear them and continue.
1166 */
1167 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1168 mips_read_watch_registers();
1169 local_irq_enable();
1170 force_sig(SIGTRAP, current);
1171 } else {
1172 mips_clear_watch_registers();
1173 local_irq_enable();
1174 }
1175 }
1176
1177 asmlinkage void do_mcheck(struct pt_regs *regs)
1178 {
1179 const int field = 2 * sizeof(unsigned long);
1180 int multi_match = regs->cp0_status & ST0_TS;
1181
1182 show_regs(regs);
1183
1184 if (multi_match) {
1185 printk("Index : %0x\n", read_c0_index());
1186 printk("Pagemask: %0x\n", read_c0_pagemask());
1187 printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1188 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1189 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1190 printk("\n");
1191 dump_tlb_all();
1192 }
1193
1194 show_code((unsigned int __user *) regs->cp0_epc);
1195
1196 /*
1197 * Some chips may have other causes of machine check (e.g. SB1
1198 * graduation timer)
1199 */
1200 panic("Caught Machine Check exception - %scaused by multiple "
1201 "matching entries in the TLB.",
1202 (multi_match) ? "" : "not ");
1203 }
1204
1205 asmlinkage void do_mt(struct pt_regs *regs)
1206 {
1207 int subcode;
1208
1209 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1210 >> VPECONTROL_EXCPT_SHIFT;
1211 switch (subcode) {
1212 case 0:
1213 printk(KERN_DEBUG "Thread Underflow\n");
1214 break;
1215 case 1:
1216 printk(KERN_DEBUG "Thread Overflow\n");
1217 break;
1218 case 2:
1219 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1220 break;
1221 case 3:
1222 printk(KERN_DEBUG "Gating Storage Exception\n");
1223 break;
1224 case 4:
1225 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1226 break;
1227 case 5:
1228 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1229 break;
1230 default:
1231 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1232 subcode);
1233 break;
1234 }
1235 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1236
1237 force_sig(SIGILL, current);
1238 }
1239
1240
1241 asmlinkage void do_dsp(struct pt_regs *regs)
1242 {
1243 if (cpu_has_dsp)
1244 panic("Unexpected DSP exception");
1245
1246 force_sig(SIGILL, current);
1247 }
1248
1249 asmlinkage void do_reserved(struct pt_regs *regs)
1250 {
1251 /*
1252 * Game over - no way to handle this if it ever occurs. Most probably
1253 * caused by a new unknown cpu type or after another deadly
1254 * hard/software error.
1255 */
1256 show_regs(regs);
1257 panic("Caught reserved exception %ld - should not happen.",
1258 (regs->cp0_cause & 0x7f) >> 2);
1259 }
1260
1261 static int __initdata l1parity = 1;
1262 static int __init nol1parity(char *s)
1263 {
1264 l1parity = 0;
1265 return 1;
1266 }
1267 __setup("nol1par", nol1parity);
1268 static int __initdata l2parity = 1;
1269 static int __init nol2parity(char *s)
1270 {
1271 l2parity = 0;
1272 return 1;
1273 }
1274 __setup("nol2par", nol2parity);
1275
1276 /*
1277 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1278 * it different ways.
1279 */
1280 static inline void parity_protection_init(void)
1281 {
1282 switch (current_cpu_type()) {
1283 case CPU_24K:
1284 case CPU_34K:
1285 case CPU_74K:
1286 case CPU_1004K:
1287 {
1288 #define ERRCTL_PE 0x80000000
1289 #define ERRCTL_L2P 0x00800000
1290 unsigned long errctl;
1291 unsigned int l1parity_present, l2parity_present;
1292
1293 errctl = read_c0_ecc();
1294 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1295
1296 /* probe L1 parity support */
1297 write_c0_ecc(errctl | ERRCTL_PE);
1298 back_to_back_c0_hazard();
1299 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1300
1301 /* probe L2 parity support */
1302 write_c0_ecc(errctl|ERRCTL_L2P);
1303 back_to_back_c0_hazard();
1304 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1305
1306 if (l1parity_present && l2parity_present) {
1307 if (l1parity)
1308 errctl |= ERRCTL_PE;
1309 if (l1parity ^ l2parity)
1310 errctl |= ERRCTL_L2P;
1311 } else if (l1parity_present) {
1312 if (l1parity)
1313 errctl |= ERRCTL_PE;
1314 } else if (l2parity_present) {
1315 if (l2parity)
1316 errctl |= ERRCTL_L2P;
1317 } else {
1318 /* No parity available */
1319 }
1320
1321 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1322
1323 write_c0_ecc(errctl);
1324 back_to_back_c0_hazard();
1325 errctl = read_c0_ecc();
1326 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1327
1328 if (l1parity_present)
1329 printk(KERN_INFO "Cache parity protection %sabled\n",
1330 (errctl & ERRCTL_PE) ? "en" : "dis");
1331
1332 if (l2parity_present) {
1333 if (l1parity_present && l1parity)
1334 errctl ^= ERRCTL_L2P;
1335 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1336 (errctl & ERRCTL_L2P) ? "en" : "dis");
1337 }
1338 }
1339 break;
1340
1341 case CPU_5KC:
1342 case CPU_5KE:
1343 case CPU_LOONGSON1:
1344 write_c0_ecc(0x80000000);
1345 back_to_back_c0_hazard();
1346 /* Set the PE bit (bit 31) in the c0_errctl register. */
1347 printk(KERN_INFO "Cache parity protection %sabled\n",
1348 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1349 break;
1350 case CPU_20KC:
1351 case CPU_25KF:
1352 /* Clear the DE bit (bit 16) in the c0_status register. */
1353 printk(KERN_INFO "Enable cache parity protection for "
1354 "MIPS 20KC/25KF CPUs.\n");
1355 clear_c0_status(ST0_DE);
1356 break;
1357 default:
1358 break;
1359 }
1360 }
1361
1362 asmlinkage void cache_parity_error(void)
1363 {
1364 const int field = 2 * sizeof(unsigned long);
1365 unsigned int reg_val;
1366
1367 /* For the moment, report the problem and hang. */
1368 printk("Cache error exception:\n");
1369 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1370 reg_val = read_c0_cacheerr();
1371 printk("c0_cacheerr == %08x\n", reg_val);
1372
1373 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1374 reg_val & (1<<30) ? "secondary" : "primary",
1375 reg_val & (1<<31) ? "data" : "insn");
1376 printk("Error bits: %s%s%s%s%s%s%s\n",
1377 reg_val & (1<<29) ? "ED " : "",
1378 reg_val & (1<<28) ? "ET " : "",
1379 reg_val & (1<<26) ? "EE " : "",
1380 reg_val & (1<<25) ? "EB " : "",
1381 reg_val & (1<<24) ? "EI " : "",
1382 reg_val & (1<<23) ? "E1 " : "",
1383 reg_val & (1<<22) ? "E0 " : "");
1384 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1385
1386 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1387 if (reg_val & (1<<22))
1388 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1389
1390 if (reg_val & (1<<23))
1391 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1392 #endif
1393
1394 panic("Can't handle the cache error!");
1395 }
1396
1397 /*
1398 * SDBBP EJTAG debug exception handler.
1399 * We skip the instruction and return to the next instruction.
1400 */
1401 void ejtag_exception_handler(struct pt_regs *regs)
1402 {
1403 const int field = 2 * sizeof(unsigned long);
1404 unsigned long depc, old_epc, old_ra;
1405 unsigned int debug;
1406
1407 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1408 depc = read_c0_depc();
1409 debug = read_c0_debug();
1410 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1411 if (debug & 0x80000000) {
1412 /*
1413 * In branch delay slot.
1414 * We cheat a little bit here and use EPC to calculate the
1415 * debug return address (DEPC). EPC is restored after the
1416 * calculation.
1417 */
1418 old_epc = regs->cp0_epc;
1419 old_ra = regs->regs[31];
1420 regs->cp0_epc = depc;
1421 compute_return_epc(regs);
1422 depc = regs->cp0_epc;
1423 regs->cp0_epc = old_epc;
1424 regs->regs[31] = old_ra;
1425 } else
1426 depc += 4;
1427 write_c0_depc(depc);
1428
1429 #if 0
1430 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1431 write_c0_debug(debug | 0x100);
1432 #endif
1433 }
1434
1435 /*
1436 * NMI exception handler.
1437 * No lock; only written during early bootup by CPU 0.
1438 */
1439 static RAW_NOTIFIER_HEAD(nmi_chain);
1440
1441 int register_nmi_notifier(struct notifier_block *nb)
1442 {
1443 return raw_notifier_chain_register(&nmi_chain, nb);
1444 }
1445
1446 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1447 {
1448 raw_notifier_call_chain(&nmi_chain, 0, regs);
1449 bust_spinlocks(1);
1450 printk("NMI taken!!!!\n");
1451 die("NMI", regs);
1452 }
1453
1454 #define VECTORSPACING 0x100 /* for EI/VI mode */
1455
1456 unsigned long ebase;
1457 unsigned long exception_handlers[32];
1458 unsigned long vi_handlers[64];
1459
1460 void __init *set_except_vector(int n, void *addr)
1461 {
1462 unsigned long handler = (unsigned long) addr;
1463 unsigned long old_handler;
1464
1465 #ifdef CONFIG_CPU_MICROMIPS
1466 /*
1467 * Only the TLB handlers are cache aligned with an even
1468 * address. All other handlers are on an odd address and
1469 * require no modification. Otherwise, MIPS32 mode will
1470 * be entered when handling any TLB exceptions. That
1471 * would be bad...since we must stay in microMIPS mode.
1472 */
1473 if (!(handler & 0x1))
1474 handler |= 1;
1475 #endif
1476 old_handler = xchg(&exception_handlers[n], handler);
1477
1478 if (n == 0 && cpu_has_divec) {
1479 #ifdef CONFIG_CPU_MICROMIPS
1480 unsigned long jump_mask = ~((1 << 27) - 1);
1481 #else
1482 unsigned long jump_mask = ~((1 << 28) - 1);
1483 #endif
1484 u32 *buf = (u32 *)(ebase + 0x200);
1485 unsigned int k0 = 26;
1486 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1487 uasm_i_j(&buf, handler & ~jump_mask);
1488 uasm_i_nop(&buf);
1489 } else {
1490 UASM_i_LA(&buf, k0, handler);
1491 uasm_i_jr(&buf, k0);
1492 uasm_i_nop(&buf);
1493 }
1494 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1495 }
1496 return (void *)old_handler;
1497 }
1498
1499 static void do_default_vi(void)
1500 {
1501 show_regs(get_irq_regs());
1502 panic("Caught unexpected vectored interrupt.");
1503 }
1504
1505 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1506 {
1507 unsigned long handler;
1508 unsigned long old_handler = vi_handlers[n];
1509 int srssets = current_cpu_data.srsets;
1510 u16 *h;
1511 unsigned char *b;
1512
1513 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1514 BUG_ON((n < 0) && (n > 9));
1515
1516 if (addr == NULL) {
1517 handler = (unsigned long) do_default_vi;
1518 srs = 0;
1519 } else
1520 handler = (unsigned long) addr;
1521 vi_handlers[n] = handler;
1522
1523 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1524
1525 if (srs >= srssets)
1526 panic("Shadow register set %d not supported", srs);
1527
1528 if (cpu_has_veic) {
1529 if (board_bind_eic_interrupt)
1530 board_bind_eic_interrupt(n, srs);
1531 } else if (cpu_has_vint) {
1532 /* SRSMap is only defined if shadow sets are implemented */
1533 if (srssets > 1)
1534 change_c0_srsmap(0xf << n*4, srs << n*4);
1535 }
1536
1537 if (srs == 0) {
1538 /*
1539 * If no shadow set is selected then use the default handler
1540 * that does normal register saving and standard interrupt exit
1541 */
1542 extern char except_vec_vi, except_vec_vi_lui;
1543 extern char except_vec_vi_ori, except_vec_vi_end;
1544 extern char rollback_except_vec_vi;
1545 char *vec_start = (cpu_wait == r4k_wait) ?
1546 &rollback_except_vec_vi : &except_vec_vi;
1547 #ifdef CONFIG_MIPS_MT_SMTC
1548 /*
1549 * We need to provide the SMTC vectored interrupt handler
1550 * not only with the address of the handler, but with the
1551 * Status.IM bit to be masked before going there.
1552 */
1553 extern char except_vec_vi_mori;
1554 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1555 const int mori_offset = &except_vec_vi_mori - vec_start + 2;
1556 #else
1557 const int mori_offset = &except_vec_vi_mori - vec_start;
1558 #endif
1559 #endif /* CONFIG_MIPS_MT_SMTC */
1560 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1561 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1562 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1563 #else
1564 const int lui_offset = &except_vec_vi_lui - vec_start;
1565 const int ori_offset = &except_vec_vi_ori - vec_start;
1566 #endif
1567 const int handler_len = &except_vec_vi_end - vec_start;
1568
1569 if (handler_len > VECTORSPACING) {
1570 /*
1571 * Sigh... panicing won't help as the console
1572 * is probably not configured :(
1573 */
1574 panic("VECTORSPACING too small");
1575 }
1576
1577 set_handler(((unsigned long)b - ebase), vec_start,
1578 #ifdef CONFIG_CPU_MICROMIPS
1579 (handler_len - 1));
1580 #else
1581 handler_len);
1582 #endif
1583 #ifdef CONFIG_MIPS_MT_SMTC
1584 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */
1585
1586 h = (u16 *)(b + mori_offset);
1587 *h = (0x100 << n);
1588 #endif /* CONFIG_MIPS_MT_SMTC */
1589 h = (u16 *)(b + lui_offset);
1590 *h = (handler >> 16) & 0xffff;
1591 h = (u16 *)(b + ori_offset);
1592 *h = (handler & 0xffff);
1593 local_flush_icache_range((unsigned long)b,
1594 (unsigned long)(b+handler_len));
1595 }
1596 else {
1597 /*
1598 * In other cases jump directly to the interrupt handler. It
1599 * is the handler's responsibility to save registers if required
1600 * (eg hi/lo) and return from the exception using "eret".
1601 */
1602 u32 insn;
1603
1604 h = (u16 *)b;
1605 /* j handler */
1606 #ifdef CONFIG_CPU_MICROMIPS
1607 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1608 #else
1609 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
1610 #endif
1611 h[0] = (insn >> 16) & 0xffff;
1612 h[1] = insn & 0xffff;
1613 h[2] = 0;
1614 h[3] = 0;
1615 local_flush_icache_range((unsigned long)b,
1616 (unsigned long)(b+8));
1617 }
1618
1619 return (void *)old_handler;
1620 }
1621
1622 void *set_vi_handler(int n, vi_handler_t addr)
1623 {
1624 return set_vi_srs_handler(n, addr, 0);
1625 }
1626
1627 extern void tlb_init(void);
1628 extern void flush_tlb_handlers(void);
1629
1630 /*
1631 * Timer interrupt
1632 */
1633 int cp0_compare_irq;
1634 EXPORT_SYMBOL_GPL(cp0_compare_irq);
1635 int cp0_compare_irq_shift;
1636
1637 /*
1638 * Performance counter IRQ or -1 if shared with timer
1639 */
1640 int cp0_perfcount_irq;
1641 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1642
1643 static int __cpuinitdata noulri;
1644
1645 static int __init ulri_disable(char *s)
1646 {
1647 pr_info("Disabling ulri\n");
1648 noulri = 1;
1649
1650 return 1;
1651 }
1652 __setup("noulri", ulri_disable);
1653
1654 void __cpuinit per_cpu_trap_init(bool is_boot_cpu)
1655 {
1656 unsigned int cpu = smp_processor_id();
1657 unsigned int status_set = ST0_CU0;
1658 unsigned int hwrena = cpu_hwrena_impl_bits;
1659 unsigned long asid = 0;
1660 #ifdef CONFIG_MIPS_MT_SMTC
1661 int secondaryTC = 0;
1662 int bootTC = (cpu == 0);
1663
1664 /*
1665 * Only do per_cpu_trap_init() for first TC of Each VPE.
1666 * Note that this hack assumes that the SMTC init code
1667 * assigns TCs consecutively and in ascending order.
1668 */
1669
1670 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1671 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1672 secondaryTC = 1;
1673 #endif /* CONFIG_MIPS_MT_SMTC */
1674
1675 /*
1676 * Disable coprocessors and select 32-bit or 64-bit addressing
1677 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1678 * flag that some firmware may have left set and the TS bit (for
1679 * IP27). Set XX for ISA IV code to work.
1680 */
1681 #ifdef CONFIG_64BIT
1682 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1683 #endif
1684 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
1685 status_set |= ST0_XX;
1686 if (cpu_has_dsp)
1687 status_set |= ST0_MX;
1688
1689 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1690 status_set);
1691
1692 if (cpu_has_mips_r2)
1693 hwrena |= 0x0000000f;
1694
1695 if (!noulri && cpu_has_userlocal)
1696 hwrena |= (1 << 29);
1697
1698 if (hwrena)
1699 write_c0_hwrena(hwrena);
1700
1701 #ifdef CONFIG_MIPS_MT_SMTC
1702 if (!secondaryTC) {
1703 #endif /* CONFIG_MIPS_MT_SMTC */
1704
1705 if (cpu_has_veic || cpu_has_vint) {
1706 unsigned long sr = set_c0_status(ST0_BEV);
1707 write_c0_ebase(ebase);
1708 write_c0_status(sr);
1709 /* Setting vector spacing enables EI/VI mode */
1710 change_c0_intctl(0x3e0, VECTORSPACING);
1711 }
1712 if (cpu_has_divec) {
1713 if (cpu_has_mipsmt) {
1714 unsigned int vpflags = dvpe();
1715 set_c0_cause(CAUSEF_IV);
1716 evpe(vpflags);
1717 } else
1718 set_c0_cause(CAUSEF_IV);
1719 }
1720
1721 /*
1722 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1723 *
1724 * o read IntCtl.IPTI to determine the timer interrupt
1725 * o read IntCtl.IPPCI to determine the performance counter interrupt
1726 */
1727 if (cpu_has_mips_r2) {
1728 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1729 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1730 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1731 if (cp0_perfcount_irq == cp0_compare_irq)
1732 cp0_perfcount_irq = -1;
1733 } else {
1734 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1735 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
1736 cp0_perfcount_irq = -1;
1737 }
1738
1739 #ifdef CONFIG_MIPS_MT_SMTC
1740 }
1741 #endif /* CONFIG_MIPS_MT_SMTC */
1742
1743 asid = ASID_FIRST_VERSION;
1744 cpu_data[cpu].asid_cache = asid;
1745 TLBMISS_HANDLER_SETUP();
1746
1747 atomic_inc(&init_mm.mm_count);
1748 current->active_mm = &init_mm;
1749 BUG_ON(current->mm);
1750 enter_lazy_tlb(&init_mm, current);
1751
1752 #ifdef CONFIG_MIPS_MT_SMTC
1753 if (bootTC) {
1754 #endif /* CONFIG_MIPS_MT_SMTC */
1755 /* Boot CPU's cache setup in setup_arch(). */
1756 if (!is_boot_cpu)
1757 cpu_cache_init();
1758 tlb_init();
1759 #ifdef CONFIG_MIPS_MT_SMTC
1760 } else if (!secondaryTC) {
1761 /*
1762 * First TC in non-boot VPE must do subset of tlb_init()
1763 * for MMU countrol registers.
1764 */
1765 write_c0_pagemask(PM_DEFAULT_MASK);
1766 write_c0_wired(0);
1767 }
1768 #endif /* CONFIG_MIPS_MT_SMTC */
1769 TLBMISS_HANDLER_SETUP();
1770 }
1771
1772 /* Install CPU exception handler */
1773 void __cpuinit set_handler(unsigned long offset, void *addr, unsigned long size)
1774 {
1775 #ifdef CONFIG_CPU_MICROMIPS
1776 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
1777 #else
1778 memcpy((void *)(ebase + offset), addr, size);
1779 #endif
1780 local_flush_icache_range(ebase + offset, ebase + offset + size);
1781 }
1782
1783 static char panic_null_cerr[] __cpuinitdata =
1784 "Trying to set NULL cache error exception handler";
1785
1786 /*
1787 * Install uncached CPU exception handler.
1788 * This is suitable only for the cache error exception which is the only
1789 * exception handler that is being run uncached.
1790 */
1791 void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1792 unsigned long size)
1793 {
1794 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
1795
1796 if (!addr)
1797 panic(panic_null_cerr);
1798
1799 memcpy((void *)(uncached_ebase + offset), addr, size);
1800 }
1801
1802 static int __initdata rdhwr_noopt;
1803 static int __init set_rdhwr_noopt(char *str)
1804 {
1805 rdhwr_noopt = 1;
1806 return 1;
1807 }
1808
1809 __setup("rdhwr_noopt", set_rdhwr_noopt);
1810
1811 void __init trap_init(void)
1812 {
1813 extern char except_vec3_generic;
1814 extern char except_vec4;
1815 extern char except_vec3_r4000;
1816 unsigned long i;
1817 int rollback;
1818
1819 check_wait();
1820 rollback = (cpu_wait == r4k_wait);
1821
1822 #if defined(CONFIG_KGDB)
1823 if (kgdb_early_setup)
1824 return; /* Already done */
1825 #endif
1826
1827 if (cpu_has_veic || cpu_has_vint) {
1828 unsigned long size = 0x200 + VECTORSPACING*64;
1829 ebase = (unsigned long)
1830 __alloc_bootmem(size, 1 << fls(size), 0);
1831 } else {
1832 #ifdef CONFIG_KVM_GUEST
1833 #define KVM_GUEST_KSEG0 0x40000000
1834 ebase = KVM_GUEST_KSEG0;
1835 #else
1836 ebase = CKSEG0;
1837 #endif
1838 if (cpu_has_mips_r2)
1839 ebase += (read_c0_ebase() & 0x3ffff000);
1840 }
1841
1842 if (board_ebase_setup)
1843 board_ebase_setup();
1844 per_cpu_trap_init(true);
1845
1846 /*
1847 * Copy the generic exception handlers to their final destination.
1848 * This will be overriden later as suitable for a particular
1849 * configuration.
1850 */
1851 set_handler(0x180, &except_vec3_generic, 0x80);
1852
1853 /*
1854 * Setup default vectors
1855 */
1856 for (i = 0; i <= 31; i++)
1857 set_except_vector(i, handle_reserved);
1858
1859 /*
1860 * Copy the EJTAG debug exception vector handler code to it's final
1861 * destination.
1862 */
1863 if (cpu_has_ejtag && board_ejtag_handler_setup)
1864 board_ejtag_handler_setup();
1865
1866 /*
1867 * Only some CPUs have the watch exceptions.
1868 */
1869 if (cpu_has_watch)
1870 set_except_vector(23, handle_watch);
1871
1872 /*
1873 * Initialise interrupt handlers
1874 */
1875 if (cpu_has_veic || cpu_has_vint) {
1876 int nvec = cpu_has_veic ? 64 : 8;
1877 for (i = 0; i < nvec; i++)
1878 set_vi_handler(i, NULL);
1879 }
1880 else if (cpu_has_divec)
1881 set_handler(0x200, &except_vec4, 0x8);
1882
1883 /*
1884 * Some CPUs can enable/disable for cache parity detection, but does
1885 * it different ways.
1886 */
1887 parity_protection_init();
1888
1889 /*
1890 * The Data Bus Errors / Instruction Bus Errors are signaled
1891 * by external hardware. Therefore these two exceptions
1892 * may have board specific handlers.
1893 */
1894 if (board_be_init)
1895 board_be_init();
1896
1897 set_except_vector(0, rollback ? rollback_handle_int : handle_int);
1898 set_except_vector(1, handle_tlbm);
1899 set_except_vector(2, handle_tlbl);
1900 set_except_vector(3, handle_tlbs);
1901
1902 set_except_vector(4, handle_adel);
1903 set_except_vector(5, handle_ades);
1904
1905 set_except_vector(6, handle_ibe);
1906 set_except_vector(7, handle_dbe);
1907
1908 set_except_vector(8, handle_sys);
1909 set_except_vector(9, handle_bp);
1910 set_except_vector(10, rdhwr_noopt ? handle_ri :
1911 (cpu_has_vtag_icache ?
1912 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1913 set_except_vector(11, handle_cpu);
1914 set_except_vector(12, handle_ov);
1915 set_except_vector(13, handle_tr);
1916
1917 if (current_cpu_type() == CPU_R6000 ||
1918 current_cpu_type() == CPU_R6000A) {
1919 /*
1920 * The R6000 is the only R-series CPU that features a machine
1921 * check exception (similar to the R4000 cache error) and
1922 * unaligned ldc1/sdc1 exception. The handlers have not been
1923 * written yet. Well, anyway there is no R6000 machine on the
1924 * current list of targets for Linux/MIPS.
1925 * (Duh, crap, there is someone with a triple R6k machine)
1926 */
1927 //set_except_vector(14, handle_mc);
1928 //set_except_vector(15, handle_ndc);
1929 }
1930
1931
1932 if (board_nmi_handler_setup)
1933 board_nmi_handler_setup();
1934
1935 if (cpu_has_fpu && !cpu_has_nofpuex)
1936 set_except_vector(15, handle_fpe);
1937
1938 set_except_vector(22, handle_mdmx);
1939
1940 if (cpu_has_mcheck)
1941 set_except_vector(24, handle_mcheck);
1942
1943 if (cpu_has_mipsmt)
1944 set_except_vector(25, handle_mt);
1945
1946 set_except_vector(26, handle_dsp);
1947
1948 if (board_cache_error_setup)
1949 board_cache_error_setup();
1950
1951 if (cpu_has_vce)
1952 /* Special exception: R4[04]00 uses also the divec space. */
1953 set_handler(0x180, &except_vec3_r4000, 0x100);
1954 else if (cpu_has_4kex)
1955 set_handler(0x180, &except_vec3_generic, 0x80);
1956 else
1957 set_handler(0x080, &except_vec3_generic, 0x80);
1958
1959 local_flush_icache_range(ebase, ebase + 0x400);
1960 flush_tlb_handlers();
1961
1962 sort_extable(__start___dbe_table, __stop___dbe_table);
1963
1964 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
1965 }