ACPI: Set hotplug _OST support bit to _OSC
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / mips / kernel / perf_event_mipsxx.c
1 /*
2 * Linux performance counter support for MIPS.
3 *
4 * Copyright (C) 2010 MIPS Technologies, Inc.
5 * Copyright (C) 2011 Cavium Networks, Inc.
6 * Author: Deng-Cheng Zhu
7 *
8 * This code is based on the implementation for ARM, which is in turn
9 * based on the sparc64 perf event code and the x86 code. Performance
10 * counter access is based on the MIPS Oprofile code. And the callchain
11 * support references the code of MIPS stacktrace.c.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18 #include <linux/cpumask.h>
19 #include <linux/interrupt.h>
20 #include <linux/smp.h>
21 #include <linux/kernel.h>
22 #include <linux/perf_event.h>
23 #include <linux/uaccess.h>
24
25 #include <asm/irq.h>
26 #include <asm/irq_regs.h>
27 #include <asm/stacktrace.h>
28 #include <asm/time.h> /* For perf_irq */
29
30 #define MIPS_MAX_HWEVENTS 4
31
32 struct cpu_hw_events {
33 /* Array of events on this cpu. */
34 struct perf_event *events[MIPS_MAX_HWEVENTS];
35
36 /*
37 * Set the bit (indexed by the counter number) when the counter
38 * is used for an event.
39 */
40 unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
41
42 /*
43 * Software copy of the control register for each performance counter.
44 * MIPS CPUs vary in performance counters. They use this differently,
45 * and even may not use it.
46 */
47 unsigned int saved_ctrl[MIPS_MAX_HWEVENTS];
48 };
49 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
50 .saved_ctrl = {0},
51 };
52
53 /* The description of MIPS performance events. */
54 struct mips_perf_event {
55 unsigned int event_id;
56 /*
57 * MIPS performance counters are indexed starting from 0.
58 * CNTR_EVEN indicates the indexes of the counters to be used are
59 * even numbers.
60 */
61 unsigned int cntr_mask;
62 #define CNTR_EVEN 0x55555555
63 #define CNTR_ODD 0xaaaaaaaa
64 #define CNTR_ALL 0xffffffff
65 #ifdef CONFIG_MIPS_MT_SMP
66 enum {
67 T = 0,
68 V = 1,
69 P = 2,
70 } range;
71 #else
72 #define T
73 #define V
74 #define P
75 #endif
76 };
77
78 static struct mips_perf_event raw_event;
79 static DEFINE_MUTEX(raw_event_mutex);
80
81 #define UNSUPPORTED_PERF_EVENT_ID 0xffffffff
82 #define C(x) PERF_COUNT_HW_CACHE_##x
83
84 struct mips_pmu {
85 u64 max_period;
86 u64 valid_count;
87 u64 overflow;
88 const char *name;
89 int irq;
90 u64 (*read_counter)(unsigned int idx);
91 void (*write_counter)(unsigned int idx, u64 val);
92 const struct mips_perf_event *(*map_raw_event)(u64 config);
93 const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
94 const struct mips_perf_event (*cache_event_map)
95 [PERF_COUNT_HW_CACHE_MAX]
96 [PERF_COUNT_HW_CACHE_OP_MAX]
97 [PERF_COUNT_HW_CACHE_RESULT_MAX];
98 unsigned int num_counters;
99 };
100
101 static struct mips_pmu mipspmu;
102
103 #define M_CONFIG1_PC (1 << 4)
104
105 #define M_PERFCTL_EXL (1 << 0)
106 #define M_PERFCTL_KERNEL (1 << 1)
107 #define M_PERFCTL_SUPERVISOR (1 << 2)
108 #define M_PERFCTL_USER (1 << 3)
109 #define M_PERFCTL_INTERRUPT_ENABLE (1 << 4)
110 #define M_PERFCTL_EVENT(event) (((event) & 0x3ff) << 5)
111 #define M_PERFCTL_VPEID(vpe) ((vpe) << 16)
112 #define M_PERFCTL_MT_EN(filter) ((filter) << 20)
113 #define M_TC_EN_ALL M_PERFCTL_MT_EN(0)
114 #define M_TC_EN_VPE M_PERFCTL_MT_EN(1)
115 #define M_TC_EN_TC M_PERFCTL_MT_EN(2)
116 #define M_PERFCTL_TCID(tcid) ((tcid) << 22)
117 #define M_PERFCTL_WIDE (1 << 30)
118 #define M_PERFCTL_MORE (1 << 31)
119
120 #define M_PERFCTL_COUNT_EVENT_WHENEVER (M_PERFCTL_EXL | \
121 M_PERFCTL_KERNEL | \
122 M_PERFCTL_USER | \
123 M_PERFCTL_SUPERVISOR | \
124 M_PERFCTL_INTERRUPT_ENABLE)
125
126 #ifdef CONFIG_MIPS_MT_SMP
127 #define M_PERFCTL_CONFIG_MASK 0x3fff801f
128 #else
129 #define M_PERFCTL_CONFIG_MASK 0x1f
130 #endif
131 #define M_PERFCTL_EVENT_MASK 0xfe0
132
133
134 #ifdef CONFIG_MIPS_MT_SMP
135 static int cpu_has_mipsmt_pertccounters;
136
137 static DEFINE_RWLOCK(pmuint_rwlock);
138
139 /*
140 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
141 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
142 */
143 #if defined(CONFIG_HW_PERF_EVENTS)
144 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
145 0 : smp_processor_id())
146 #else
147 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
148 0 : cpu_data[smp_processor_id()].vpe_id)
149 #endif
150
151 /* Copied from op_model_mipsxx.c */
152 static unsigned int vpe_shift(void)
153 {
154 if (num_possible_cpus() > 1)
155 return 1;
156
157 return 0;
158 }
159
160 static unsigned int counters_total_to_per_cpu(unsigned int counters)
161 {
162 return counters >> vpe_shift();
163 }
164
165 static unsigned int counters_per_cpu_to_total(unsigned int counters)
166 {
167 return counters << vpe_shift();
168 }
169
170 #else /* !CONFIG_MIPS_MT_SMP */
171 #define vpe_id() 0
172
173 #endif /* CONFIG_MIPS_MT_SMP */
174
175 static void resume_local_counters(void);
176 static void pause_local_counters(void);
177 static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
178 static int mipsxx_pmu_handle_shared_irq(void);
179
180 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
181 {
182 if (vpe_id() == 1)
183 idx = (idx + 2) & 3;
184 return idx;
185 }
186
187 static u64 mipsxx_pmu_read_counter(unsigned int idx)
188 {
189 idx = mipsxx_pmu_swizzle_perf_idx(idx);
190
191 switch (idx) {
192 case 0:
193 /*
194 * The counters are unsigned, we must cast to truncate
195 * off the high bits.
196 */
197 return (u32)read_c0_perfcntr0();
198 case 1:
199 return (u32)read_c0_perfcntr1();
200 case 2:
201 return (u32)read_c0_perfcntr2();
202 case 3:
203 return (u32)read_c0_perfcntr3();
204 default:
205 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
206 return 0;
207 }
208 }
209
210 static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
211 {
212 idx = mipsxx_pmu_swizzle_perf_idx(idx);
213
214 switch (idx) {
215 case 0:
216 return read_c0_perfcntr0_64();
217 case 1:
218 return read_c0_perfcntr1_64();
219 case 2:
220 return read_c0_perfcntr2_64();
221 case 3:
222 return read_c0_perfcntr3_64();
223 default:
224 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
225 return 0;
226 }
227 }
228
229 static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
230 {
231 idx = mipsxx_pmu_swizzle_perf_idx(idx);
232
233 switch (idx) {
234 case 0:
235 write_c0_perfcntr0(val);
236 return;
237 case 1:
238 write_c0_perfcntr1(val);
239 return;
240 case 2:
241 write_c0_perfcntr2(val);
242 return;
243 case 3:
244 write_c0_perfcntr3(val);
245 return;
246 }
247 }
248
249 static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
250 {
251 idx = mipsxx_pmu_swizzle_perf_idx(idx);
252
253 switch (idx) {
254 case 0:
255 write_c0_perfcntr0_64(val);
256 return;
257 case 1:
258 write_c0_perfcntr1_64(val);
259 return;
260 case 2:
261 write_c0_perfcntr2_64(val);
262 return;
263 case 3:
264 write_c0_perfcntr3_64(val);
265 return;
266 }
267 }
268
269 static unsigned int mipsxx_pmu_read_control(unsigned int idx)
270 {
271 idx = mipsxx_pmu_swizzle_perf_idx(idx);
272
273 switch (idx) {
274 case 0:
275 return read_c0_perfctrl0();
276 case 1:
277 return read_c0_perfctrl1();
278 case 2:
279 return read_c0_perfctrl2();
280 case 3:
281 return read_c0_perfctrl3();
282 default:
283 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
284 return 0;
285 }
286 }
287
288 static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
289 {
290 idx = mipsxx_pmu_swizzle_perf_idx(idx);
291
292 switch (idx) {
293 case 0:
294 write_c0_perfctrl0(val);
295 return;
296 case 1:
297 write_c0_perfctrl1(val);
298 return;
299 case 2:
300 write_c0_perfctrl2(val);
301 return;
302 case 3:
303 write_c0_perfctrl3(val);
304 return;
305 }
306 }
307
308 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
309 struct hw_perf_event *hwc)
310 {
311 int i;
312
313 /*
314 * We only need to care the counter mask. The range has been
315 * checked definitely.
316 */
317 unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
318
319 for (i = mipspmu.num_counters - 1; i >= 0; i--) {
320 /*
321 * Note that some MIPS perf events can be counted by both
322 * even and odd counters, wheresas many other are only by
323 * even _or_ odd counters. This introduces an issue that
324 * when the former kind of event takes the counter the
325 * latter kind of event wants to use, then the "counter
326 * allocation" for the latter event will fail. In fact if
327 * they can be dynamically swapped, they both feel happy.
328 * But here we leave this issue alone for now.
329 */
330 if (test_bit(i, &cntr_mask) &&
331 !test_and_set_bit(i, cpuc->used_mask))
332 return i;
333 }
334
335 return -EAGAIN;
336 }
337
338 static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
339 {
340 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
341
342 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
343
344 cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
345 (evt->config_base & M_PERFCTL_CONFIG_MASK) |
346 /* Make sure interrupt enabled. */
347 M_PERFCTL_INTERRUPT_ENABLE;
348 /*
349 * We do not actually let the counter run. Leave it until start().
350 */
351 }
352
353 static void mipsxx_pmu_disable_event(int idx)
354 {
355 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
356 unsigned long flags;
357
358 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
359
360 local_irq_save(flags);
361 cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
362 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
363 mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
364 local_irq_restore(flags);
365 }
366
367 static int mipspmu_event_set_period(struct perf_event *event,
368 struct hw_perf_event *hwc,
369 int idx)
370 {
371 u64 left = local64_read(&hwc->period_left);
372 u64 period = hwc->sample_period;
373 int ret = 0;
374
375 if (unlikely((left + period) & (1ULL << 63))) {
376 /* left underflowed by more than period. */
377 left = period;
378 local64_set(&hwc->period_left, left);
379 hwc->last_period = period;
380 ret = 1;
381 } else if (unlikely((left + period) <= period)) {
382 /* left underflowed by less than period. */
383 left += period;
384 local64_set(&hwc->period_left, left);
385 hwc->last_period = period;
386 ret = 1;
387 }
388
389 if (left > mipspmu.max_period) {
390 left = mipspmu.max_period;
391 local64_set(&hwc->period_left, left);
392 }
393
394 local64_set(&hwc->prev_count, mipspmu.overflow - left);
395
396 mipspmu.write_counter(idx, mipspmu.overflow - left);
397
398 perf_event_update_userpage(event);
399
400 return ret;
401 }
402
403 static void mipspmu_event_update(struct perf_event *event,
404 struct hw_perf_event *hwc,
405 int idx)
406 {
407 u64 prev_raw_count, new_raw_count;
408 u64 delta;
409
410 again:
411 prev_raw_count = local64_read(&hwc->prev_count);
412 new_raw_count = mipspmu.read_counter(idx);
413
414 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
415 new_raw_count) != prev_raw_count)
416 goto again;
417
418 delta = new_raw_count - prev_raw_count;
419
420 local64_add(delta, &event->count);
421 local64_sub(delta, &hwc->period_left);
422 }
423
424 static void mipspmu_start(struct perf_event *event, int flags)
425 {
426 struct hw_perf_event *hwc = &event->hw;
427
428 if (flags & PERF_EF_RELOAD)
429 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
430
431 hwc->state = 0;
432
433 /* Set the period for the event. */
434 mipspmu_event_set_period(event, hwc, hwc->idx);
435
436 /* Enable the event. */
437 mipsxx_pmu_enable_event(hwc, hwc->idx);
438 }
439
440 static void mipspmu_stop(struct perf_event *event, int flags)
441 {
442 struct hw_perf_event *hwc = &event->hw;
443
444 if (!(hwc->state & PERF_HES_STOPPED)) {
445 /* We are working on a local event. */
446 mipsxx_pmu_disable_event(hwc->idx);
447 barrier();
448 mipspmu_event_update(event, hwc, hwc->idx);
449 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
450 }
451 }
452
453 static int mipspmu_add(struct perf_event *event, int flags)
454 {
455 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
456 struct hw_perf_event *hwc = &event->hw;
457 int idx;
458 int err = 0;
459
460 perf_pmu_disable(event->pmu);
461
462 /* To look for a free counter for this event. */
463 idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
464 if (idx < 0) {
465 err = idx;
466 goto out;
467 }
468
469 /*
470 * If there is an event in the counter we are going to use then
471 * make sure it is disabled.
472 */
473 event->hw.idx = idx;
474 mipsxx_pmu_disable_event(idx);
475 cpuc->events[idx] = event;
476
477 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
478 if (flags & PERF_EF_START)
479 mipspmu_start(event, PERF_EF_RELOAD);
480
481 /* Propagate our changes to the userspace mapping. */
482 perf_event_update_userpage(event);
483
484 out:
485 perf_pmu_enable(event->pmu);
486 return err;
487 }
488
489 static void mipspmu_del(struct perf_event *event, int flags)
490 {
491 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
492 struct hw_perf_event *hwc = &event->hw;
493 int idx = hwc->idx;
494
495 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
496
497 mipspmu_stop(event, PERF_EF_UPDATE);
498 cpuc->events[idx] = NULL;
499 clear_bit(idx, cpuc->used_mask);
500
501 perf_event_update_userpage(event);
502 }
503
504 static void mipspmu_read(struct perf_event *event)
505 {
506 struct hw_perf_event *hwc = &event->hw;
507
508 /* Don't read disabled counters! */
509 if (hwc->idx < 0)
510 return;
511
512 mipspmu_event_update(event, hwc, hwc->idx);
513 }
514
515 static void mipspmu_enable(struct pmu *pmu)
516 {
517 #ifdef CONFIG_MIPS_MT_SMP
518 write_unlock(&pmuint_rwlock);
519 #endif
520 resume_local_counters();
521 }
522
523 /*
524 * MIPS performance counters can be per-TC. The control registers can
525 * not be directly accessed accross CPUs. Hence if we want to do global
526 * control, we need cross CPU calls. on_each_cpu() can help us, but we
527 * can not make sure this function is called with interrupts enabled. So
528 * here we pause local counters and then grab a rwlock and leave the
529 * counters on other CPUs alone. If any counter interrupt raises while
530 * we own the write lock, simply pause local counters on that CPU and
531 * spin in the handler. Also we know we won't be switched to another
532 * CPU after pausing local counters and before grabbing the lock.
533 */
534 static void mipspmu_disable(struct pmu *pmu)
535 {
536 pause_local_counters();
537 #ifdef CONFIG_MIPS_MT_SMP
538 write_lock(&pmuint_rwlock);
539 #endif
540 }
541
542 static atomic_t active_events = ATOMIC_INIT(0);
543 static DEFINE_MUTEX(pmu_reserve_mutex);
544 static int (*save_perf_irq)(void);
545
546 static int mipspmu_get_irq(void)
547 {
548 int err;
549
550 if (mipspmu.irq >= 0) {
551 /* Request my own irq handler. */
552 err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
553 IRQF_PERCPU | IRQF_NOBALANCING,
554 "mips_perf_pmu", NULL);
555 if (err) {
556 pr_warning("Unable to request IRQ%d for MIPS "
557 "performance counters!\n", mipspmu.irq);
558 }
559 } else if (cp0_perfcount_irq < 0) {
560 /*
561 * We are sharing the irq number with the timer interrupt.
562 */
563 save_perf_irq = perf_irq;
564 perf_irq = mipsxx_pmu_handle_shared_irq;
565 err = 0;
566 } else {
567 pr_warning("The platform hasn't properly defined its "
568 "interrupt controller.\n");
569 err = -ENOENT;
570 }
571
572 return err;
573 }
574
575 static void mipspmu_free_irq(void)
576 {
577 if (mipspmu.irq >= 0)
578 free_irq(mipspmu.irq, NULL);
579 else if (cp0_perfcount_irq < 0)
580 perf_irq = save_perf_irq;
581 }
582
583 /*
584 * mipsxx/rm9000/loongson2 have different performance counters, they have
585 * specific low-level init routines.
586 */
587 static void reset_counters(void *arg);
588 static int __hw_perf_event_init(struct perf_event *event);
589
590 static void hw_perf_event_destroy(struct perf_event *event)
591 {
592 if (atomic_dec_and_mutex_lock(&active_events,
593 &pmu_reserve_mutex)) {
594 /*
595 * We must not call the destroy function with interrupts
596 * disabled.
597 */
598 on_each_cpu(reset_counters,
599 (void *)(long)mipspmu.num_counters, 1);
600 mipspmu_free_irq();
601 mutex_unlock(&pmu_reserve_mutex);
602 }
603 }
604
605 static int mipspmu_event_init(struct perf_event *event)
606 {
607 int err = 0;
608
609 /* does not support taken branch sampling */
610 if (has_branch_stack(event))
611 return -EOPNOTSUPP;
612
613 switch (event->attr.type) {
614 case PERF_TYPE_RAW:
615 case PERF_TYPE_HARDWARE:
616 case PERF_TYPE_HW_CACHE:
617 break;
618
619 default:
620 return -ENOENT;
621 }
622
623 if (event->cpu >= nr_cpumask_bits ||
624 (event->cpu >= 0 && !cpu_online(event->cpu)))
625 return -ENODEV;
626
627 if (!atomic_inc_not_zero(&active_events)) {
628 mutex_lock(&pmu_reserve_mutex);
629 if (atomic_read(&active_events) == 0)
630 err = mipspmu_get_irq();
631
632 if (!err)
633 atomic_inc(&active_events);
634 mutex_unlock(&pmu_reserve_mutex);
635 }
636
637 if (err)
638 return err;
639
640 return __hw_perf_event_init(event);
641 }
642
643 static struct pmu pmu = {
644 .pmu_enable = mipspmu_enable,
645 .pmu_disable = mipspmu_disable,
646 .event_init = mipspmu_event_init,
647 .add = mipspmu_add,
648 .del = mipspmu_del,
649 .start = mipspmu_start,
650 .stop = mipspmu_stop,
651 .read = mipspmu_read,
652 };
653
654 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
655 {
656 /*
657 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
658 * event_id.
659 */
660 #ifdef CONFIG_MIPS_MT_SMP
661 return ((unsigned int)pev->range << 24) |
662 (pev->cntr_mask & 0xffff00) |
663 (pev->event_id & 0xff);
664 #else
665 return (pev->cntr_mask & 0xffff00) |
666 (pev->event_id & 0xff);
667 #endif
668 }
669
670 static const struct mips_perf_event *mipspmu_map_general_event(int idx)
671 {
672 const struct mips_perf_event *pev;
673
674 pev = ((*mipspmu.general_event_map)[idx].event_id ==
675 UNSUPPORTED_PERF_EVENT_ID ? ERR_PTR(-EOPNOTSUPP) :
676 &(*mipspmu.general_event_map)[idx]);
677
678 return pev;
679 }
680
681 static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
682 {
683 unsigned int cache_type, cache_op, cache_result;
684 const struct mips_perf_event *pev;
685
686 cache_type = (config >> 0) & 0xff;
687 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
688 return ERR_PTR(-EINVAL);
689
690 cache_op = (config >> 8) & 0xff;
691 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
692 return ERR_PTR(-EINVAL);
693
694 cache_result = (config >> 16) & 0xff;
695 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
696 return ERR_PTR(-EINVAL);
697
698 pev = &((*mipspmu.cache_event_map)
699 [cache_type]
700 [cache_op]
701 [cache_result]);
702
703 if (pev->event_id == UNSUPPORTED_PERF_EVENT_ID)
704 return ERR_PTR(-EOPNOTSUPP);
705
706 return pev;
707
708 }
709
710 static int validate_group(struct perf_event *event)
711 {
712 struct perf_event *sibling, *leader = event->group_leader;
713 struct cpu_hw_events fake_cpuc;
714
715 memset(&fake_cpuc, 0, sizeof(fake_cpuc));
716
717 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
718 return -EINVAL;
719
720 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
721 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
722 return -EINVAL;
723 }
724
725 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
726 return -EINVAL;
727
728 return 0;
729 }
730
731 /* This is needed by specific irq handlers in perf_event_*.c */
732 static void handle_associated_event(struct cpu_hw_events *cpuc,
733 int idx, struct perf_sample_data *data,
734 struct pt_regs *regs)
735 {
736 struct perf_event *event = cpuc->events[idx];
737 struct hw_perf_event *hwc = &event->hw;
738
739 mipspmu_event_update(event, hwc, idx);
740 data->period = event->hw.last_period;
741 if (!mipspmu_event_set_period(event, hwc, idx))
742 return;
743
744 if (perf_event_overflow(event, data, regs))
745 mipsxx_pmu_disable_event(idx);
746 }
747
748
749 static int __n_counters(void)
750 {
751 if (!(read_c0_config1() & M_CONFIG1_PC))
752 return 0;
753 if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
754 return 1;
755 if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
756 return 2;
757 if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
758 return 3;
759
760 return 4;
761 }
762
763 static int n_counters(void)
764 {
765 int counters;
766
767 switch (current_cpu_type()) {
768 case CPU_R10000:
769 counters = 2;
770 break;
771
772 case CPU_R12000:
773 case CPU_R14000:
774 counters = 4;
775 break;
776
777 default:
778 counters = __n_counters();
779 }
780
781 return counters;
782 }
783
784 static void reset_counters(void *arg)
785 {
786 int counters = (int)(long)arg;
787 switch (counters) {
788 case 4:
789 mipsxx_pmu_write_control(3, 0);
790 mipspmu.write_counter(3, 0);
791 case 3:
792 mipsxx_pmu_write_control(2, 0);
793 mipspmu.write_counter(2, 0);
794 case 2:
795 mipsxx_pmu_write_control(1, 0);
796 mipspmu.write_counter(1, 0);
797 case 1:
798 mipsxx_pmu_write_control(0, 0);
799 mipspmu.write_counter(0, 0);
800 }
801 }
802
803 /* 24K/34K/1004K cores can share the same event map. */
804 static const struct mips_perf_event mipsxxcore_event_map
805 [PERF_COUNT_HW_MAX] = {
806 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
807 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
808 [PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
809 [PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
810 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
811 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
812 [PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
813 };
814
815 /* 74K core has different branch event code. */
816 static const struct mips_perf_event mipsxx74Kcore_event_map
817 [PERF_COUNT_HW_MAX] = {
818 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
819 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
820 [PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
821 [PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
822 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
823 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
824 [PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
825 };
826
827 static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
828 [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
829 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
830 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
831 [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL },
832 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
833 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
834 [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
835 };
836
837 /* 24K/34K/1004K cores can share the same cache event map. */
838 static const struct mips_perf_event mipsxxcore_cache_map
839 [PERF_COUNT_HW_CACHE_MAX]
840 [PERF_COUNT_HW_CACHE_OP_MAX]
841 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
842 [C(L1D)] = {
843 /*
844 * Like some other architectures (e.g. ARM), the performance
845 * counters don't differentiate between read and write
846 * accesses/misses, so this isn't strictly correct, but it's the
847 * best we can do. Writes and reads get combined.
848 */
849 [C(OP_READ)] = {
850 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
851 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
852 },
853 [C(OP_WRITE)] = {
854 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
855 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
856 },
857 [C(OP_PREFETCH)] = {
858 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
859 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
860 },
861 },
862 [C(L1I)] = {
863 [C(OP_READ)] = {
864 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
865 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
866 },
867 [C(OP_WRITE)] = {
868 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
869 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
870 },
871 [C(OP_PREFETCH)] = {
872 [C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T },
873 /*
874 * Note that MIPS has only "hit" events countable for
875 * the prefetch operation.
876 */
877 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
878 },
879 },
880 [C(LL)] = {
881 [C(OP_READ)] = {
882 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
883 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
884 },
885 [C(OP_WRITE)] = {
886 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
887 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
888 },
889 [C(OP_PREFETCH)] = {
890 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
891 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
892 },
893 },
894 [C(DTLB)] = {
895 [C(OP_READ)] = {
896 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
897 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
898 },
899 [C(OP_WRITE)] = {
900 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
901 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
902 },
903 [C(OP_PREFETCH)] = {
904 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
905 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
906 },
907 },
908 [C(ITLB)] = {
909 [C(OP_READ)] = {
910 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
911 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
912 },
913 [C(OP_WRITE)] = {
914 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
915 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
916 },
917 [C(OP_PREFETCH)] = {
918 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
919 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
920 },
921 },
922 [C(BPU)] = {
923 /* Using the same code for *HW_BRANCH* */
924 [C(OP_READ)] = {
925 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
926 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
927 },
928 [C(OP_WRITE)] = {
929 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
930 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
931 },
932 [C(OP_PREFETCH)] = {
933 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
934 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
935 },
936 },
937 [C(NODE)] = {
938 [C(OP_READ)] = {
939 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
940 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
941 },
942 [C(OP_WRITE)] = {
943 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
944 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
945 },
946 [C(OP_PREFETCH)] = {
947 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
948 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
949 },
950 },
951 };
952
953 /* 74K core has completely different cache event map. */
954 static const struct mips_perf_event mipsxx74Kcore_cache_map
955 [PERF_COUNT_HW_CACHE_MAX]
956 [PERF_COUNT_HW_CACHE_OP_MAX]
957 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
958 [C(L1D)] = {
959 /*
960 * Like some other architectures (e.g. ARM), the performance
961 * counters don't differentiate between read and write
962 * accesses/misses, so this isn't strictly correct, but it's the
963 * best we can do. Writes and reads get combined.
964 */
965 [C(OP_READ)] = {
966 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
967 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
968 },
969 [C(OP_WRITE)] = {
970 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
971 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
972 },
973 [C(OP_PREFETCH)] = {
974 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
975 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
976 },
977 },
978 [C(L1I)] = {
979 [C(OP_READ)] = {
980 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
981 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
982 },
983 [C(OP_WRITE)] = {
984 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
985 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
986 },
987 [C(OP_PREFETCH)] = {
988 [C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T },
989 /*
990 * Note that MIPS has only "hit" events countable for
991 * the prefetch operation.
992 */
993 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
994 },
995 },
996 [C(LL)] = {
997 [C(OP_READ)] = {
998 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
999 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
1000 },
1001 [C(OP_WRITE)] = {
1002 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
1003 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
1004 },
1005 [C(OP_PREFETCH)] = {
1006 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1007 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1008 },
1009 },
1010 [C(DTLB)] = {
1011 /* 74K core does not have specific DTLB events. */
1012 [C(OP_READ)] = {
1013 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1014 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1015 },
1016 [C(OP_WRITE)] = {
1017 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1018 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1019 },
1020 [C(OP_PREFETCH)] = {
1021 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1022 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1023 },
1024 },
1025 [C(ITLB)] = {
1026 [C(OP_READ)] = {
1027 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
1028 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
1029 },
1030 [C(OP_WRITE)] = {
1031 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
1032 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
1033 },
1034 [C(OP_PREFETCH)] = {
1035 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1036 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1037 },
1038 },
1039 [C(BPU)] = {
1040 /* Using the same code for *HW_BRANCH* */
1041 [C(OP_READ)] = {
1042 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
1043 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
1044 },
1045 [C(OP_WRITE)] = {
1046 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
1047 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
1048 },
1049 [C(OP_PREFETCH)] = {
1050 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1051 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1052 },
1053 },
1054 [C(NODE)] = {
1055 [C(OP_READ)] = {
1056 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1057 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1058 },
1059 [C(OP_WRITE)] = {
1060 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1061 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1062 },
1063 [C(OP_PREFETCH)] = {
1064 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1065 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1066 },
1067 },
1068 };
1069
1070
1071 static const struct mips_perf_event octeon_cache_map
1072 [PERF_COUNT_HW_CACHE_MAX]
1073 [PERF_COUNT_HW_CACHE_OP_MAX]
1074 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1075 [C(L1D)] = {
1076 [C(OP_READ)] = {
1077 [C(RESULT_ACCESS)] = { 0x2b, CNTR_ALL },
1078 [C(RESULT_MISS)] = { 0x2e, CNTR_ALL },
1079 },
1080 [C(OP_WRITE)] = {
1081 [C(RESULT_ACCESS)] = { 0x30, CNTR_ALL },
1082 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1083 },
1084 [C(OP_PREFETCH)] = {
1085 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1086 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1087 },
1088 },
1089 [C(L1I)] = {
1090 [C(OP_READ)] = {
1091 [C(RESULT_ACCESS)] = { 0x18, CNTR_ALL },
1092 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1093 },
1094 [C(OP_WRITE)] = {
1095 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1096 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1097 },
1098 [C(OP_PREFETCH)] = {
1099 [C(RESULT_ACCESS)] = { 0x19, CNTR_ALL },
1100 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1101 },
1102 },
1103 [C(LL)] = {
1104 [C(OP_READ)] = {
1105 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1106 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1107 },
1108 [C(OP_WRITE)] = {
1109 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1110 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1111 },
1112 [C(OP_PREFETCH)] = {
1113 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1114 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1115 },
1116 },
1117 [C(DTLB)] = {
1118 /*
1119 * Only general DTLB misses are counted use the same event for
1120 * read and write.
1121 */
1122 [C(OP_READ)] = {
1123 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1124 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1125 },
1126 [C(OP_WRITE)] = {
1127 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1128 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1129 },
1130 [C(OP_PREFETCH)] = {
1131 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1132 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1133 },
1134 },
1135 [C(ITLB)] = {
1136 [C(OP_READ)] = {
1137 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1138 [C(RESULT_MISS)] = { 0x37, CNTR_ALL },
1139 },
1140 [C(OP_WRITE)] = {
1141 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1142 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1143 },
1144 [C(OP_PREFETCH)] = {
1145 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1146 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1147 },
1148 },
1149 [C(BPU)] = {
1150 /* Using the same code for *HW_BRANCH* */
1151 [C(OP_READ)] = {
1152 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1153 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1154 },
1155 [C(OP_WRITE)] = {
1156 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1157 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1158 },
1159 [C(OP_PREFETCH)] = {
1160 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1161 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1162 },
1163 },
1164 };
1165
1166 #ifdef CONFIG_MIPS_MT_SMP
1167 static void check_and_calc_range(struct perf_event *event,
1168 const struct mips_perf_event *pev)
1169 {
1170 struct hw_perf_event *hwc = &event->hw;
1171
1172 if (event->cpu >= 0) {
1173 if (pev->range > V) {
1174 /*
1175 * The user selected an event that is processor
1176 * wide, while expecting it to be VPE wide.
1177 */
1178 hwc->config_base |= M_TC_EN_ALL;
1179 } else {
1180 /*
1181 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1182 * for both CPUs.
1183 */
1184 hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1185 hwc->config_base |= M_TC_EN_VPE;
1186 }
1187 } else
1188 hwc->config_base |= M_TC_EN_ALL;
1189 }
1190 #else
1191 static void check_and_calc_range(struct perf_event *event,
1192 const struct mips_perf_event *pev)
1193 {
1194 }
1195 #endif
1196
1197 static int __hw_perf_event_init(struct perf_event *event)
1198 {
1199 struct perf_event_attr *attr = &event->attr;
1200 struct hw_perf_event *hwc = &event->hw;
1201 const struct mips_perf_event *pev;
1202 int err;
1203
1204 /* Returning MIPS event descriptor for generic perf event. */
1205 if (PERF_TYPE_HARDWARE == event->attr.type) {
1206 if (event->attr.config >= PERF_COUNT_HW_MAX)
1207 return -EINVAL;
1208 pev = mipspmu_map_general_event(event->attr.config);
1209 } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1210 pev = mipspmu_map_cache_event(event->attr.config);
1211 } else if (PERF_TYPE_RAW == event->attr.type) {
1212 /* We are working on the global raw event. */
1213 mutex_lock(&raw_event_mutex);
1214 pev = mipspmu.map_raw_event(event->attr.config);
1215 } else {
1216 /* The event type is not (yet) supported. */
1217 return -EOPNOTSUPP;
1218 }
1219
1220 if (IS_ERR(pev)) {
1221 if (PERF_TYPE_RAW == event->attr.type)
1222 mutex_unlock(&raw_event_mutex);
1223 return PTR_ERR(pev);
1224 }
1225
1226 /*
1227 * We allow max flexibility on how each individual counter shared
1228 * by the single CPU operates (the mode exclusion and the range).
1229 */
1230 hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1231
1232 /* Calculate range bits and validate it. */
1233 if (num_possible_cpus() > 1)
1234 check_and_calc_range(event, pev);
1235
1236 hwc->event_base = mipspmu_perf_event_encode(pev);
1237 if (PERF_TYPE_RAW == event->attr.type)
1238 mutex_unlock(&raw_event_mutex);
1239
1240 if (!attr->exclude_user)
1241 hwc->config_base |= M_PERFCTL_USER;
1242 if (!attr->exclude_kernel) {
1243 hwc->config_base |= M_PERFCTL_KERNEL;
1244 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1245 hwc->config_base |= M_PERFCTL_EXL;
1246 }
1247 if (!attr->exclude_hv)
1248 hwc->config_base |= M_PERFCTL_SUPERVISOR;
1249
1250 hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1251 /*
1252 * The event can belong to another cpu. We do not assign a local
1253 * counter for it for now.
1254 */
1255 hwc->idx = -1;
1256 hwc->config = 0;
1257
1258 if (!hwc->sample_period) {
1259 hwc->sample_period = mipspmu.max_period;
1260 hwc->last_period = hwc->sample_period;
1261 local64_set(&hwc->period_left, hwc->sample_period);
1262 }
1263
1264 err = 0;
1265 if (event->group_leader != event)
1266 err = validate_group(event);
1267
1268 event->destroy = hw_perf_event_destroy;
1269
1270 if (err)
1271 event->destroy(event);
1272
1273 return err;
1274 }
1275
1276 static void pause_local_counters(void)
1277 {
1278 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1279 int ctr = mipspmu.num_counters;
1280 unsigned long flags;
1281
1282 local_irq_save(flags);
1283 do {
1284 ctr--;
1285 cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1286 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1287 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1288 } while (ctr > 0);
1289 local_irq_restore(flags);
1290 }
1291
1292 static void resume_local_counters(void)
1293 {
1294 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1295 int ctr = mipspmu.num_counters;
1296
1297 do {
1298 ctr--;
1299 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1300 } while (ctr > 0);
1301 }
1302
1303 static int mipsxx_pmu_handle_shared_irq(void)
1304 {
1305 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1306 struct perf_sample_data data;
1307 unsigned int counters = mipspmu.num_counters;
1308 u64 counter;
1309 int handled = IRQ_NONE;
1310 struct pt_regs *regs;
1311
1312 if (cpu_has_mips_r2 && !(read_c0_cause() & (1 << 26)))
1313 return handled;
1314 /*
1315 * First we pause the local counters, so that when we are locked
1316 * here, the counters are all paused. When it gets locked due to
1317 * perf_disable(), the timer interrupt handler will be delayed.
1318 *
1319 * See also mipsxx_pmu_start().
1320 */
1321 pause_local_counters();
1322 #ifdef CONFIG_MIPS_MT_SMP
1323 read_lock(&pmuint_rwlock);
1324 #endif
1325
1326 regs = get_irq_regs();
1327
1328 perf_sample_data_init(&data, 0, 0);
1329
1330 switch (counters) {
1331 #define HANDLE_COUNTER(n) \
1332 case n + 1: \
1333 if (test_bit(n, cpuc->used_mask)) { \
1334 counter = mipspmu.read_counter(n); \
1335 if (counter & mipspmu.overflow) { \
1336 handle_associated_event(cpuc, n, &data, regs); \
1337 handled = IRQ_HANDLED; \
1338 } \
1339 }
1340 HANDLE_COUNTER(3)
1341 HANDLE_COUNTER(2)
1342 HANDLE_COUNTER(1)
1343 HANDLE_COUNTER(0)
1344 }
1345
1346 /*
1347 * Do all the work for the pending perf events. We can do this
1348 * in here because the performance counter interrupt is a regular
1349 * interrupt, not NMI.
1350 */
1351 if (handled == IRQ_HANDLED)
1352 irq_work_run();
1353
1354 #ifdef CONFIG_MIPS_MT_SMP
1355 read_unlock(&pmuint_rwlock);
1356 #endif
1357 resume_local_counters();
1358 return handled;
1359 }
1360
1361 static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1362 {
1363 return mipsxx_pmu_handle_shared_irq();
1364 }
1365
1366 /* 24K */
1367 #define IS_BOTH_COUNTERS_24K_EVENT(b) \
1368 ((b) == 0 || (b) == 1 || (b) == 11)
1369
1370 /* 34K */
1371 #define IS_BOTH_COUNTERS_34K_EVENT(b) \
1372 ((b) == 0 || (b) == 1 || (b) == 11)
1373 #ifdef CONFIG_MIPS_MT_SMP
1374 #define IS_RANGE_P_34K_EVENT(r, b) \
1375 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1376 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
1377 (r) == 176 || ((b) >= 50 && (b) <= 55) || \
1378 ((b) >= 64 && (b) <= 67))
1379 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1380 #endif
1381
1382 /* 74K */
1383 #define IS_BOTH_COUNTERS_74K_EVENT(b) \
1384 ((b) == 0 || (b) == 1)
1385
1386 /* 1004K */
1387 #define IS_BOTH_COUNTERS_1004K_EVENT(b) \
1388 ((b) == 0 || (b) == 1 || (b) == 11)
1389 #ifdef CONFIG_MIPS_MT_SMP
1390 #define IS_RANGE_P_1004K_EVENT(r, b) \
1391 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1392 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
1393 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
1394 (r) == 188 || (b) == 61 || (b) == 62 || \
1395 ((b) >= 64 && (b) <= 67))
1396 #define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
1397 #endif
1398
1399 /*
1400 * User can use 0-255 raw events, where 0-127 for the events of even
1401 * counters, and 128-255 for odd counters. Note that bit 7 is used to
1402 * indicate the parity. So, for example, when user wants to take the
1403 * Event Num of 15 for odd counters (by referring to the user manual),
1404 * then 128 needs to be added to 15 as the input for the event config,
1405 * i.e., 143 (0x8F) to be used.
1406 */
1407 static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1408 {
1409 unsigned int raw_id = config & 0xff;
1410 unsigned int base_id = raw_id & 0x7f;
1411
1412 raw_event.event_id = base_id;
1413
1414 switch (current_cpu_type()) {
1415 case CPU_24K:
1416 if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1417 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1418 else
1419 raw_event.cntr_mask =
1420 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1421 #ifdef CONFIG_MIPS_MT_SMP
1422 /*
1423 * This is actually doing nothing. Non-multithreading
1424 * CPUs will not check and calculate the range.
1425 */
1426 raw_event.range = P;
1427 #endif
1428 break;
1429 case CPU_34K:
1430 if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1431 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1432 else
1433 raw_event.cntr_mask =
1434 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1435 #ifdef CONFIG_MIPS_MT_SMP
1436 if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1437 raw_event.range = P;
1438 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1439 raw_event.range = V;
1440 else
1441 raw_event.range = T;
1442 #endif
1443 break;
1444 case CPU_74K:
1445 if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1446 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1447 else
1448 raw_event.cntr_mask =
1449 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1450 #ifdef CONFIG_MIPS_MT_SMP
1451 raw_event.range = P;
1452 #endif
1453 break;
1454 case CPU_1004K:
1455 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1456 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1457 else
1458 raw_event.cntr_mask =
1459 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1460 #ifdef CONFIG_MIPS_MT_SMP
1461 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1462 raw_event.range = P;
1463 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1464 raw_event.range = V;
1465 else
1466 raw_event.range = T;
1467 #endif
1468 break;
1469 }
1470
1471 return &raw_event;
1472 }
1473
1474 static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1475 {
1476 unsigned int raw_id = config & 0xff;
1477 unsigned int base_id = raw_id & 0x7f;
1478
1479
1480 raw_event.cntr_mask = CNTR_ALL;
1481 raw_event.event_id = base_id;
1482
1483 if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1484 if (base_id > 0x42)
1485 return ERR_PTR(-EOPNOTSUPP);
1486 } else {
1487 if (base_id > 0x3a)
1488 return ERR_PTR(-EOPNOTSUPP);
1489 }
1490
1491 switch (base_id) {
1492 case 0x00:
1493 case 0x0f:
1494 case 0x1e:
1495 case 0x1f:
1496 case 0x2f:
1497 case 0x34:
1498 case 0x3b ... 0x3f:
1499 return ERR_PTR(-EOPNOTSUPP);
1500 default:
1501 break;
1502 }
1503
1504 return &raw_event;
1505 }
1506
1507 static int __init
1508 init_hw_perf_events(void)
1509 {
1510 int counters, irq;
1511 int counter_bits;
1512
1513 pr_info("Performance counters: ");
1514
1515 counters = n_counters();
1516 if (counters == 0) {
1517 pr_cont("No available PMU.\n");
1518 return -ENODEV;
1519 }
1520
1521 #ifdef CONFIG_MIPS_MT_SMP
1522 cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1523 if (!cpu_has_mipsmt_pertccounters)
1524 counters = counters_total_to_per_cpu(counters);
1525 #endif
1526
1527 #ifdef MSC01E_INT_BASE
1528 if (cpu_has_veic) {
1529 /*
1530 * Using platform specific interrupt controller defines.
1531 */
1532 irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
1533 } else {
1534 #endif
1535 if ((cp0_perfcount_irq >= 0) &&
1536 (cp0_compare_irq != cp0_perfcount_irq))
1537 irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1538 else
1539 irq = -1;
1540 #ifdef MSC01E_INT_BASE
1541 }
1542 #endif
1543
1544 mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1545
1546 switch (current_cpu_type()) {
1547 case CPU_24K:
1548 mipspmu.name = "mips/24K";
1549 mipspmu.general_event_map = &mipsxxcore_event_map;
1550 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1551 break;
1552 case CPU_34K:
1553 mipspmu.name = "mips/34K";
1554 mipspmu.general_event_map = &mipsxxcore_event_map;
1555 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1556 break;
1557 case CPU_74K:
1558 mipspmu.name = "mips/74K";
1559 mipspmu.general_event_map = &mipsxx74Kcore_event_map;
1560 mipspmu.cache_event_map = &mipsxx74Kcore_cache_map;
1561 break;
1562 case CPU_1004K:
1563 mipspmu.name = "mips/1004K";
1564 mipspmu.general_event_map = &mipsxxcore_event_map;
1565 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1566 break;
1567 case CPU_CAVIUM_OCTEON:
1568 case CPU_CAVIUM_OCTEON_PLUS:
1569 case CPU_CAVIUM_OCTEON2:
1570 mipspmu.name = "octeon";
1571 mipspmu.general_event_map = &octeon_event_map;
1572 mipspmu.cache_event_map = &octeon_cache_map;
1573 mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1574 break;
1575 default:
1576 pr_cont("Either hardware does not support performance "
1577 "counters, or not yet implemented.\n");
1578 return -ENODEV;
1579 }
1580
1581 mipspmu.num_counters = counters;
1582 mipspmu.irq = irq;
1583
1584 if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1585 mipspmu.max_period = (1ULL << 63) - 1;
1586 mipspmu.valid_count = (1ULL << 63) - 1;
1587 mipspmu.overflow = 1ULL << 63;
1588 mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1589 mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1590 counter_bits = 64;
1591 } else {
1592 mipspmu.max_period = (1ULL << 31) - 1;
1593 mipspmu.valid_count = (1ULL << 31) - 1;
1594 mipspmu.overflow = 1ULL << 31;
1595 mipspmu.read_counter = mipsxx_pmu_read_counter;
1596 mipspmu.write_counter = mipsxx_pmu_write_counter;
1597 counter_bits = 32;
1598 }
1599
1600 on_each_cpu(reset_counters, (void *)(long)counters, 1);
1601
1602 pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1603 "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1604 irq < 0 ? " (share with timer interrupt)" : "");
1605
1606 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1607
1608 return 0;
1609 }
1610 early_initcall(init_hw_perf_events);