dmatest: do not allow to interrupt ongoing tests
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / m68k / kernel / head.S
1 /* -*- mode: asm -*-
2 **
3 ** head.S -- This file contains the initial boot code for the
4 ** Linux/68k kernel.
5 **
6 ** Copyright 1993 by Hamish Macdonald
7 **
8 ** 68040 fixes by Michael Rausch
9 ** 68060 fixes by Roman Hodek
10 ** MMU cleanup by Randy Thelen
11 ** Final MMU cleanup by Roman Zippel
12 **
13 ** Atari support by Andreas Schwab, using ideas of Robert de Vries
14 ** and Bjoern Brauel
15 ** VME Support by Richard Hirst
16 **
17 ** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
18 ** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
19 ** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
20 ** 95/11/18 Richard Hirst: Added MVME166 support
21 ** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
22 ** Magnum- and FX-alternate ram
23 ** 98/04/25 Phil Blundell: added HP300 support
24 ** 1998/08/30 David Kilzer: Added support for font_desc structures
25 ** for linux-2.1.115
26 ** 9/02/11 Richard Zidlicky: added Q40 support (initial vesion 99/01/01)
27 ** 2004/05/13 Kars de Jong: Finalised HP300 support
28 **
29 ** This file is subject to the terms and conditions of the GNU General Public
30 ** License. See the file README.legal in the main directory of this archive
31 ** for more details.
32 **
33 */
34
35 /*
36 * Linux startup code.
37 *
38 * At this point, the boot loader has:
39 * Disabled interrupts
40 * Disabled caches
41 * Put us in supervisor state.
42 *
43 * The kernel setup code takes the following steps:
44 * . Raise interrupt level
45 * . Set up initial kernel memory mapping.
46 * . This sets up a mapping of the 4M of memory the kernel is located in.
47 * . It also does a mapping of any initial machine specific areas.
48 * . Enable the MMU
49 * . Enable cache memories
50 * . Jump to kernel startup
51 *
52 * Much of the file restructuring was to accomplish:
53 * 1) Remove register dependency through-out the file.
54 * 2) Increase use of subroutines to perform functions
55 * 3) Increase readability of the code
56 *
57 * Of course, readability is a subjective issue, so it will never be
58 * argued that that goal was accomplished. It was merely a goal.
59 * A key way to help make code more readable is to give good
60 * documentation. So, the first thing you will find is exaustive
61 * write-ups on the structure of the file, and the features of the
62 * functional subroutines.
63 *
64 * General Structure:
65 * ------------------
66 * Without a doubt the single largest chunk of head.S is spent
67 * mapping the kernel and I/O physical space into the logical range
68 * for the kernel.
69 * There are new subroutines and data structures to make MMU
70 * support cleaner and easier to understand.
71 * First, you will find a routine call "mmu_map" which maps
72 * a logical to a physical region for some length given a cache
73 * type on behalf of the caller. This routine makes writing the
74 * actual per-machine specific code very simple.
75 * A central part of the code, but not a subroutine in itself,
76 * is the mmu_init code which is broken down into mapping the kernel
77 * (the same for all machines) and mapping machine-specific I/O
78 * regions.
79 * Also, there will be a description of engaging the MMU and
80 * caches.
81 * You will notice that there is a chunk of code which
82 * can emit the entire MMU mapping of the machine. This is present
83 * only in debug modes and can be very helpful.
84 * Further, there is a new console driver in head.S that is
85 * also only engaged in debug mode. Currently, it's only supported
86 * on the Macintosh class of machines. However, it is hoped that
87 * others will plug-in support for specific machines.
88 *
89 * ######################################################################
90 *
91 * mmu_map
92 * -------
93 * mmu_map was written for two key reasons. First, it was clear
94 * that it was very difficult to read the previous code for mapping
95 * regions of memory. Second, the Macintosh required such extensive
96 * memory allocations that it didn't make sense to propagate the
97 * existing code any further.
98 * mmu_map requires some parameters:
99 *
100 * mmu_map (logical, physical, length, cache_type)
101 *
102 * While this essentially describes the function in the abstract, you'll
103 * find more indepth description of other parameters at the implementation site.
104 *
105 * mmu_get_root_table_entry
106 * ------------------------
107 * mmu_get_ptr_table_entry
108 * -----------------------
109 * mmu_get_page_table_entry
110 * ------------------------
111 *
112 * These routines are used by other mmu routines to get a pointer into
113 * a table, if necessary a new table is allocated. These routines are working
114 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
115 * table needs of course only to be allocated once in mmu_get_root_table_entry,
116 * so that here also some mmu specific initialization is done. The second page
117 * at the start of the kernel (the first page is unmapped later) is used for
118 * the kernel_pg_dir. It must be at a position known at link time (as it's used
119 * to initialize the init task struct) and since it needs special cache
120 * settings, it's the easiest to use this page, the rest of the page is used
121 * for further pointer tables.
122 * mmu_get_page_table_entry allocates always a whole page for page tables, this
123 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
124 * to manage page tables in smaller pieces as nearly all mappings have that
125 * size.
126 *
127 * ######################################################################
128 *
129 *
130 * ######################################################################
131 *
132 * mmu_engage
133 * ----------
134 * Thanks to a small helping routine enabling the mmu got quite simple
135 * and there is only one way left. mmu_engage makes a complete a new mapping
136 * that only includes the absolute necessary to be able to jump to the final
137 * position and to restore the original mapping.
138 * As this code doesn't need a transparent translation register anymore this
139 * means all registers are free to be used by machines that needs them for
140 * other purposes.
141 *
142 * ######################################################################
143 *
144 * mmu_print
145 * ---------
146 * This algorithm will print out the page tables of the system as
147 * appropriate for an 030 or an 040. This is useful for debugging purposes
148 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
149 *
150 * ######################################################################
151 *
152 * console_init
153 * ------------
154 * The console is also able to be turned off. The console in head.S
155 * is specifically for debugging and can be very useful. It is surrounded by
156 * #ifdef CONSOLE/#endif clauses so it doesn't have to ship in known-good
157 * kernels. It's basic algorithm is to determine the size of the screen
158 * (in height/width and bit depth) and then use that information for
159 * displaying an 8x8 font or an 8x16 (widthxheight). I prefer the 8x8 for
160 * debugging so I can see more good data. But it was trivial to add support
161 * for both fonts, so I included it.
162 * Also, the algorithm for plotting pixels is abstracted so that in
163 * theory other platforms could add support for different kinds of frame
164 * buffers. This could be very useful.
165 *
166 * console_put_penguin
167 * -------------------
168 * An important part of any Linux bring up is the penguin and there's
169 * nothing like getting the Penguin on the screen! This algorithm will work
170 * on any machine for which there is a console_plot_pixel.
171 *
172 * console_scroll
173 * --------------
174 * My hope is that the scroll algorithm does the right thing on the
175 * various platforms, but it wouldn't be hard to add the test conditions
176 * and new code if it doesn't.
177 *
178 * console_putc
179 * -------------
180 *
181 * ######################################################################
182 *
183 * Register usage has greatly simplified within head.S. Every subroutine
184 * saves and restores all registers that it modifies (except it returns a
185 * value in there of course). So the only register that needs to be initialized
186 * is the stack pointer.
187 * All other init code and data is now placed in the init section, so it will
188 * be automatically freed at the end of the kernel initialization.
189 *
190 * ######################################################################
191 *
192 * options
193 * -------
194 * There are many options available in a build of this file. I've
195 * taken the time to describe them here to save you the time of searching
196 * for them and trying to understand what they mean.
197 *
198 * CONFIG_xxx: These are the obvious machine configuration defines created
199 * during configuration. These are defined in autoconf.h.
200 *
201 * CONSOLE: There is support for head.S console in this file. This
202 * console can talk to a Mac frame buffer, but could easily be extrapolated
203 * to extend it to support other platforms.
204 *
205 * TEST_MMU: This is a test harness for running on any given machine but
206 * getting an MMU dump for another class of machine. The classes of machines
207 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
208 * and any of the models (030, 040, 060, etc.).
209 *
210 * NOTE: TEST_MMU is NOT permanent! It is scheduled to be removed
211 * When head.S boots on Atari, Amiga, Macintosh, and VME
212 * machines. At that point the underlying logic will be
213 * believed to be solid enough to be trusted, and TEST_MMU
214 * can be dropped. Do note that that will clean up the
215 * head.S code significantly as large blocks of #if/#else
216 * clauses can be removed.
217 *
218 * MMU_NOCACHE_KERNEL: On the Macintosh platform there was an inquiry into
219 * determing why devices don't appear to work. A test case was to remove
220 * the cacheability of the kernel bits.
221 *
222 * MMU_PRINT: There is a routine built into head.S that can display the
223 * MMU data structures. It outputs its result through the serial_putc
224 * interface. So where ever that winds up driving data, that's where the
225 * mmu struct will appear. On the Macintosh that's typically the console.
226 *
227 * SERIAL_DEBUG: There are a series of putc() macro statements
228 * scattered through out the code to give progress of status to the
229 * person sitting at the console. This constant determines whether those
230 * are used.
231 *
232 * DEBUG: This is the standard DEBUG flag that can be set for building
233 * the kernel. It has the effect adding additional tests into
234 * the code.
235 *
236 * FONT_6x11:
237 * FONT_8x8:
238 * FONT_8x16:
239 * In theory these could be determined at run time or handed
240 * over by the booter. But, let's be real, it's a fine hard
241 * coded value. (But, you will notice the code is run-time
242 * flexible!) A pointer to the font's struct font_desc
243 * is kept locally in Lconsole_font. It is used to determine
244 * font size information dynamically.
245 *
246 * Atari constants:
247 * USE_PRINTER: Use the printer port for serial debug.
248 * USE_SCC_B: Use the SCC port A (Serial2) for serial debug.
249 * USE_SCC_A: Use the SCC port B (Modem2) for serial debug.
250 * USE_MFP: Use the ST-MFP port (Modem1) for serial debug.
251 *
252 * Macintosh constants:
253 * MAC_USE_SCC_A: Use SCC port A (modem) for serial debug and early console.
254 * MAC_USE_SCC_B: Use SCC port B (printer) for serial debug and early console.
255 */
256
257 #include <linux/linkage.h>
258 #include <linux/init.h>
259 #include <asm/bootinfo.h>
260 #include <asm/setup.h>
261 #include <asm/entry.h>
262 #include <asm/pgtable.h>
263 #include <asm/page.h>
264 #include <asm/asm-offsets.h>
265
266 #ifdef CONFIG_MAC
267
268 #include <asm/machw.h>
269
270 #ifdef CONFIG_FRAMEBUFFER_CONSOLE
271 #define CONSOLE
272 #define CONSOLE_PENGUIN
273 #endif
274
275 #ifdef CONFIG_EARLY_PRINTK
276 #define SERIAL_DEBUG
277 #else
278 #undef SERIAL_DEBUG
279 #endif
280
281 #else /* !CONFIG_MAC */
282
283 #define SERIAL_DEBUG
284
285 #endif /* !CONFIG_MAC */
286
287 #undef MMU_PRINT
288 #undef MMU_NOCACHE_KERNEL
289 #undef DEBUG
290
291 /*
292 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
293 * The 8x8 font is harder to read but fits more on the screen.
294 */
295 #define FONT_8x8 /* default */
296 /* #define FONT_8x16 */ /* 2nd choice */
297 /* #define FONT_6x11 */ /* 3rd choice */
298
299 .globl kernel_pg_dir
300 .globl availmem
301 .globl m68k_pgtable_cachemode
302 .globl m68k_supervisor_cachemode
303 #ifdef CONFIG_MVME16x
304 .globl mvme_bdid
305 #endif
306 #ifdef CONFIG_Q40
307 .globl q40_mem_cptr
308 #endif
309
310 CPUTYPE_040 = 1 /* indicates an 040 */
311 CPUTYPE_060 = 2 /* indicates an 060 */
312 CPUTYPE_0460 = 3 /* if either above are set, this is set */
313 CPUTYPE_020 = 4 /* indicates an 020 */
314
315 /* Translation control register */
316 TC_ENABLE = 0x8000
317 TC_PAGE8K = 0x4000
318 TC_PAGE4K = 0x0000
319
320 /* Transparent translation registers */
321 TTR_ENABLE = 0x8000 /* enable transparent translation */
322 TTR_ANYMODE = 0x4000 /* user and kernel mode access */
323 TTR_KERNELMODE = 0x2000 /* only kernel mode access */
324 TTR_USERMODE = 0x0000 /* only user mode access */
325 TTR_CI = 0x0400 /* inhibit cache */
326 TTR_RW = 0x0200 /* read/write mode */
327 TTR_RWM = 0x0100 /* read/write mask */
328 TTR_FCB2 = 0x0040 /* function code base bit 2 */
329 TTR_FCB1 = 0x0020 /* function code base bit 1 */
330 TTR_FCB0 = 0x0010 /* function code base bit 0 */
331 TTR_FCM2 = 0x0004 /* function code mask bit 2 */
332 TTR_FCM1 = 0x0002 /* function code mask bit 1 */
333 TTR_FCM0 = 0x0001 /* function code mask bit 0 */
334
335 /* Cache Control registers */
336 CC6_ENABLE_D = 0x80000000 /* enable data cache (680[46]0) */
337 CC6_FREEZE_D = 0x40000000 /* freeze data cache (68060) */
338 CC6_ENABLE_SB = 0x20000000 /* enable store buffer (68060) */
339 CC6_PUSH_DPI = 0x10000000 /* disable CPUSH invalidation (68060) */
340 CC6_HALF_D = 0x08000000 /* half-cache mode for data cache (68060) */
341 CC6_ENABLE_B = 0x00800000 /* enable branch cache (68060) */
342 CC6_CLRA_B = 0x00400000 /* clear all entries in branch cache (68060) */
343 CC6_CLRU_B = 0x00200000 /* clear user entries in branch cache (68060) */
344 CC6_ENABLE_I = 0x00008000 /* enable instruction cache (680[46]0) */
345 CC6_FREEZE_I = 0x00004000 /* freeze instruction cache (68060) */
346 CC6_HALF_I = 0x00002000 /* half-cache mode for instruction cache (68060) */
347 CC3_ALLOC_WRITE = 0x00002000 /* write allocate mode(68030) */
348 CC3_ENABLE_DB = 0x00001000 /* enable data burst (68030) */
349 CC3_CLR_D = 0x00000800 /* clear data cache (68030) */
350 CC3_CLRE_D = 0x00000400 /* clear entry in data cache (68030) */
351 CC3_FREEZE_D = 0x00000200 /* freeze data cache (68030) */
352 CC3_ENABLE_D = 0x00000100 /* enable data cache (68030) */
353 CC3_ENABLE_IB = 0x00000010 /* enable instruction burst (68030) */
354 CC3_CLR_I = 0x00000008 /* clear instruction cache (68030) */
355 CC3_CLRE_I = 0x00000004 /* clear entry in instruction cache (68030) */
356 CC3_FREEZE_I = 0x00000002 /* freeze instruction cache (68030) */
357 CC3_ENABLE_I = 0x00000001 /* enable instruction cache (68030) */
358
359 /* Miscellaneous definitions */
360 PAGESIZE = 4096
361 PAGESHIFT = 12
362
363 ROOT_TABLE_SIZE = 128
364 PTR_TABLE_SIZE = 128
365 PAGE_TABLE_SIZE = 64
366 ROOT_INDEX_SHIFT = 25
367 PTR_INDEX_SHIFT = 18
368 PAGE_INDEX_SHIFT = 12
369
370 #ifdef DEBUG
371 /* When debugging use readable names for labels */
372 #ifdef __STDC__
373 #define L(name) .head.S.##name
374 #else
375 #define L(name) .head.S./**/name
376 #endif
377 #else
378 #ifdef __STDC__
379 #define L(name) .L##name
380 #else
381 #define L(name) .L/**/name
382 #endif
383 #endif
384
385 /* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
386 #ifndef __INITDATA
387 #define __INITDATA .data
388 #define __FINIT .previous
389 #endif
390
391 /* Several macros to make the writing of subroutines easier:
392 * - func_start marks the beginning of the routine which setups the frame
393 * register and saves the registers, it also defines another macro
394 * to automatically restore the registers again.
395 * - func_return marks the end of the routine and simply calls the prepared
396 * macro to restore registers and jump back to the caller.
397 * - func_define generates another macro to automatically put arguments
398 * onto the stack call the subroutine and cleanup the stack again.
399 */
400
401 /* Within subroutines these macros can be used to access the arguments
402 * on the stack. With STACK some allocated memory on the stack can be
403 * accessed and ARG0 points to the return address (used by mmu_engage).
404 */
405 #define STACK %a6@(stackstart)
406 #define ARG0 %a6@(4)
407 #define ARG1 %a6@(8)
408 #define ARG2 %a6@(12)
409 #define ARG3 %a6@(16)
410 #define ARG4 %a6@(20)
411
412 .macro func_start name,saveregs,stack=0
413 L(\name):
414 linkw %a6,#-\stack
415 moveml \saveregs,%sp@-
416 .set stackstart,-\stack
417
418 .macro func_return_\name
419 moveml %sp@+,\saveregs
420 unlk %a6
421 rts
422 .endm
423 .endm
424
425 .macro func_return name
426 func_return_\name
427 .endm
428
429 .macro func_call name
430 jbsr L(\name)
431 .endm
432
433 .macro move_stack nr,arg1,arg2,arg3,arg4
434 .if \nr
435 move_stack "(\nr-1)",\arg2,\arg3,\arg4
436 movel \arg1,%sp@-
437 .endif
438 .endm
439
440 .macro func_define name,nr=0
441 .macro \name arg1,arg2,arg3,arg4
442 move_stack \nr,\arg1,\arg2,\arg3,\arg4
443 func_call \name
444 .if \nr
445 lea %sp@(\nr*4),%sp
446 .endif
447 .endm
448 .endm
449
450 func_define mmu_map,4
451 func_define mmu_map_tt,4
452 func_define mmu_fixup_page_mmu_cache,1
453 func_define mmu_temp_map,2
454 func_define mmu_engage
455 func_define mmu_get_root_table_entry,1
456 func_define mmu_get_ptr_table_entry,2
457 func_define mmu_get_page_table_entry,2
458 func_define mmu_print
459 func_define get_new_page
460 #if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
461 func_define set_leds
462 #endif
463
464 .macro mmu_map_eq arg1,arg2,arg3
465 mmu_map \arg1,\arg1,\arg2,\arg3
466 .endm
467
468 .macro get_bi_record record
469 pea \record
470 func_call get_bi_record
471 addql #4,%sp
472 .endm
473
474 func_define serial_putc,1
475 func_define console_putc,1
476
477 func_define console_init
478 func_define console_put_stats
479 func_define console_put_penguin
480 func_define console_plot_pixel,3
481 func_define console_scroll
482
483 .macro putc ch
484 #if defined(CONSOLE) || defined(SERIAL_DEBUG)
485 pea \ch
486 #endif
487 #ifdef CONSOLE
488 func_call console_putc
489 #endif
490 #ifdef SERIAL_DEBUG
491 func_call serial_putc
492 #endif
493 #if defined(CONSOLE) || defined(SERIAL_DEBUG)
494 addql #4,%sp
495 #endif
496 .endm
497
498 .macro dputc ch
499 #ifdef DEBUG
500 putc \ch
501 #endif
502 .endm
503
504 func_define putn,1
505
506 .macro dputn nr
507 #ifdef DEBUG
508 putn \nr
509 #endif
510 .endm
511
512 .macro puts string
513 #if defined(CONSOLE) || defined(SERIAL_DEBUG)
514 __INITDATA
515 .Lstr\@:
516 .string "\string"
517 __FINIT
518 pea %pc@(.Lstr\@)
519 func_call puts
520 addql #4,%sp
521 #endif
522 .endm
523
524 .macro dputs string
525 #ifdef DEBUG
526 puts "\string"
527 #endif
528 .endm
529
530 #define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
531 #define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
532 #define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
533 #define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
534 #define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
535 #define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
536 #define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
537 #define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
538 #define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
539 #define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
540 #define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
541 #define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
542 #define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
543
544 #define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
545 jeq 42f; \
546 cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
547 jne lab ;\
548 42:\
549
550 #define is_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
551 #define is_not_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
552 #define is_040(lab) btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
553 #define is_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
554 #define is_not_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
555 #define is_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
556 #define is_not_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
557
558 /* On the HP300 we use the on-board LEDs for debug output before
559 the console is running. Writing a 1 bit turns the corresponding LED
560 _off_ - on the 340 bit 7 is towards the back panel of the machine. */
561 .macro leds mask
562 #if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
563 hasnt_leds(.Lled\@)
564 pea \mask
565 func_call set_leds
566 addql #4,%sp
567 .Lled\@:
568 #endif
569 .endm
570
571 __HEAD
572 ENTRY(_stext)
573 /*
574 * Version numbers of the bootinfo interface
575 * The area from _stext to _start will later be used as kernel pointer table
576 */
577 bras 1f /* Jump over bootinfo version numbers */
578
579 .long BOOTINFOV_MAGIC
580 .long MACH_AMIGA, AMIGA_BOOTI_VERSION
581 .long MACH_ATARI, ATARI_BOOTI_VERSION
582 .long MACH_MVME147, MVME147_BOOTI_VERSION
583 .long MACH_MVME16x, MVME16x_BOOTI_VERSION
584 .long MACH_BVME6000, BVME6000_BOOTI_VERSION
585 .long MACH_MAC, MAC_BOOTI_VERSION
586 .long MACH_Q40, Q40_BOOTI_VERSION
587 .long MACH_HP300, HP300_BOOTI_VERSION
588 .long 0
589 1: jra __start
590
591 .equ kernel_pg_dir,_stext
592
593 .equ .,_stext+PAGESIZE
594
595 ENTRY(_start)
596 jra __start
597 __INIT
598 ENTRY(__start)
599 /*
600 * Setup initial stack pointer
601 */
602 lea %pc@(_stext),%sp
603
604 /*
605 * Record the CPU and machine type.
606 */
607 get_bi_record BI_MACHTYPE
608 lea %pc@(m68k_machtype),%a1
609 movel %a0@,%a1@
610
611 get_bi_record BI_FPUTYPE
612 lea %pc@(m68k_fputype),%a1
613 movel %a0@,%a1@
614
615 get_bi_record BI_MMUTYPE
616 lea %pc@(m68k_mmutype),%a1
617 movel %a0@,%a1@
618
619 get_bi_record BI_CPUTYPE
620 lea %pc@(m68k_cputype),%a1
621 movel %a0@,%a1@
622
623 leds 0x1
624
625 #ifdef CONFIG_MAC
626 /*
627 * For Macintosh, we need to determine the display parameters early (at least
628 * while debugging it).
629 */
630
631 is_not_mac(L(test_notmac))
632
633 get_bi_record BI_MAC_VADDR
634 lea %pc@(L(mac_videobase)),%a1
635 movel %a0@,%a1@
636
637 get_bi_record BI_MAC_VDEPTH
638 lea %pc@(L(mac_videodepth)),%a1
639 movel %a0@,%a1@
640
641 get_bi_record BI_MAC_VDIM
642 lea %pc@(L(mac_dimensions)),%a1
643 movel %a0@,%a1@
644
645 get_bi_record BI_MAC_VROW
646 lea %pc@(L(mac_rowbytes)),%a1
647 movel %a0@,%a1@
648
649 #ifdef SERIAL_DEBUG
650 get_bi_record BI_MAC_SCCBASE
651 lea %pc@(L(mac_sccbase)),%a1
652 movel %a0@,%a1@
653 #endif
654
655 #if 0
656 /*
657 * Clear the screen
658 */
659 lea %pc@(L(mac_videobase)),%a0
660 movel %a0@,%a1
661 lea %pc@(L(mac_dimensions)),%a0
662 movel %a0@,%d1
663 swap %d1 /* #rows is high bytes */
664 andl #0xFFFF,%d1 /* rows */
665 subl #10,%d1
666 lea %pc@(L(mac_rowbytes)),%a0
667 loopy2:
668 movel %a0@,%d0
669 subql #1,%d0
670 loopx2:
671 moveb #0x55, %a1@+
672 dbra %d0,loopx2
673 dbra %d1,loopy2
674 #endif
675
676 L(test_notmac):
677 #endif /* CONFIG_MAC */
678
679
680 /*
681 * There are ultimately two pieces of information we want for all kinds of
682 * processors CpuType and CacheBits. The CPUTYPE was passed in from booter
683 * and is converted here from a booter type definition to a separate bit
684 * number which allows for the standard is_0x0 macro tests.
685 */
686 movel %pc@(m68k_cputype),%d0
687 /*
688 * Assume it's an 030
689 */
690 clrl %d1
691
692 /*
693 * Test the BootInfo cputype for 060
694 */
695 btst #CPUB_68060,%d0
696 jeq 1f
697 bset #CPUTYPE_060,%d1
698 bset #CPUTYPE_0460,%d1
699 jra 3f
700 1:
701 /*
702 * Test the BootInfo cputype for 040
703 */
704 btst #CPUB_68040,%d0
705 jeq 2f
706 bset #CPUTYPE_040,%d1
707 bset #CPUTYPE_0460,%d1
708 jra 3f
709 2:
710 /*
711 * Test the BootInfo cputype for 020
712 */
713 btst #CPUB_68020,%d0
714 jeq 3f
715 bset #CPUTYPE_020,%d1
716 jra 3f
717 3:
718 /*
719 * Record the cpu type
720 */
721 lea %pc@(L(cputype)),%a0
722 movel %d1,%a0@
723
724 /*
725 * NOTE:
726 *
727 * Now the macros are valid:
728 * is_040_or_060
729 * is_not_040_or_060
730 * is_040
731 * is_060
732 * is_not_060
733 */
734
735 /*
736 * Determine the cache mode for pages holding MMU tables
737 * and for supervisor mode, unused for '020 and '030
738 */
739 clrl %d0
740 clrl %d1
741
742 is_not_040_or_060(L(save_cachetype))
743
744 /*
745 * '040 or '060
746 * d1 := cacheable write-through
747 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
748 * but we have been using write-through since at least 2.0.29 so I
749 * guess it is OK.
750 */
751 #ifdef CONFIG_060_WRITETHROUGH
752 /*
753 * If this is a 68060 board using drivers with cache coherency
754 * problems, then supervisor memory accesses need to be write-through
755 * also; otherwise, we want copyback.
756 */
757
758 is_not_060(1f)
759 movel #_PAGE_CACHE040W,%d0
760 jra L(save_cachetype)
761 #endif /* CONFIG_060_WRITETHROUGH */
762 1:
763 movew #_PAGE_CACHE040,%d0
764
765 movel #_PAGE_CACHE040W,%d1
766
767 L(save_cachetype):
768 /* Save cache mode for supervisor mode and page tables
769 */
770 lea %pc@(m68k_supervisor_cachemode),%a0
771 movel %d0,%a0@
772 lea %pc@(m68k_pgtable_cachemode),%a0
773 movel %d1,%a0@
774
775 /*
776 * raise interrupt level
777 */
778 movew #0x2700,%sr
779
780 /*
781 If running on an Atari, determine the I/O base of the
782 serial port and test if we are running on a Medusa or Hades.
783 This test is necessary here, because on the Hades the serial
784 port is only accessible in the high I/O memory area.
785
786 The test whether it is a Medusa is done by writing to the byte at
787 phys. 0x0. This should result in a bus error on all other machines.
788
789 ...should, but doesn't. The Afterburner040 for the Falcon has the
790 same behaviour (0x0..0x7 are no ROM shadow). So we have to do
791 another test to distinguish Medusa and AB040. This is a
792 read attempt for 0x00ff82fe phys. that should bus error on a Falcon
793 (+AB040), but is in the range where the Medusa always asserts DTACK.
794
795 The test for the Hades is done by reading address 0xb0000000. This
796 should give a bus error on the Medusa.
797 */
798
799 #ifdef CONFIG_ATARI
800 is_not_atari(L(notypetest))
801
802 /* get special machine type (Medusa/Hades/AB40) */
803 moveq #0,%d3 /* default if tag doesn't exist */
804 get_bi_record BI_ATARI_MCH_TYPE
805 tstl %d0
806 jbmi 1f
807 movel %a0@,%d3
808 lea %pc@(atari_mch_type),%a0
809 movel %d3,%a0@
810 1:
811 /* On the Hades, the iobase must be set up before opening the
812 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
813 moveq #0,%d0
814 cmpl #ATARI_MACH_HADES,%d3
815 jbne 1f
816 movel #0xff000000,%d0 /* Hades I/O base addr: 0xff000000 */
817 1: lea %pc@(L(iobase)),%a0
818 movel %d0,%a0@
819
820 L(notypetest):
821 #endif
822
823 #ifdef CONFIG_VME
824 is_mvme147(L(getvmetype))
825 is_bvme6000(L(getvmetype))
826 is_not_mvme16x(L(gvtdone))
827
828 /* See if the loader has specified the BI_VME_TYPE tag. Recent
829 * versions of VMELILO and TFTPLILO do this. We have to do this
830 * early so we know how to handle console output. If the tag
831 * doesn't exist then we use the Bug for output on MVME16x.
832 */
833 L(getvmetype):
834 get_bi_record BI_VME_TYPE
835 tstl %d0
836 jbmi 1f
837 movel %a0@,%d3
838 lea %pc@(vme_brdtype),%a0
839 movel %d3,%a0@
840 1:
841 #ifdef CONFIG_MVME16x
842 is_not_mvme16x(L(gvtdone))
843
844 /* Need to get the BRD_ID info to differentiate between 162, 167,
845 * etc. This is available as a BI_VME_BRDINFO tag with later
846 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
847 */
848 get_bi_record BI_VME_BRDINFO
849 tstl %d0
850 jpl 1f
851
852 /* Get pointer to board ID data from Bug */
853 movel %d2,%sp@-
854 trap #15
855 .word 0x70 /* trap 0x70 - .BRD_ID */
856 movel %sp@+,%a0
857 1:
858 lea %pc@(mvme_bdid),%a1
859 /* Structure is 32 bytes long */
860 movel %a0@+,%a1@+
861 movel %a0@+,%a1@+
862 movel %a0@+,%a1@+
863 movel %a0@+,%a1@+
864 movel %a0@+,%a1@+
865 movel %a0@+,%a1@+
866 movel %a0@+,%a1@+
867 movel %a0@+,%a1@+
868 #endif
869
870 L(gvtdone):
871
872 #endif
873
874 #ifdef CONFIG_HP300
875 is_not_hp300(L(nothp))
876
877 /* Get the address of the UART for serial debugging */
878 get_bi_record BI_HP300_UART_ADDR
879 tstl %d0
880 jbmi 1f
881 movel %a0@,%d3
882 lea %pc@(L(uartbase)),%a0
883 movel %d3,%a0@
884 get_bi_record BI_HP300_UART_SCODE
885 tstl %d0
886 jbmi 1f
887 movel %a0@,%d3
888 lea %pc@(L(uart_scode)),%a0
889 movel %d3,%a0@
890 1:
891 L(nothp):
892 #endif
893
894 /*
895 * Initialize serial port
896 */
897 jbsr L(serial_init)
898
899 /*
900 * Initialize console
901 */
902 #ifdef CONFIG_MAC
903 is_not_mac(L(nocon))
904 #ifdef CONSOLE
905 console_init
906 #ifdef CONSOLE_PENGUIN
907 console_put_penguin
908 #endif /* CONSOLE_PENGUIN */
909 console_put_stats
910 #endif /* CONSOLE */
911 L(nocon):
912 #endif /* CONFIG_MAC */
913
914
915 putc '\n'
916 putc 'A'
917 leds 0x2
918 dputn %pc@(L(cputype))
919 dputn %pc@(m68k_supervisor_cachemode)
920 dputn %pc@(m68k_pgtable_cachemode)
921 dputc '\n'
922
923 /*
924 * Save physical start address of kernel
925 */
926 lea %pc@(L(phys_kernel_start)),%a0
927 lea %pc@(_stext),%a1
928 subl #_stext,%a1
929 addl #PAGE_OFFSET,%a1
930 movel %a1,%a0@
931
932 putc 'B'
933
934 leds 0x4
935
936 /*
937 * mmu_init
938 *
939 * This block of code does what's necessary to map in the various kinds
940 * of machines for execution of Linux.
941 * First map the first 4 MB of kernel code & data
942 */
943
944 mmu_map #PAGE_OFFSET,%pc@(L(phys_kernel_start)),#4*1024*1024,\
945 %pc@(m68k_supervisor_cachemode)
946
947 putc 'C'
948
949 #ifdef CONFIG_AMIGA
950
951 L(mmu_init_amiga):
952
953 is_not_amiga(L(mmu_init_not_amiga))
954 /*
955 * mmu_init_amiga
956 */
957
958 putc 'D'
959
960 is_not_040_or_060(1f)
961
962 /*
963 * 040: Map the 16Meg range physical 0x0 up to logical 0x8000.0000
964 */
965 mmu_map #0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
966 /*
967 * Map the Zorro III I/O space with transparent translation
968 * for frame buffer memory etc.
969 */
970 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
971
972 jbra L(mmu_init_done)
973
974 1:
975 /*
976 * 030: Map the 32Meg range physical 0x0 up to logical 0x8000.0000
977 */
978 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
979 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
980
981 jbra L(mmu_init_done)
982
983 L(mmu_init_not_amiga):
984 #endif
985
986 #ifdef CONFIG_ATARI
987
988 L(mmu_init_atari):
989
990 is_not_atari(L(mmu_init_not_atari))
991
992 putc 'E'
993
994 /* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
995 the last 16 MB of virtual address space to the first 16 MB (i.e.
996 0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
997 needed. I/O ranges are marked non-cachable.
998
999 For the Medusa it is better to map the I/O region transparently
1000 (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
1001 accessible only in the high area.
1002
1003 On the Hades all I/O registers are only accessible in the high
1004 area.
1005 */
1006
1007 /* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
1008 moveq #0,%d0
1009 movel %pc@(atari_mch_type),%d3
1010 cmpl #ATARI_MACH_MEDUSA,%d3
1011 jbeq 2f
1012 cmpl #ATARI_MACH_HADES,%d3
1013 jbne 1f
1014 2: movel #0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
1015 1: movel %d0,%d3
1016
1017 is_040_or_060(L(spata68040))
1018
1019 /* Map everything non-cacheable, though not all parts really
1020 * need to disable caches (crucial only for 0xff8000..0xffffff
1021 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1022 * isn't really used, except for sometimes peeking into the
1023 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
1024 * this. */
1025 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1026
1027 jbra L(mmu_init_done)
1028
1029 L(spata68040):
1030
1031 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1032
1033 jbra L(mmu_init_done)
1034
1035 L(mmu_init_not_atari):
1036 #endif
1037
1038 #ifdef CONFIG_Q40
1039 is_not_q40(L(notq40))
1040 /*
1041 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1042 * non-cached serialized etc..
1043 * this includes master chip, DAC, RTC and ISA ports
1044 * 0xfe000000-0xfeffffff is for screen and ROM
1045 */
1046
1047 putc 'Q'
1048
1049 mmu_map_tt #0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1050 mmu_map_tt #1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1051
1052 jbra L(mmu_init_done)
1053
1054 L(notq40):
1055 #endif
1056
1057 #ifdef CONFIG_HP300
1058 is_not_hp300(L(nothp300))
1059
1060 /* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1061 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1062 * The ROM mapping is needed because the LEDs are mapped there too.
1063 */
1064
1065 is_040(1f)
1066
1067 /*
1068 * 030: Map the 32Meg range physical 0x0 up to logical 0xf000.0000
1069 */
1070 mmu_map #0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1071
1072 jbra L(mmu_init_done)
1073
1074 1:
1075 /*
1076 * 040: Map the 16Meg range physical 0x0 up to logical 0xf000.0000
1077 */
1078 mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1079
1080 jbra L(mmu_init_done)
1081
1082 L(nothp300):
1083 #endif /* CONFIG_HP300 */
1084
1085 #ifdef CONFIG_MVME147
1086
1087 is_not_mvme147(L(not147))
1088
1089 /*
1090 * On MVME147 we have already created kernel page tables for
1091 * 4MB of RAM at address 0, so now need to do a transparent
1092 * mapping of the top of memory space. Make it 0.5GByte for now,
1093 * so we can access on-board i/o areas.
1094 */
1095
1096 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1097
1098 jbra L(mmu_init_done)
1099
1100 L(not147):
1101 #endif /* CONFIG_MVME147 */
1102
1103 #ifdef CONFIG_MVME16x
1104
1105 is_not_mvme16x(L(not16x))
1106
1107 /*
1108 * On MVME16x we have already created kernel page tables for
1109 * 4MB of RAM at address 0, so now need to do a transparent
1110 * mapping of the top of memory space. Make it 0.5GByte for now.
1111 * Supervisor only access, so transparent mapping doesn't
1112 * clash with User code virtual address space.
1113 * this covers IO devices, PROM and SRAM. The PROM and SRAM
1114 * mapping is needed to allow 167Bug to run.
1115 * IO is in the range 0xfff00000 to 0xfffeffff.
1116 * PROM is 0xff800000->0xffbfffff and SRAM is
1117 * 0xffe00000->0xffe1ffff.
1118 */
1119
1120 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1121
1122 jbra L(mmu_init_done)
1123
1124 L(not16x):
1125 #endif /* CONFIG_MVME162 | CONFIG_MVME167 */
1126
1127 #ifdef CONFIG_BVME6000
1128
1129 is_not_bvme6000(L(not6000))
1130
1131 /*
1132 * On BVME6000 we have already created kernel page tables for
1133 * 4MB of RAM at address 0, so now need to do a transparent
1134 * mapping of the top of memory space. Make it 0.5GByte for now,
1135 * so we can access on-board i/o areas.
1136 * Supervisor only access, so transparent mapping doesn't
1137 * clash with User code virtual address space.
1138 */
1139
1140 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1141
1142 jbra L(mmu_init_done)
1143
1144 L(not6000):
1145 #endif /* CONFIG_BVME6000 */
1146
1147 /*
1148 * mmu_init_mac
1149 *
1150 * The Macintosh mappings are less clear.
1151 *
1152 * Even as of this writing, it is unclear how the
1153 * Macintosh mappings will be done. However, as
1154 * the first author of this code I'm proposing the
1155 * following model:
1156 *
1157 * Map the kernel (that's already done),
1158 * Map the I/O (on most machines that's the
1159 * 0x5000.0000 ... 0x5300.0000 range,
1160 * Map the video frame buffer using as few pages
1161 * as absolutely (this requirement mostly stems from
1162 * the fact that when the frame buffer is at
1163 * 0x0000.0000 then we know there is valid RAM just
1164 * above the screen that we don't want to waste!).
1165 *
1166 * By the way, if the frame buffer is at 0x0000.0000
1167 * then the Macintosh is known as an RBV based Mac.
1168 *
1169 * By the way 2, the code currently maps in a bunch of
1170 * regions. But I'd like to cut that out. (And move most
1171 * of the mappings up into the kernel proper ... or only
1172 * map what's necessary.)
1173 */
1174
1175 #ifdef CONFIG_MAC
1176
1177 L(mmu_init_mac):
1178
1179 is_not_mac(L(mmu_init_not_mac))
1180
1181 putc 'F'
1182
1183 is_not_040_or_060(1f)
1184
1185 moveq #_PAGE_NOCACHE_S,%d3
1186 jbra 2f
1187 1:
1188 moveq #_PAGE_NOCACHE030,%d3
1189 2:
1190 /*
1191 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1192 * we simply map the 4MB that contains the videomem
1193 */
1194
1195 movel #VIDEOMEMMASK,%d0
1196 andl %pc@(L(mac_videobase)),%d0
1197
1198 mmu_map #VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1199 /* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1200 mmu_map_eq #0x40000000,#0x02000000,%d3
1201 /* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1202 mmu_map_eq #0x50000000,#0x03000000,%d3
1203 /* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1204 mmu_map_tt #1,#0xf8000000,#0x08000000,%d3
1205
1206 jbra L(mmu_init_done)
1207
1208 L(mmu_init_not_mac):
1209 #endif
1210
1211 #ifdef CONFIG_SUN3X
1212 is_not_sun3x(L(notsun3x))
1213
1214 /* oh, the pain.. We're gonna want the prom code after
1215 * starting the MMU, so we copy the mappings, translating
1216 * from 8k -> 4k pages as we go.
1217 */
1218
1219 /* copy maps from 0xfee00000 to 0xff000000 */
1220 movel #0xfee00000, %d0
1221 moveq #ROOT_INDEX_SHIFT, %d1
1222 lsrl %d1,%d0
1223 mmu_get_root_table_entry %d0
1224
1225 movel #0xfee00000, %d0
1226 moveq #PTR_INDEX_SHIFT, %d1
1227 lsrl %d1,%d0
1228 andl #PTR_TABLE_SIZE-1, %d0
1229 mmu_get_ptr_table_entry %a0,%d0
1230
1231 movel #0xfee00000, %d0
1232 moveq #PAGE_INDEX_SHIFT, %d1
1233 lsrl %d1,%d0
1234 andl #PAGE_TABLE_SIZE-1, %d0
1235 mmu_get_page_table_entry %a0,%d0
1236
1237 /* this is where the prom page table lives */
1238 movel 0xfefe00d4, %a1
1239 movel %a1@, %a1
1240
1241 movel #((0x200000 >> 13)-1), %d1
1242
1243 1:
1244 movel %a1@+, %d3
1245 movel %d3,%a0@+
1246 addl #0x1000,%d3
1247 movel %d3,%a0@+
1248
1249 dbra %d1,1b
1250
1251 /* setup tt1 for I/O */
1252 mmu_map_tt #1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1253 jbra L(mmu_init_done)
1254
1255 L(notsun3x):
1256 #endif
1257
1258 #ifdef CONFIG_APOLLO
1259 is_not_apollo(L(notapollo))
1260
1261 putc 'P'
1262 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1263
1264 L(notapollo):
1265 jbra L(mmu_init_done)
1266 #endif
1267
1268 L(mmu_init_done):
1269
1270 putc 'G'
1271 leds 0x8
1272
1273 /*
1274 * mmu_fixup
1275 *
1276 * On the 040 class machines, all pages that are used for the
1277 * mmu have to be fixed up. According to Motorola, pages holding mmu
1278 * tables should be non-cacheable on a '040 and write-through on a
1279 * '060. But analysis of the reasons for this, and practical
1280 * experience, showed that write-through also works on a '040.
1281 *
1282 * Allocated memory so far goes from kernel_end to memory_start that
1283 * is used for all kind of tables, for that the cache attributes
1284 * are now fixed.
1285 */
1286 L(mmu_fixup):
1287
1288 is_not_040_or_060(L(mmu_fixup_done))
1289
1290 #ifdef MMU_NOCACHE_KERNEL
1291 jbra L(mmu_fixup_done)
1292 #endif
1293
1294 /* first fix the page at the start of the kernel, that
1295 * contains also kernel_pg_dir.
1296 */
1297 movel %pc@(L(phys_kernel_start)),%d0
1298 subl #PAGE_OFFSET,%d0
1299 lea %pc@(_stext),%a0
1300 subl %d0,%a0
1301 mmu_fixup_page_mmu_cache %a0
1302
1303 movel %pc@(L(kernel_end)),%a0
1304 subl %d0,%a0
1305 movel %pc@(L(memory_start)),%a1
1306 subl %d0,%a1
1307 bra 2f
1308 1:
1309 mmu_fixup_page_mmu_cache %a0
1310 addw #PAGESIZE,%a0
1311 2:
1312 cmpl %a0,%a1
1313 jgt 1b
1314
1315 L(mmu_fixup_done):
1316
1317 #ifdef MMU_PRINT
1318 mmu_print
1319 #endif
1320
1321 /*
1322 * mmu_engage
1323 *
1324 * This chunk of code performs the gruesome task of engaging the MMU.
1325 * The reason its gruesome is because when the MMU becomes engaged it
1326 * maps logical addresses to physical addresses. The Program Counter
1327 * register is then passed through the MMU before the next instruction
1328 * is fetched (the instruction following the engage MMU instruction).
1329 * This may mean one of two things:
1330 * 1. The Program Counter falls within the logical address space of
1331 * the kernel of which there are two sub-possibilities:
1332 * A. The PC maps to the correct instruction (logical PC == physical
1333 * code location), or
1334 * B. The PC does not map through and the processor will read some
1335 * data (or instruction) which is not the logically next instr.
1336 * As you can imagine, A is good and B is bad.
1337 * Alternatively,
1338 * 2. The Program Counter does not map through the MMU. The processor
1339 * will take a Bus Error.
1340 * Clearly, 2 is bad.
1341 * It doesn't take a wiz kid to figure you want 1.A.
1342 * This code creates that possibility.
1343 * There are two possible 1.A. states (we now ignore the other above states):
1344 * A. The kernel is located at physical memory addressed the same as
1345 * the logical memory for the kernel, i.e., 0x01000.
1346 * B. The kernel is located some where else. e.g., 0x0400.0000
1347 *
1348 * Under some conditions the Macintosh can look like A or B.
1349 * [A friend and I once noted that Apple hardware engineers should be
1350 * wacked twice each day: once when they show up at work (as in, Whack!,
1351 * "This is for the screwy hardware we know you're going to design today."),
1352 * and also at the end of the day (as in, Whack! "I don't know what
1353 * you designed today, but I'm sure it wasn't good."). -- rst]
1354 *
1355 * This code works on the following premise:
1356 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1357 * then create a mapping for the kernel at logical 0x8000.0000 to
1358 * the physical location of the pc. And, create a transparent
1359 * translation register for the first 16 Meg. Then, after the MMU
1360 * is engaged, the PC can be moved up into the 0x8000.0000 range
1361 * and then the transparent translation can be turned off and then
1362 * the PC can jump to the correct logical location and it will be
1363 * home (finally). This is essentially the code that the Amiga used
1364 * to use. Now, it's generalized for all processors. Which means
1365 * that a fresh (but temporary) mapping has to be created. The mapping
1366 * is made in page 0 (an as of yet unused location -- except for the
1367 * stack!). This temporary mapping will only require 1 pointer table
1368 * and a single page table (it can map 256K).
1369 *
1370 * OK, alternatively, imagine that the Program Counter is not within
1371 * the first 16 Meg. Then, just use Transparent Translation registers
1372 * to do the right thing.
1373 *
1374 * Last, if _start is already at 0x01000, then there's nothing special
1375 * to do (in other words, in a degenerate case of the first case above,
1376 * do nothing).
1377 *
1378 * Let's do it.
1379 *
1380 *
1381 */
1382
1383 putc 'H'
1384
1385 mmu_engage
1386
1387 /*
1388 * After this point no new memory is allocated and
1389 * the start of available memory is stored in availmem.
1390 * (The bootmem allocator requires now the physicall address.)
1391 */
1392
1393 movel L(memory_start),availmem
1394
1395 #ifdef CONFIG_AMIGA
1396 is_not_amiga(1f)
1397 /* fixup the Amiga custom register location before printing */
1398 clrl L(custom)
1399 1:
1400 #endif
1401
1402 #ifdef CONFIG_ATARI
1403 is_not_atari(1f)
1404 /* fixup the Atari iobase register location before printing */
1405 movel #0xff000000,L(iobase)
1406 1:
1407 #endif
1408
1409 #ifdef CONFIG_MAC
1410 is_not_mac(1f)
1411 movel #~VIDEOMEMMASK,%d0
1412 andl L(mac_videobase),%d0
1413 addl #VIDEOMEMBASE,%d0
1414 movel %d0,L(mac_videobase)
1415 #if defined(CONSOLE)
1416 movel %pc@(L(phys_kernel_start)),%d0
1417 subl #PAGE_OFFSET,%d0
1418 subl %d0,L(console_font)
1419 subl %d0,L(console_font_data)
1420 #endif
1421 #ifdef SERIAL_DEBUG
1422 orl #0x50000000,L(mac_sccbase)
1423 #endif
1424 1:
1425 #endif
1426
1427 #ifdef CONFIG_HP300
1428 is_not_hp300(2f)
1429 /*
1430 * Fix up the iobase register to point to the new location of the LEDs.
1431 */
1432 movel #0xf0000000,L(iobase)
1433
1434 /*
1435 * Energise the FPU and caches.
1436 */
1437 is_040(1f)
1438 movel #0x60,0xf05f400c
1439 jbra 2f
1440
1441 /*
1442 * 040: slightly different, apparently.
1443 */
1444 1: movew #0,0xf05f400e
1445 movew #0x64,0xf05f400e
1446 2:
1447 #endif
1448
1449 #ifdef CONFIG_SUN3X
1450 is_not_sun3x(1f)
1451
1452 /* enable copro */
1453 oriw #0x4000,0x61000000
1454 1:
1455 #endif
1456
1457 #ifdef CONFIG_APOLLO
1458 is_not_apollo(1f)
1459
1460 /*
1461 * Fix up the iobase before printing
1462 */
1463 movel #0x80000000,L(iobase)
1464 1:
1465 #endif
1466
1467 putc 'I'
1468 leds 0x10
1469
1470 /*
1471 * Enable caches
1472 */
1473
1474 is_not_040_or_060(L(cache_not_680460))
1475
1476 L(cache680460):
1477 .chip 68040
1478 nop
1479 cpusha %bc
1480 nop
1481
1482 is_060(L(cache68060))
1483
1484 movel #CC6_ENABLE_D+CC6_ENABLE_I,%d0
1485 /* MMU stuff works in copyback mode now, so enable the cache */
1486 movec %d0,%cacr
1487 jra L(cache_done)
1488
1489 L(cache68060):
1490 movel #CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1491 /* MMU stuff works in copyback mode now, so enable the cache */
1492 movec %d0,%cacr
1493 /* enable superscalar dispatch in PCR */
1494 moveq #1,%d0
1495 .chip 68060
1496 movec %d0,%pcr
1497
1498 jbra L(cache_done)
1499 L(cache_not_680460):
1500 L(cache68030):
1501 .chip 68030
1502 movel #CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1503 movec %d0,%cacr
1504
1505 jra L(cache_done)
1506 .chip 68k
1507 L(cache_done):
1508
1509 putc 'J'
1510
1511 /*
1512 * Setup initial stack pointer
1513 */
1514 lea init_task,%curptr
1515 lea init_thread_union+THREAD_SIZE,%sp
1516
1517 putc 'K'
1518
1519 subl %a6,%a6 /* clear a6 for gdb */
1520
1521 /*
1522 * The new 64bit printf support requires an early exception initialization.
1523 */
1524 jbsr base_trap_init
1525
1526 /* jump to the kernel start */
1527
1528 putc '\n'
1529 leds 0x55
1530
1531 jbsr start_kernel
1532
1533 /*
1534 * Find a tag record in the bootinfo structure
1535 * The bootinfo structure is located right after the kernel bss
1536 * Returns: d0: size (-1 if not found)
1537 * a0: data pointer (end-of-records if not found)
1538 */
1539 func_start get_bi_record,%d1
1540
1541 movel ARG1,%d0
1542 lea %pc@(_end),%a0
1543 1: tstw %a0@(BIR_TAG)
1544 jeq 3f
1545 cmpw %a0@(BIR_TAG),%d0
1546 jeq 2f
1547 addw %a0@(BIR_SIZE),%a0
1548 jra 1b
1549 2: moveq #0,%d0
1550 movew %a0@(BIR_SIZE),%d0
1551 lea %a0@(BIR_DATA),%a0
1552 jra 4f
1553 3: moveq #-1,%d0
1554 lea %a0@(BIR_SIZE),%a0
1555 4:
1556 func_return get_bi_record
1557
1558
1559 /*
1560 * MMU Initialization Begins Here
1561 *
1562 * The structure of the MMU tables on the 68k machines
1563 * is thus:
1564 * Root Table
1565 * Logical addresses are translated through
1566 * a hierarchical translation mechanism where the high-order
1567 * seven bits of the logical address (LA) are used as an
1568 * index into the "root table." Each entry in the root
1569 * table has a bit which specifies if it's a valid pointer to a
1570 * pointer table. Each entry defines a 32KMeg range of memory.
1571 * If an entry is invalid then that logical range of 32M is
1572 * invalid and references to that range of memory (when the MMU
1573 * is enabled) will fault. If the entry is valid, then it does
1574 * one of two things. On 040/060 class machines, it points to
1575 * a pointer table which then describes more finely the memory
1576 * within that 32M range. On 020/030 class machines, a technique
1577 * called "early terminating descriptors" are used. This technique
1578 * allows an entire 32Meg to be described by a single entry in the
1579 * root table. Thus, this entry in the root table, contains the
1580 * physical address of the memory or I/O at the logical address
1581 * which the entry represents and it also contains the necessary
1582 * cache bits for this region.
1583 *
1584 * Pointer Tables
1585 * Per the Root Table, there will be one or more
1586 * pointer tables. Each pointer table defines a 32M range.
1587 * Not all of the 32M range need be defined. Again, the next
1588 * seven bits of the logical address are used an index into
1589 * the pointer table to point to page tables (if the pointer
1590 * is valid). There will undoubtedly be more than one
1591 * pointer table for the kernel because each pointer table
1592 * defines a range of only 32M. Valid pointer table entries
1593 * point to page tables, or are early terminating entries
1594 * themselves.
1595 *
1596 * Page Tables
1597 * Per the Pointer Tables, each page table entry points
1598 * to the physical page in memory that supports the logical
1599 * address that translates to the particular index.
1600 *
1601 * In short, the Logical Address gets translated as follows:
1602 * bits 31..26 - index into the Root Table
1603 * bits 25..18 - index into the Pointer Table
1604 * bits 17..12 - index into the Page Table
1605 * bits 11..0 - offset into a particular 4K page
1606 *
1607 * The algorithms which follows do one thing: they abstract
1608 * the MMU hardware. For example, there are three kinds of
1609 * cache settings that are relevant. Either, memory is
1610 * being mapped in which case it is either Kernel Code (or
1611 * the RamDisk) or it is MMU data. On the 030, the MMU data
1612 * option also describes the kernel. Or, I/O is being mapped
1613 * in which case it has its own kind of cache bits. There
1614 * are constants which abstract these notions from the code that
1615 * actually makes the call to map some range of memory.
1616 *
1617 *
1618 *
1619 */
1620
1621 #ifdef MMU_PRINT
1622 /*
1623 * mmu_print
1624 *
1625 * This algorithm will print out the current MMU mappings.
1626 *
1627 * Input:
1628 * %a5 points to the root table. Everything else is calculated
1629 * from this.
1630 */
1631
1632 #define mmu_next_valid 0
1633 #define mmu_start_logical 4
1634 #define mmu_next_logical 8
1635 #define mmu_start_physical 12
1636 #define mmu_next_physical 16
1637
1638 #define MMU_PRINT_INVALID -1
1639 #define MMU_PRINT_VALID 1
1640 #define MMU_PRINT_UNINITED 0
1641
1642 #define putZc(z,n) jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1643
1644 func_start mmu_print,%a0-%a6/%d0-%d7
1645
1646 movel %pc@(L(kernel_pgdir_ptr)),%a5
1647 lea %pc@(L(mmu_print_data)),%a0
1648 movel #MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1649
1650 is_not_040_or_060(mmu_030_print)
1651
1652 mmu_040_print:
1653 puts "\nMMU040\n"
1654 puts "rp:"
1655 putn %a5
1656 putc '\n'
1657 #if 0
1658 /*
1659 * The following #if/#endif block is a tight algorithm for dumping the 040
1660 * MMU Map in gory detail. It really isn't that practical unless the
1661 * MMU Map algorithm appears to go awry and you need to debug it at the
1662 * entry per entry level.
1663 */
1664 movel #ROOT_TABLE_SIZE,%d5
1665 #if 0
1666 movel %a5@+,%d7 | Burn an entry to skip the kernel mappings,
1667 subql #1,%d5 | they (might) work
1668 #endif
1669 1: tstl %d5
1670 jbeq mmu_print_done
1671 subq #1,%d5
1672 movel %a5@+,%d7
1673 btst #1,%d7
1674 jbeq 1b
1675
1676 2: putn %d7
1677 andil #0xFFFFFE00,%d7
1678 movel %d7,%a4
1679 movel #PTR_TABLE_SIZE,%d4
1680 putc ' '
1681 3: tstl %d4
1682 jbeq 11f
1683 subq #1,%d4
1684 movel %a4@+,%d7
1685 btst #1,%d7
1686 jbeq 3b
1687
1688 4: putn %d7
1689 andil #0xFFFFFF00,%d7
1690 movel %d7,%a3
1691 movel #PAGE_TABLE_SIZE,%d3
1692 5: movel #8,%d2
1693 6: tstl %d3
1694 jbeq 31f
1695 subq #1,%d3
1696 movel %a3@+,%d6
1697 btst #0,%d6
1698 jbeq 6b
1699 7: tstl %d2
1700 jbeq 8f
1701 subq #1,%d2
1702 putc ' '
1703 jbra 91f
1704 8: putc '\n'
1705 movel #8+1+8+1+1,%d2
1706 9: putc ' '
1707 dbra %d2,9b
1708 movel #7,%d2
1709 91: putn %d6
1710 jbra 6b
1711
1712 31: putc '\n'
1713 movel #8+1,%d2
1714 32: putc ' '
1715 dbra %d2,32b
1716 jbra 3b
1717
1718 11: putc '\n'
1719 jbra 1b
1720 #endif /* MMU 040 Dumping code that's gory and detailed */
1721
1722 lea %pc@(kernel_pg_dir),%a5
1723 movel %a5,%a0 /* a0 has the address of the root table ptr */
1724 movel #0x00000000,%a4 /* logical address */
1725 moveql #0,%d0
1726 40:
1727 /* Increment the logical address and preserve in d5 */
1728 movel %a4,%d5
1729 addil #PAGESIZE<<13,%d5
1730 movel %a0@+,%d6
1731 btst #1,%d6
1732 jbne 41f
1733 jbsr mmu_print_tuple_invalidate
1734 jbra 48f
1735 41:
1736 movel #0,%d1
1737 andil #0xfffffe00,%d6
1738 movel %d6,%a1
1739 42:
1740 movel %a4,%d5
1741 addil #PAGESIZE<<6,%d5
1742 movel %a1@+,%d6
1743 btst #1,%d6
1744 jbne 43f
1745 jbsr mmu_print_tuple_invalidate
1746 jbra 47f
1747 43:
1748 movel #0,%d2
1749 andil #0xffffff00,%d6
1750 movel %d6,%a2
1751 44:
1752 movel %a4,%d5
1753 addil #PAGESIZE,%d5
1754 movel %a2@+,%d6
1755 btst #0,%d6
1756 jbne 45f
1757 jbsr mmu_print_tuple_invalidate
1758 jbra 46f
1759 45:
1760 moveml %d0-%d1,%sp@-
1761 movel %a4,%d0
1762 movel %d6,%d1
1763 andil #0xfffff4e0,%d1
1764 lea %pc@(mmu_040_print_flags),%a6
1765 jbsr mmu_print_tuple
1766 moveml %sp@+,%d0-%d1
1767 46:
1768 movel %d5,%a4
1769 addq #1,%d2
1770 cmpib #64,%d2
1771 jbne 44b
1772 47:
1773 movel %d5,%a4
1774 addq #1,%d1
1775 cmpib #128,%d1
1776 jbne 42b
1777 48:
1778 movel %d5,%a4 /* move to the next logical address */
1779 addq #1,%d0
1780 cmpib #128,%d0
1781 jbne 40b
1782
1783 .chip 68040
1784 movec %dtt1,%d0
1785 movel %d0,%d1
1786 andiw #0x8000,%d1 /* is it valid ? */
1787 jbeq 1f /* No, bail out */
1788
1789 movel %d0,%d1
1790 andil #0xff000000,%d1 /* Get the address */
1791 putn %d1
1792 puts "=="
1793 putn %d1
1794
1795 movel %d0,%d6
1796 jbsr mmu_040_print_flags_tt
1797 1:
1798 movec %dtt0,%d0
1799 movel %d0,%d1
1800 andiw #0x8000,%d1 /* is it valid ? */
1801 jbeq 1f /* No, bail out */
1802
1803 movel %d0,%d1
1804 andil #0xff000000,%d1 /* Get the address */
1805 putn %d1
1806 puts "=="
1807 putn %d1
1808
1809 movel %d0,%d6
1810 jbsr mmu_040_print_flags_tt
1811 1:
1812 .chip 68k
1813
1814 jbra mmu_print_done
1815
1816 mmu_040_print_flags:
1817 btstl #10,%d6
1818 putZc(' ','G') /* global bit */
1819 btstl #7,%d6
1820 putZc(' ','S') /* supervisor bit */
1821 mmu_040_print_flags_tt:
1822 btstl #6,%d6
1823 jbne 3f
1824 putc 'C'
1825 btstl #5,%d6
1826 putZc('w','c') /* write through or copy-back */
1827 jbra 4f
1828 3:
1829 putc 'N'
1830 btstl #5,%d6
1831 putZc('s',' ') /* serialized non-cacheable, or non-cacheable */
1832 4:
1833 rts
1834
1835 mmu_030_print_flags:
1836 btstl #6,%d6
1837 putZc('C','I') /* write through or copy-back */
1838 rts
1839
1840 mmu_030_print:
1841 puts "\nMMU030\n"
1842 puts "\nrp:"
1843 putn %a5
1844 putc '\n'
1845 movel %a5,%d0
1846 andil #0xfffffff0,%d0
1847 movel %d0,%a0
1848 movel #0x00000000,%a4 /* logical address */
1849 movel #0,%d0
1850 30:
1851 movel %a4,%d5
1852 addil #PAGESIZE<<13,%d5
1853 movel %a0@+,%d6
1854 btst #1,%d6 /* is it a table ptr? */
1855 jbne 31f /* yes */
1856 btst #0,%d6 /* is it early terminating? */
1857 jbeq 1f /* no */
1858 jbsr mmu_030_print_helper
1859 jbra 38f
1860 1:
1861 jbsr mmu_print_tuple_invalidate
1862 jbra 38f
1863 31:
1864 movel #0,%d1
1865 andil #0xfffffff0,%d6
1866 movel %d6,%a1
1867 32:
1868 movel %a4,%d5
1869 addil #PAGESIZE<<6,%d5
1870 movel %a1@+,%d6
1871 btst #1,%d6 /* is it a table ptr? */
1872 jbne 33f /* yes */
1873 btst #0,%d6 /* is it a page descriptor? */
1874 jbeq 1f /* no */
1875 jbsr mmu_030_print_helper
1876 jbra 37f
1877 1:
1878 jbsr mmu_print_tuple_invalidate
1879 jbra 37f
1880 33:
1881 movel #0,%d2
1882 andil #0xfffffff0,%d6
1883 movel %d6,%a2
1884 34:
1885 movel %a4,%d5
1886 addil #PAGESIZE,%d5
1887 movel %a2@+,%d6
1888 btst #0,%d6
1889 jbne 35f
1890 jbsr mmu_print_tuple_invalidate
1891 jbra 36f
1892 35:
1893 jbsr mmu_030_print_helper
1894 36:
1895 movel %d5,%a4
1896 addq #1,%d2
1897 cmpib #64,%d2
1898 jbne 34b
1899 37:
1900 movel %d5,%a4
1901 addq #1,%d1
1902 cmpib #128,%d1
1903 jbne 32b
1904 38:
1905 movel %d5,%a4 /* move to the next logical address */
1906 addq #1,%d0
1907 cmpib #128,%d0
1908 jbne 30b
1909
1910 mmu_print_done:
1911 puts "\n"
1912
1913 func_return mmu_print
1914
1915
1916 mmu_030_print_helper:
1917 moveml %d0-%d1,%sp@-
1918 movel %a4,%d0
1919 movel %d6,%d1
1920 lea %pc@(mmu_030_print_flags),%a6
1921 jbsr mmu_print_tuple
1922 moveml %sp@+,%d0-%d1
1923 rts
1924
1925 mmu_print_tuple_invalidate:
1926 moveml %a0/%d7,%sp@-
1927
1928 lea %pc@(L(mmu_print_data)),%a0
1929 tstl %a0@(mmu_next_valid)
1930 jbmi mmu_print_tuple_invalidate_exit
1931
1932 movel #MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1933
1934 putn %a4
1935
1936 puts "##\n"
1937
1938 mmu_print_tuple_invalidate_exit:
1939 moveml %sp@+,%a0/%d7
1940 rts
1941
1942
1943 mmu_print_tuple:
1944 moveml %d0-%d7/%a0,%sp@-
1945
1946 lea %pc@(L(mmu_print_data)),%a0
1947
1948 tstl %a0@(mmu_next_valid)
1949 jble mmu_print_tuple_print
1950
1951 cmpl %a0@(mmu_next_physical),%d1
1952 jbeq mmu_print_tuple_increment
1953
1954 mmu_print_tuple_print:
1955 putn %d0
1956 puts "->"
1957 putn %d1
1958
1959 movel %d1,%d6
1960 jbsr %a6@
1961
1962 mmu_print_tuple_record:
1963 movel #MMU_PRINT_VALID,%a0@(mmu_next_valid)
1964
1965 movel %d1,%a0@(mmu_next_physical)
1966
1967 mmu_print_tuple_increment:
1968 movel %d5,%d7
1969 subl %a4,%d7
1970 addl %d7,%a0@(mmu_next_physical)
1971
1972 mmu_print_tuple_exit:
1973 moveml %sp@+,%d0-%d7/%a0
1974 rts
1975
1976 mmu_print_machine_cpu_types:
1977 puts "machine: "
1978
1979 is_not_amiga(1f)
1980 puts "amiga"
1981 jbra 9f
1982 1:
1983 is_not_atari(2f)
1984 puts "atari"
1985 jbra 9f
1986 2:
1987 is_not_mac(3f)
1988 puts "macintosh"
1989 jbra 9f
1990 3: puts "unknown"
1991 9: putc '\n'
1992
1993 puts "cputype: 0"
1994 is_not_060(1f)
1995 putc '6'
1996 jbra 9f
1997 1:
1998 is_not_040_or_060(2f)
1999 putc '4'
2000 jbra 9f
2001 2: putc '3'
2002 9: putc '0'
2003 putc '\n'
2004
2005 rts
2006 #endif /* MMU_PRINT */
2007
2008 /*
2009 * mmu_map_tt
2010 *
2011 * This is a specific function which works on all 680x0 machines.
2012 * On 030, 040 & 060 it will attempt to use Transparent Translation
2013 * registers (tt1).
2014 * On 020 it will call the standard mmu_map which will use early
2015 * terminating descriptors.
2016 */
2017 func_start mmu_map_tt,%d0/%d1/%a0,4
2018
2019 dputs "mmu_map_tt:"
2020 dputn ARG1
2021 dputn ARG2
2022 dputn ARG3
2023 dputn ARG4
2024 dputc '\n'
2025
2026 is_020(L(do_map))
2027
2028 /* Extract the highest bit set
2029 */
2030 bfffo ARG3{#0,#32},%d1
2031 cmpw #8,%d1
2032 jcc L(do_map)
2033
2034 /* And get the mask
2035 */
2036 moveq #-1,%d0
2037 lsrl %d1,%d0
2038 lsrl #1,%d0
2039
2040 /* Mask the address
2041 */
2042 movel %d0,%d1
2043 notl %d1
2044 andl ARG2,%d1
2045
2046 /* Generate the upper 16bit of the tt register
2047 */
2048 lsrl #8,%d0
2049 orl %d0,%d1
2050 clrw %d1
2051
2052 is_040_or_060(L(mmu_map_tt_040))
2053
2054 /* set 030 specific bits (read/write access for supervisor mode
2055 * (highest function code set, lower two bits masked))
2056 */
2057 orw #TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2058 movel ARG4,%d0
2059 btst #6,%d0
2060 jeq 1f
2061 orw #TTR_CI,%d1
2062
2063 1: lea STACK,%a0
2064 dputn %d1
2065 movel %d1,%a0@
2066 .chip 68030
2067 tstl ARG1
2068 jne 1f
2069 pmove %a0@,%tt0
2070 jra 2f
2071 1: pmove %a0@,%tt1
2072 2: .chip 68k
2073 jra L(mmu_map_tt_done)
2074
2075 /* set 040 specific bits
2076 */
2077 L(mmu_map_tt_040):
2078 orw #TTR_ENABLE+TTR_KERNELMODE,%d1
2079 orl ARG4,%d1
2080 dputn %d1
2081
2082 .chip 68040
2083 tstl ARG1
2084 jne 1f
2085 movec %d1,%itt0
2086 movec %d1,%dtt0
2087 jra 2f
2088 1: movec %d1,%itt1
2089 movec %d1,%dtt1
2090 2: .chip 68k
2091
2092 jra L(mmu_map_tt_done)
2093
2094 L(do_map):
2095 mmu_map_eq ARG2,ARG3,ARG4
2096
2097 L(mmu_map_tt_done):
2098
2099 func_return mmu_map_tt
2100
2101 /*
2102 * mmu_map
2103 *
2104 * This routine will map a range of memory using a pointer
2105 * table and allocating the pages on the fly from the kernel.
2106 * The pointer table does not have to be already linked into
2107 * the root table, this routine will do that if necessary.
2108 *
2109 * NOTE
2110 * This routine will assert failure and use the serial_putc
2111 * routines in the case of a run-time error. For example,
2112 * if the address is already mapped.
2113 *
2114 * NOTE-2
2115 * This routine will use early terminating descriptors
2116 * where possible for the 68020+68851 and 68030 type
2117 * processors.
2118 */
2119 func_start mmu_map,%d0-%d4/%a0-%a4
2120
2121 dputs "\nmmu_map:"
2122 dputn ARG1
2123 dputn ARG2
2124 dputn ARG3
2125 dputn ARG4
2126 dputc '\n'
2127
2128 /* Get logical address and round it down to 256KB
2129 */
2130 movel ARG1,%d0
2131 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2132 movel %d0,%a3
2133
2134 /* Get the end address
2135 */
2136 movel ARG1,%a4
2137 addl ARG3,%a4
2138 subql #1,%a4
2139
2140 /* Get physical address and round it down to 256KB
2141 */
2142 movel ARG2,%d0
2143 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2144 movel %d0,%a2
2145
2146 /* Add page attributes to the physical address
2147 */
2148 movel ARG4,%d0
2149 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2150 addw %d0,%a2
2151
2152 dputn %a2
2153 dputn %a3
2154 dputn %a4
2155
2156 is_not_040_or_060(L(mmu_map_030))
2157
2158 addw #_PAGE_GLOBAL040,%a2
2159 /*
2160 * MMU 040 & 060 Support
2161 *
2162 * The MMU usage for the 040 and 060 is different enough from
2163 * the 030 and 68851 that there is separate code. This comment
2164 * block describes the data structures and algorithms built by
2165 * this code.
2166 *
2167 * The 040 does not support early terminating descriptors, as
2168 * the 030 does. Therefore, a third level of table is needed
2169 * for the 040, and that would be the page table. In Linux,
2170 * page tables are allocated directly from the memory above the
2171 * kernel.
2172 *
2173 */
2174
2175 L(mmu_map_040):
2176 /* Calculate the offset into the root table
2177 */
2178 movel %a3,%d0
2179 moveq #ROOT_INDEX_SHIFT,%d1
2180 lsrl %d1,%d0
2181 mmu_get_root_table_entry %d0
2182
2183 /* Calculate the offset into the pointer table
2184 */
2185 movel %a3,%d0
2186 moveq #PTR_INDEX_SHIFT,%d1
2187 lsrl %d1,%d0
2188 andl #PTR_TABLE_SIZE-1,%d0
2189 mmu_get_ptr_table_entry %a0,%d0
2190
2191 /* Calculate the offset into the page table
2192 */
2193 movel %a3,%d0
2194 moveq #PAGE_INDEX_SHIFT,%d1
2195 lsrl %d1,%d0
2196 andl #PAGE_TABLE_SIZE-1,%d0
2197 mmu_get_page_table_entry %a0,%d0
2198
2199 /* The page table entry must not no be busy
2200 */
2201 tstl %a0@
2202 jne L(mmu_map_error)
2203
2204 /* Do the mapping and advance the pointers
2205 */
2206 movel %a2,%a0@
2207 2:
2208 addw #PAGESIZE,%a2
2209 addw #PAGESIZE,%a3
2210
2211 /* Ready with mapping?
2212 */
2213 lea %a3@(-1),%a0
2214 cmpl %a0,%a4
2215 jhi L(mmu_map_040)
2216 jra L(mmu_map_done)
2217
2218 L(mmu_map_030):
2219 /* Calculate the offset into the root table
2220 */
2221 movel %a3,%d0
2222 moveq #ROOT_INDEX_SHIFT,%d1
2223 lsrl %d1,%d0
2224 mmu_get_root_table_entry %d0
2225
2226 /* Check if logical address 32MB aligned,
2227 * so we can try to map it once
2228 */
2229 movel %a3,%d0
2230 andl #(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2231 jne 1f
2232
2233 /* Is there enough to map for 32MB at once
2234 */
2235 lea %a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2236 cmpl %a1,%a4
2237 jcs 1f
2238
2239 addql #1,%a1
2240
2241 /* The root table entry must not no be busy
2242 */
2243 tstl %a0@
2244 jne L(mmu_map_error)
2245
2246 /* Do the mapping and advance the pointers
2247 */
2248 dputs "early term1"
2249 dputn %a2
2250 dputn %a3
2251 dputn %a1
2252 dputc '\n'
2253 movel %a2,%a0@
2254
2255 movel %a1,%a3
2256 lea %a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2257 jra L(mmu_mapnext_030)
2258 1:
2259 /* Calculate the offset into the pointer table
2260 */
2261 movel %a3,%d0
2262 moveq #PTR_INDEX_SHIFT,%d1
2263 lsrl %d1,%d0
2264 andl #PTR_TABLE_SIZE-1,%d0
2265 mmu_get_ptr_table_entry %a0,%d0
2266
2267 /* The pointer table entry must not no be busy
2268 */
2269 tstl %a0@
2270 jne L(mmu_map_error)
2271
2272 /* Do the mapping and advance the pointers
2273 */
2274 dputs "early term2"
2275 dputn %a2
2276 dputn %a3
2277 dputc '\n'
2278 movel %a2,%a0@
2279
2280 addl #PAGE_TABLE_SIZE*PAGESIZE,%a2
2281 addl #PAGE_TABLE_SIZE*PAGESIZE,%a3
2282
2283 L(mmu_mapnext_030):
2284 /* Ready with mapping?
2285 */
2286 lea %a3@(-1),%a0
2287 cmpl %a0,%a4
2288 jhi L(mmu_map_030)
2289 jra L(mmu_map_done)
2290
2291 L(mmu_map_error):
2292
2293 dputs "mmu_map error:"
2294 dputn %a2
2295 dputn %a3
2296 dputc '\n'
2297
2298 L(mmu_map_done):
2299
2300 func_return mmu_map
2301
2302 /*
2303 * mmu_fixup
2304 *
2305 * On the 040 class machines, all pages that are used for the
2306 * mmu have to be fixed up.
2307 */
2308
2309 func_start mmu_fixup_page_mmu_cache,%d0/%a0
2310
2311 dputs "mmu_fixup_page_mmu_cache"
2312 dputn ARG1
2313
2314 /* Calculate the offset into the root table
2315 */
2316 movel ARG1,%d0
2317 moveq #ROOT_INDEX_SHIFT,%d1
2318 lsrl %d1,%d0
2319 mmu_get_root_table_entry %d0
2320
2321 /* Calculate the offset into the pointer table
2322 */
2323 movel ARG1,%d0
2324 moveq #PTR_INDEX_SHIFT,%d1
2325 lsrl %d1,%d0
2326 andl #PTR_TABLE_SIZE-1,%d0
2327 mmu_get_ptr_table_entry %a0,%d0
2328
2329 /* Calculate the offset into the page table
2330 */
2331 movel ARG1,%d0
2332 moveq #PAGE_INDEX_SHIFT,%d1
2333 lsrl %d1,%d0
2334 andl #PAGE_TABLE_SIZE-1,%d0
2335 mmu_get_page_table_entry %a0,%d0
2336
2337 movel %a0@,%d0
2338 andil #_CACHEMASK040,%d0
2339 orl %pc@(m68k_pgtable_cachemode),%d0
2340 movel %d0,%a0@
2341
2342 dputc '\n'
2343
2344 func_return mmu_fixup_page_mmu_cache
2345
2346 /*
2347 * mmu_temp_map
2348 *
2349 * create a temporary mapping to enable the mmu,
2350 * this we don't need any transparation translation tricks.
2351 */
2352
2353 func_start mmu_temp_map,%d0/%d1/%a0/%a1
2354
2355 dputs "mmu_temp_map"
2356 dputn ARG1
2357 dputn ARG2
2358 dputc '\n'
2359
2360 lea %pc@(L(temp_mmap_mem)),%a1
2361
2362 /* Calculate the offset in the root table
2363 */
2364 movel ARG2,%d0
2365 moveq #ROOT_INDEX_SHIFT,%d1
2366 lsrl %d1,%d0
2367 mmu_get_root_table_entry %d0
2368
2369 /* Check if the table is temporary allocated, so we have to reuse it
2370 */
2371 movel %a0@,%d0
2372 cmpl %pc@(L(memory_start)),%d0
2373 jcc 1f
2374
2375 /* Temporary allocate a ptr table and insert it into the root table
2376 */
2377 movel %a1@,%d0
2378 addl #PTR_TABLE_SIZE*4,%a1@
2379 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2380 movel %d0,%a0@
2381 dputs " (new)"
2382 1:
2383 dputn %d0
2384 /* Mask the root table entry for the ptr table
2385 */
2386 andw #-ROOT_TABLE_SIZE,%d0
2387 movel %d0,%a0
2388
2389 /* Calculate the offset into the pointer table
2390 */
2391 movel ARG2,%d0
2392 moveq #PTR_INDEX_SHIFT,%d1
2393 lsrl %d1,%d0
2394 andl #PTR_TABLE_SIZE-1,%d0
2395 lea %a0@(%d0*4),%a0
2396 dputn %a0
2397
2398 /* Check if a temporary page table is already allocated
2399 */
2400 movel %a0@,%d0
2401 jne 1f
2402
2403 /* Temporary allocate a page table and insert it into the ptr table
2404 */
2405 movel %a1@,%d0
2406 /* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2407 alignment restriction for pointer tables on the '0[46]0. */
2408 addl #512,%a1@
2409 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2410 movel %d0,%a0@
2411 dputs " (new)"
2412 1:
2413 dputn %d0
2414 /* Mask the ptr table entry for the page table
2415 */
2416 andw #-PTR_TABLE_SIZE,%d0
2417 movel %d0,%a0
2418
2419 /* Calculate the offset into the page table
2420 */
2421 movel ARG2,%d0
2422 moveq #PAGE_INDEX_SHIFT,%d1
2423 lsrl %d1,%d0
2424 andl #PAGE_TABLE_SIZE-1,%d0
2425 lea %a0@(%d0*4),%a0
2426 dputn %a0
2427
2428 /* Insert the address into the page table
2429 */
2430 movel ARG1,%d0
2431 andw #-PAGESIZE,%d0
2432 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2433 movel %d0,%a0@
2434 dputn %d0
2435
2436 dputc '\n'
2437
2438 func_return mmu_temp_map
2439
2440 func_start mmu_engage,%d0-%d2/%a0-%a3
2441
2442 moveq #ROOT_TABLE_SIZE-1,%d0
2443 /* Temporarily use a different root table. */
2444 lea %pc@(L(kernel_pgdir_ptr)),%a0
2445 movel %a0@,%a2
2446 movel %pc@(L(memory_start)),%a1
2447 movel %a1,%a0@
2448 movel %a2,%a0
2449 1:
2450 movel %a0@+,%a1@+
2451 dbra %d0,1b
2452
2453 lea %pc@(L(temp_mmap_mem)),%a0
2454 movel %a1,%a0@
2455
2456 movew #PAGESIZE-1,%d0
2457 1:
2458 clrl %a1@+
2459 dbra %d0,1b
2460
2461 lea %pc@(1b),%a0
2462 movel #1b,%a1
2463 /* Skip temp mappings if phys == virt */
2464 cmpl %a0,%a1
2465 jeq 1f
2466
2467 mmu_temp_map %a0,%a0
2468 mmu_temp_map %a0,%a1
2469
2470 addw #PAGESIZE,%a0
2471 addw #PAGESIZE,%a1
2472 mmu_temp_map %a0,%a0
2473 mmu_temp_map %a0,%a1
2474 1:
2475 movel %pc@(L(memory_start)),%a3
2476 movel %pc@(L(phys_kernel_start)),%d2
2477
2478 is_not_040_or_060(L(mmu_engage_030))
2479
2480 L(mmu_engage_040):
2481 .chip 68040
2482 nop
2483 cinva %bc
2484 nop
2485 pflusha
2486 nop
2487 movec %a3,%srp
2488 movel #TC_ENABLE+TC_PAGE4K,%d0
2489 movec %d0,%tc /* enable the MMU */
2490 jmp 1f:l
2491 1: nop
2492 movec %a2,%srp
2493 nop
2494 cinva %bc
2495 nop
2496 pflusha
2497 .chip 68k
2498 jra L(mmu_engage_cleanup)
2499
2500 L(mmu_engage_030_temp):
2501 .space 12
2502 L(mmu_engage_030):
2503 .chip 68030
2504 lea %pc@(L(mmu_engage_030_temp)),%a0
2505 movel #0x80000002,%a0@
2506 movel %a3,%a0@(4)
2507 movel #0x0808,%d0
2508 movec %d0,%cacr
2509 pmove %a0@,%srp
2510 pflusha
2511 /*
2512 * enable,super root enable,4096 byte pages,7 bit root index,
2513 * 7 bit pointer index, 6 bit page table index.
2514 */
2515 movel #0x82c07760,%a0@(8)
2516 pmove %a0@(8),%tc /* enable the MMU */
2517 jmp 1f:l
2518 1: movel %a2,%a0@(4)
2519 movel #0x0808,%d0
2520 movec %d0,%cacr
2521 pmove %a0@,%srp
2522 pflusha
2523 .chip 68k
2524
2525 L(mmu_engage_cleanup):
2526 subl #PAGE_OFFSET,%d2
2527 subl %d2,%a2
2528 movel %a2,L(kernel_pgdir_ptr)
2529 subl %d2,%fp
2530 subl %d2,%sp
2531 subl %d2,ARG0
2532
2533 func_return mmu_engage
2534
2535 func_start mmu_get_root_table_entry,%d0/%a1
2536
2537 #if 0
2538 dputs "mmu_get_root_table_entry:"
2539 dputn ARG1
2540 dputs " ="
2541 #endif
2542
2543 movel %pc@(L(kernel_pgdir_ptr)),%a0
2544 tstl %a0
2545 jne 2f
2546
2547 dputs "\nmmu_init:"
2548
2549 /* Find the start of free memory, get_bi_record does this for us,
2550 * as the bootinfo structure is located directly behind the kernel
2551 * and and we simply search for the last entry.
2552 */
2553 get_bi_record BI_LAST
2554 addw #PAGESIZE-1,%a0
2555 movel %a0,%d0
2556 andw #-PAGESIZE,%d0
2557
2558 dputn %d0
2559
2560 lea %pc@(L(memory_start)),%a0
2561 movel %d0,%a0@
2562 lea %pc@(L(kernel_end)),%a0
2563 movel %d0,%a0@
2564
2565 /* we have to return the first page at _stext since the init code
2566 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2567 * page is used for further ptr tables in get_ptr_table.
2568 */
2569 lea %pc@(_stext),%a0
2570 lea %pc@(L(mmu_cached_pointer_tables)),%a1
2571 movel %a0,%a1@
2572 addl #ROOT_TABLE_SIZE*4,%a1@
2573
2574 lea %pc@(L(mmu_num_pointer_tables)),%a1
2575 addql #1,%a1@
2576
2577 /* clear the page
2578 */
2579 movel %a0,%a1
2580 movew #PAGESIZE/4-1,%d0
2581 1:
2582 clrl %a1@+
2583 dbra %d0,1b
2584
2585 lea %pc@(L(kernel_pgdir_ptr)),%a1
2586 movel %a0,%a1@
2587
2588 dputn %a0
2589 dputc '\n'
2590 2:
2591 movel ARG1,%d0
2592 lea %a0@(%d0*4),%a0
2593
2594 #if 0
2595 dputn %a0
2596 dputc '\n'
2597 #endif
2598
2599 func_return mmu_get_root_table_entry
2600
2601
2602
2603 func_start mmu_get_ptr_table_entry,%d0/%a1
2604
2605 #if 0
2606 dputs "mmu_get_ptr_table_entry:"
2607 dputn ARG1
2608 dputn ARG2
2609 dputs " ="
2610 #endif
2611
2612 movel ARG1,%a0
2613 movel %a0@,%d0
2614 jne 2f
2615
2616 /* Keep track of the number of pointer tables we use
2617 */
2618 dputs "\nmmu_get_new_ptr_table:"
2619 lea %pc@(L(mmu_num_pointer_tables)),%a0
2620 movel %a0@,%d0
2621 addql #1,%a0@
2622
2623 /* See if there is a free pointer table in our cache of pointer tables
2624 */
2625 lea %pc@(L(mmu_cached_pointer_tables)),%a1
2626 andw #7,%d0
2627 jne 1f
2628
2629 /* Get a new pointer table page from above the kernel memory
2630 */
2631 get_new_page
2632 movel %a0,%a1@
2633 1:
2634 /* There is an unused pointer table in our cache... use it
2635 */
2636 movel %a1@,%d0
2637 addl #PTR_TABLE_SIZE*4,%a1@
2638
2639 dputn %d0
2640 dputc '\n'
2641
2642 /* Insert the new pointer table into the root table
2643 */
2644 movel ARG1,%a0
2645 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2646 movel %d0,%a0@
2647 2:
2648 /* Extract the pointer table entry
2649 */
2650 andw #-PTR_TABLE_SIZE,%d0
2651 movel %d0,%a0
2652 movel ARG2,%d0
2653 lea %a0@(%d0*4),%a0
2654
2655 #if 0
2656 dputn %a0
2657 dputc '\n'
2658 #endif
2659
2660 func_return mmu_get_ptr_table_entry
2661
2662
2663 func_start mmu_get_page_table_entry,%d0/%a1
2664
2665 #if 0
2666 dputs "mmu_get_page_table_entry:"
2667 dputn ARG1
2668 dputn ARG2
2669 dputs " ="
2670 #endif
2671
2672 movel ARG1,%a0
2673 movel %a0@,%d0
2674 jne 2f
2675
2676 /* If the page table entry doesn't exist, we allocate a complete new
2677 * page and use it as one continues big page table which can cover
2678 * 4MB of memory, nearly almost all mappings have that alignment.
2679 */
2680 get_new_page
2681 addw #_PAGE_TABLE+_PAGE_ACCESSED,%a0
2682
2683 /* align pointer table entry for a page of page tables
2684 */
2685 movel ARG1,%d0
2686 andw #-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2687 movel %d0,%a1
2688
2689 /* Insert the page tables into the pointer entries
2690 */
2691 moveq #PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
2692 1:
2693 movel %a0,%a1@+
2694 lea %a0@(PAGE_TABLE_SIZE*4),%a0
2695 dbra %d0,1b
2696
2697 /* Now we can get the initialized pointer table entry
2698 */
2699 movel ARG1,%a0
2700 movel %a0@,%d0
2701 2:
2702 /* Extract the page table entry
2703 */
2704 andw #-PAGE_TABLE_SIZE,%d0
2705 movel %d0,%a0
2706 movel ARG2,%d0
2707 lea %a0@(%d0*4),%a0
2708
2709 #if 0
2710 dputn %a0
2711 dputc '\n'
2712 #endif
2713
2714 func_return mmu_get_page_table_entry
2715
2716 /*
2717 * get_new_page
2718 *
2719 * Return a new page from the memory start and clear it.
2720 */
2721 func_start get_new_page,%d0/%a1
2722
2723 dputs "\nget_new_page:"
2724
2725 /* allocate the page and adjust memory_start
2726 */
2727 lea %pc@(L(memory_start)),%a0
2728 movel %a0@,%a1
2729 addl #PAGESIZE,%a0@
2730
2731 /* clear the new page
2732 */
2733 movel %a1,%a0
2734 movew #PAGESIZE/4-1,%d0
2735 1:
2736 clrl %a1@+
2737 dbra %d0,1b
2738
2739 dputn %a0
2740 dputc '\n'
2741
2742 func_return get_new_page
2743
2744
2745
2746 /*
2747 * Debug output support
2748 * Atarians have a choice between the parallel port, the serial port
2749 * from the MFP or a serial port of the SCC
2750 */
2751
2752 #ifdef CONFIG_MAC
2753
2754 L(scc_initable_mac):
2755 .byte 9,12 /* Reset */
2756 .byte 4,0x44 /* x16, 1 stopbit, no parity */
2757 .byte 3,0xc0 /* receiver: 8 bpc */
2758 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2759 .byte 9,0 /* no interrupts */
2760 .byte 10,0 /* NRZ */
2761 .byte 11,0x50 /* use baud rate generator */
2762 .byte 12,1,13,0 /* 38400 baud */
2763 .byte 14,1 /* Baud rate generator enable */
2764 .byte 3,0xc1 /* enable receiver */
2765 .byte 5,0xea /* enable transmitter */
2766 .byte -1
2767 .even
2768 #endif
2769
2770 #ifdef CONFIG_ATARI
2771 /* #define USE_PRINTER */
2772 /* #define USE_SCC_B */
2773 /* #define USE_SCC_A */
2774 #define USE_MFP
2775
2776 #if defined(USE_SCC_A) || defined(USE_SCC_B)
2777 #define USE_SCC
2778 /* Initialisation table for SCC */
2779 L(scc_initable):
2780 .byte 9,12 /* Reset */
2781 .byte 4,0x44 /* x16, 1 stopbit, no parity */
2782 .byte 3,0xc0 /* receiver: 8 bpc */
2783 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2784 .byte 9,0 /* no interrupts */
2785 .byte 10,0 /* NRZ */
2786 .byte 11,0x50 /* use baud rate generator */
2787 .byte 12,24,13,0 /* 9600 baud */
2788 .byte 14,2,14,3 /* use master clock for BRG, enable */
2789 .byte 3,0xc1 /* enable receiver */
2790 .byte 5,0xea /* enable transmitter */
2791 .byte -1
2792 .even
2793 #endif
2794
2795 #ifdef USE_PRINTER
2796
2797 LPSG_SELECT = 0xff8800
2798 LPSG_READ = 0xff8800
2799 LPSG_WRITE = 0xff8802
2800 LPSG_IO_A = 14
2801 LPSG_IO_B = 15
2802 LPSG_CONTROL = 7
2803 LSTMFP_GPIP = 0xfffa01
2804 LSTMFP_DDR = 0xfffa05
2805 LSTMFP_IERB = 0xfffa09
2806
2807 #elif defined(USE_SCC_B)
2808
2809 LSCC_CTRL = 0xff8c85
2810 LSCC_DATA = 0xff8c87
2811
2812 #elif defined(USE_SCC_A)
2813
2814 LSCC_CTRL = 0xff8c81
2815 LSCC_DATA = 0xff8c83
2816
2817 #elif defined(USE_MFP)
2818
2819 LMFP_UCR = 0xfffa29
2820 LMFP_TDCDR = 0xfffa1d
2821 LMFP_TDDR = 0xfffa25
2822 LMFP_TSR = 0xfffa2d
2823 LMFP_UDR = 0xfffa2f
2824
2825 #endif
2826 #endif /* CONFIG_ATARI */
2827
2828 /*
2829 * Serial port output support.
2830 */
2831
2832 /*
2833 * Initialize serial port hardware for 9600/8/1
2834 */
2835 func_start serial_init,%d0/%d1/%a0/%a1
2836 /*
2837 * Some of the register usage that follows
2838 * CONFIG_AMIGA
2839 * a0 = pointer to boot info record
2840 * d0 = boot info offset
2841 * CONFIG_ATARI
2842 * a0 = address of SCC
2843 * a1 = Liobase address/address of scc_initable
2844 * d0 = init data for serial port
2845 * CONFIG_MAC
2846 * a0 = address of SCC
2847 * a1 = address of scc_initable_mac
2848 * d0 = init data for serial port
2849 */
2850
2851 #ifdef CONFIG_AMIGA
2852 #define SERIAL_DTR 7
2853 #define SERIAL_CNTRL CIABBASE+C_PRA
2854
2855 is_not_amiga(1f)
2856 lea %pc@(L(custom)),%a0
2857 movel #-ZTWOBASE,%a0@
2858 bclr #SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2859 get_bi_record BI_AMIGA_SERPER
2860 movew %a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2861 | movew #61,CUSTOMBASE+C_SERPER-ZTWOBASE
2862 1:
2863 #endif
2864 #ifdef CONFIG_ATARI
2865 is_not_atari(4f)
2866 movel %pc@(L(iobase)),%a1
2867 #if defined(USE_PRINTER)
2868 bclr #0,%a1@(LSTMFP_IERB)
2869 bclr #0,%a1@(LSTMFP_DDR)
2870 moveb #LPSG_CONTROL,%a1@(LPSG_SELECT)
2871 moveb #0xff,%a1@(LPSG_WRITE)
2872 moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
2873 clrb %a1@(LPSG_WRITE)
2874 moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
2875 moveb %a1@(LPSG_READ),%d0
2876 bset #5,%d0
2877 moveb %d0,%a1@(LPSG_WRITE)
2878 #elif defined(USE_SCC)
2879 lea %a1@(LSCC_CTRL),%a0
2880 lea %pc@(L(scc_initable)),%a1
2881 2: moveb %a1@+,%d0
2882 jmi 3f
2883 moveb %d0,%a0@
2884 moveb %a1@+,%a0@
2885 jra 2b
2886 3: clrb %a0@
2887 #elif defined(USE_MFP)
2888 bclr #1,%a1@(LMFP_TSR)
2889 moveb #0x88,%a1@(LMFP_UCR)
2890 andb #0x70,%a1@(LMFP_TDCDR)
2891 moveb #2,%a1@(LMFP_TDDR)
2892 orb #1,%a1@(LMFP_TDCDR)
2893 bset #1,%a1@(LMFP_TSR)
2894 #endif
2895 jra L(serial_init_done)
2896 4:
2897 #endif
2898 #ifdef CONFIG_MAC
2899 is_not_mac(L(serial_init_not_mac))
2900
2901 #ifdef SERIAL_DEBUG
2902 /* You may define either or both of these. */
2903 #define MAC_USE_SCC_A /* Modem port */
2904 #define MAC_USE_SCC_B /* Printer port */
2905
2906 #define mac_scc_cha_b_ctrl_offset 0x0
2907 #define mac_scc_cha_a_ctrl_offset 0x2
2908 #define mac_scc_cha_b_data_offset 0x4
2909 #define mac_scc_cha_a_data_offset 0x6
2910
2911 #ifdef MAC_USE_SCC_A
2912 /* Initialize channel A */
2913 movel %pc@(L(mac_sccbase)),%a0
2914 lea %pc@(L(scc_initable_mac)),%a1
2915 5: moveb %a1@+,%d0
2916 jmi 6f
2917 moveb %d0,%a0@(mac_scc_cha_a_ctrl_offset)
2918 moveb %a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2919 jra 5b
2920 6:
2921 #endif /* MAC_USE_SCC_A */
2922
2923 #ifdef MAC_USE_SCC_B
2924 /* Initialize channel B */
2925 #ifndef MAC_USE_SCC_A /* Load mac_sccbase only if needed */
2926 movel %pc@(L(mac_sccbase)),%a0
2927 #endif /* MAC_USE_SCC_A */
2928 lea %pc@(L(scc_initable_mac)),%a1
2929 7: moveb %a1@+,%d0
2930 jmi 8f
2931 moveb %d0,%a0@(mac_scc_cha_b_ctrl_offset)
2932 moveb %a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2933 jra 7b
2934 8:
2935 #endif /* MAC_USE_SCC_B */
2936 #endif /* SERIAL_DEBUG */
2937
2938 jra L(serial_init_done)
2939 L(serial_init_not_mac):
2940 #endif /* CONFIG_MAC */
2941
2942 #ifdef CONFIG_Q40
2943 is_not_q40(2f)
2944 /* debug output goes into SRAM, so we don't do it unless requested
2945 - check for '%LX$' signature in SRAM */
2946 lea %pc@(q40_mem_cptr),%a1
2947 move.l #0xff020010,%a1@ /* must be inited - also used by debug=mem */
2948 move.l #0xff020000,%a1
2949 cmp.b #'%',%a1@
2950 bne 2f /*nodbg*/
2951 addq.w #4,%a1
2952 cmp.b #'L',%a1@
2953 bne 2f /*nodbg*/
2954 addq.w #4,%a1
2955 cmp.b #'X',%a1@
2956 bne 2f /*nodbg*/
2957 addq.w #4,%a1
2958 cmp.b #'$',%a1@
2959 bne 2f /*nodbg*/
2960 /* signature OK */
2961 lea %pc@(L(q40_do_debug)),%a1
2962 tas %a1@
2963 /*nodbg: q40_do_debug is 0 by default*/
2964 2:
2965 #endif
2966
2967 #ifdef CONFIG_APOLLO
2968 /* We count on the PROM initializing SIO1 */
2969 #endif
2970
2971 #ifdef CONFIG_HP300
2972 /* We count on the boot loader initialising the UART */
2973 #endif
2974
2975 L(serial_init_done):
2976 func_return serial_init
2977
2978 /*
2979 * Output character on serial port.
2980 */
2981 func_start serial_putc,%d0/%d1/%a0/%a1
2982
2983 movel ARG1,%d0
2984 cmpib #'\n',%d0
2985 jbne 1f
2986
2987 /* A little safe recursion is good for the soul */
2988 serial_putc #'\r'
2989 1:
2990
2991 #ifdef CONFIG_AMIGA
2992 is_not_amiga(2f)
2993 andw #0x00ff,%d0
2994 oriw #0x0100,%d0
2995 movel %pc@(L(custom)),%a0
2996 movew %d0,%a0@(CUSTOMBASE+C_SERDAT)
2997 1: movew %a0@(CUSTOMBASE+C_SERDATR),%d0
2998 andw #0x2000,%d0
2999 jeq 1b
3000 jra L(serial_putc_done)
3001 2:
3002 #endif
3003
3004 #ifdef CONFIG_MAC
3005 is_not_mac(5f)
3006
3007 #ifdef SERIAL_DEBUG
3008
3009 #ifdef MAC_USE_SCC_A
3010 movel %pc@(L(mac_sccbase)),%a1
3011 3: btst #2,%a1@(mac_scc_cha_a_ctrl_offset)
3012 jeq 3b
3013 moveb %d0,%a1@(mac_scc_cha_a_data_offset)
3014 #endif /* MAC_USE_SCC_A */
3015
3016 #ifdef MAC_USE_SCC_B
3017 #ifndef MAC_USE_SCC_A /* Load mac_sccbase only if needed */
3018 movel %pc@(L(mac_sccbase)),%a1
3019 #endif /* MAC_USE_SCC_A */
3020 4: btst #2,%a1@(mac_scc_cha_b_ctrl_offset)
3021 jeq 4b
3022 moveb %d0,%a1@(mac_scc_cha_b_data_offset)
3023 #endif /* MAC_USE_SCC_B */
3024
3025 #endif /* SERIAL_DEBUG */
3026
3027 jra L(serial_putc_done)
3028 5:
3029 #endif /* CONFIG_MAC */
3030
3031 #ifdef CONFIG_ATARI
3032 is_not_atari(4f)
3033 movel %pc@(L(iobase)),%a1
3034 #if defined(USE_PRINTER)
3035 3: btst #0,%a1@(LSTMFP_GPIP)
3036 jne 3b
3037 moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
3038 moveb %d0,%a1@(LPSG_WRITE)
3039 moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
3040 moveb %a1@(LPSG_READ),%d0
3041 bclr #5,%d0
3042 moveb %d0,%a1@(LPSG_WRITE)
3043 nop
3044 nop
3045 bset #5,%d0
3046 moveb %d0,%a1@(LPSG_WRITE)
3047 #elif defined(USE_SCC)
3048 3: btst #2,%a1@(LSCC_CTRL)
3049 jeq 3b
3050 moveb %d0,%a1@(LSCC_DATA)
3051 #elif defined(USE_MFP)
3052 3: btst #7,%a1@(LMFP_TSR)
3053 jeq 3b
3054 moveb %d0,%a1@(LMFP_UDR)
3055 #endif
3056 jra L(serial_putc_done)
3057 4:
3058 #endif /* CONFIG_ATARI */
3059
3060 #ifdef CONFIG_MVME147
3061 is_not_mvme147(2f)
3062 1: btst #2,M147_SCC_CTRL_A
3063 jeq 1b
3064 moveb %d0,M147_SCC_DATA_A
3065 jbra L(serial_putc_done)
3066 2:
3067 #endif
3068
3069 #ifdef CONFIG_MVME16x
3070 is_not_mvme16x(2f)
3071 /*
3072 * If the loader gave us a board type then we can use that to
3073 * select an appropriate output routine; otherwise we just use
3074 * the Bug code. If we have to use the Bug that means the Bug
3075 * workspace has to be valid, which means the Bug has to use
3076 * the SRAM, which is non-standard.
3077 */
3078 moveml %d0-%d7/%a2-%a6,%sp@-
3079 movel vme_brdtype,%d1
3080 jeq 1f | No tag - use the Bug
3081 cmpi #VME_TYPE_MVME162,%d1
3082 jeq 6f
3083 cmpi #VME_TYPE_MVME172,%d1
3084 jne 5f
3085 /* 162/172; it's an SCC */
3086 6: btst #2,M162_SCC_CTRL_A
3087 nop
3088 nop
3089 nop
3090 jeq 6b
3091 moveb #8,M162_SCC_CTRL_A
3092 nop
3093 nop
3094 nop
3095 moveb %d0,M162_SCC_CTRL_A
3096 jra 3f
3097 5:
3098 /* 166/167/177; it's a CD2401 */
3099 moveb #0,M167_CYCAR
3100 moveb M167_CYIER,%d2
3101 moveb #0x02,M167_CYIER
3102 7:
3103 btst #5,M167_PCSCCTICR
3104 jeq 7b
3105 moveb M167_PCTPIACKR,%d1
3106 moveb M167_CYLICR,%d1
3107 jeq 8f
3108 moveb #0x08,M167_CYTEOIR
3109 jra 7b
3110 8:
3111 moveb %d0,M167_CYTDR
3112 moveb #0,M167_CYTEOIR
3113 moveb %d2,M167_CYIER
3114 jra 3f
3115 1:
3116 moveb %d0,%sp@-
3117 trap #15
3118 .word 0x0020 /* TRAP 0x020 */
3119 3:
3120 moveml %sp@+,%d0-%d7/%a2-%a6
3121 jbra L(serial_putc_done)
3122 2:
3123 #endif /* CONFIG_MVME16x */
3124
3125 #ifdef CONFIG_BVME6000
3126 is_not_bvme6000(2f)
3127 /*
3128 * The BVME6000 machine has a serial port ...
3129 */
3130 1: btst #2,BVME_SCC_CTRL_A
3131 jeq 1b
3132 moveb %d0,BVME_SCC_DATA_A
3133 jbra L(serial_putc_done)
3134 2:
3135 #endif
3136
3137 #ifdef CONFIG_SUN3X
3138 is_not_sun3x(2f)
3139 movel %d0,-(%sp)
3140 movel 0xFEFE0018,%a1
3141 jbsr (%a1)
3142 addq #4,%sp
3143 jbra L(serial_putc_done)
3144 2:
3145 #endif
3146
3147 #ifdef CONFIG_Q40
3148 is_not_q40(2f)
3149 tst.l %pc@(L(q40_do_debug)) /* only debug if requested */
3150 beq 2f
3151 lea %pc@(q40_mem_cptr),%a1
3152 move.l %a1@,%a0
3153 move.b %d0,%a0@
3154 addq.l #4,%a0
3155 move.l %a0,%a1@
3156 jbra L(serial_putc_done)
3157 2:
3158 #endif
3159
3160 #ifdef CONFIG_APOLLO
3161 is_not_apollo(2f)
3162 movl %pc@(L(iobase)),%a1
3163 moveb %d0,%a1@(LTHRB0)
3164 1: moveb %a1@(LSRB0),%d0
3165 andb #0x4,%d0
3166 beq 1b
3167 jbra L(serial_putc_done)
3168 2:
3169 #endif
3170
3171 #ifdef CONFIG_HP300
3172 is_not_hp300(3f)
3173 movl %pc@(L(iobase)),%a1
3174 addl %pc@(L(uartbase)),%a1
3175 movel %pc@(L(uart_scode)),%d1 /* Check the scode */
3176 jmi 3f /* Unset? Exit */
3177 cmpi #256,%d1 /* APCI scode? */
3178 jeq 2f
3179 1: moveb %a1@(DCALSR),%d1 /* Output to DCA */
3180 andb #0x20,%d1
3181 beq 1b
3182 moveb %d0,%a1@(DCADATA)
3183 jbra L(serial_putc_done)
3184 2: moveb %a1@(APCILSR),%d1 /* Output to APCI */
3185 andb #0x20,%d1
3186 beq 2b
3187 moveb %d0,%a1@(APCIDATA)
3188 jbra L(serial_putc_done)
3189 3:
3190 #endif
3191
3192 L(serial_putc_done):
3193 func_return serial_putc
3194
3195 /*
3196 * Output a string.
3197 */
3198 func_start puts,%d0/%a0
3199
3200 movel ARG1,%a0
3201 jra 2f
3202 1:
3203 #ifdef CONSOLE
3204 console_putc %d0
3205 #endif
3206 #ifdef SERIAL_DEBUG
3207 serial_putc %d0
3208 #endif
3209 2: moveb %a0@+,%d0
3210 jne 1b
3211
3212 func_return puts
3213
3214 /*
3215 * Output number in hex notation.
3216 */
3217
3218 func_start putn,%d0-%d2
3219
3220 putc ' '
3221
3222 movel ARG1,%d0
3223 moveq #7,%d1
3224 1: roll #4,%d0
3225 move %d0,%d2
3226 andb #0x0f,%d2
3227 addb #'0',%d2
3228 cmpb #'9',%d2
3229 jls 2f
3230 addb #'A'-('9'+1),%d2
3231 2:
3232 #ifdef CONSOLE
3233 console_putc %d2
3234 #endif
3235 #ifdef SERIAL_DEBUG
3236 serial_putc %d2
3237 #endif
3238 dbra %d1,1b
3239
3240 func_return putn
3241
3242 #ifdef CONFIG_MAC
3243 /*
3244 * mac_early_print
3245 *
3246 * This routine takes its parameters on the stack. It then
3247 * turns around and calls the internal routines. This routine
3248 * is used by the boot console.
3249 *
3250 * The calling parameters are:
3251 * void mac_early_print(const char *str, unsigned length);
3252 *
3253 * This routine does NOT understand variable arguments only
3254 * simple strings!
3255 */
3256 ENTRY(mac_early_print)
3257 moveml %d0/%d1/%a0,%sp@-
3258 movew %sr,%sp@-
3259 ori #0x0700,%sr
3260 movel %sp@(18),%a0 /* fetch parameter */
3261 movel %sp@(22),%d1 /* fetch parameter */
3262 jra 2f
3263 1:
3264 #ifdef CONSOLE
3265 console_putc %d0
3266 #endif
3267 #ifdef SERIAL_DEBUG
3268 serial_putc %d0
3269 #endif
3270 subq #1,%d1
3271 2: jeq 3f
3272 moveb %a0@+,%d0
3273 jne 1b
3274 3:
3275 movew %sp@+,%sr
3276 moveml %sp@+,%d0/%d1/%a0
3277 rts
3278 #endif /* CONFIG_MAC */
3279
3280 #if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3281 func_start set_leds,%d0/%a0
3282 movel ARG1,%d0
3283 #ifdef CONFIG_HP300
3284 is_not_hp300(1f)
3285 movel %pc@(L(iobase)),%a0
3286 moveb %d0,%a0@(0x1ffff)
3287 jra 2f
3288 #endif
3289 1:
3290 #ifdef CONFIG_APOLLO
3291 movel %pc@(L(iobase)),%a0
3292 lsll #8,%d0
3293 eorw #0xff00,%d0
3294 moveb %d0,%a0@(LCPUCTRL)
3295 #endif
3296 2:
3297 func_return set_leds
3298 #endif
3299
3300 #ifdef CONSOLE
3301 /*
3302 * For continuity, see the data alignment
3303 * to which this structure is tied.
3304 */
3305 #define Lconsole_struct_cur_column 0
3306 #define Lconsole_struct_cur_row 4
3307 #define Lconsole_struct_num_columns 8
3308 #define Lconsole_struct_num_rows 12
3309 #define Lconsole_struct_left_edge 16
3310 #define Lconsole_struct_penguin_putc 20
3311
3312 func_start console_init,%a0-%a4/%d0-%d7
3313 /*
3314 * Some of the register usage that follows
3315 * a0 = pointer to boot_info
3316 * a1 = pointer to screen
3317 * a2 = pointer to Lconsole_globals
3318 * d3 = pixel width of screen
3319 * d4 = pixel height of screen
3320 * (d3,d4) ~= (x,y) of a point just below
3321 * and to the right of the screen
3322 * NOT on the screen!
3323 * d5 = number of bytes per scan line
3324 * d6 = number of bytes on the entire screen
3325 */
3326
3327 lea %pc@(L(console_globals)),%a2
3328 movel %pc@(L(mac_videobase)),%a1
3329 movel %pc@(L(mac_rowbytes)),%d5
3330 movel %pc@(L(mac_dimensions)),%d3 /* -> low byte */
3331 movel %d3,%d4
3332 swap %d4 /* -> high byte */
3333 andl #0xffff,%d3 /* d3 = screen width in pixels */
3334 andl #0xffff,%d4 /* d4 = screen height in pixels */
3335
3336 movel %d5,%d6
3337 | subl #20,%d6
3338 mulul %d4,%d6 /* scan line bytes x num scan lines */
3339 divul #8,%d6 /* we'll clear 8 bytes at a time */
3340 moveq #-1,%d0 /* Mac_black */
3341 subq #1,%d6
3342
3343 L(console_clear_loop):
3344 movel %d0,%a1@+
3345 movel %d0,%a1@+
3346 dbra %d6,L(console_clear_loop)
3347
3348 /* Calculate font size */
3349
3350 #if defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3351 lea %pc@(font_vga_8x8),%a0
3352 #elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3353 lea %pc@(font_vga_8x16),%a0
3354 #elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3355 lea %pc@(font_vga_6x11),%a0
3356 #elif defined(CONFIG_FONT_8x8) /* default */
3357 lea %pc@(font_vga_8x8),%a0
3358 #else /* no compiled-in font */
3359 lea 0,%a0
3360 #endif
3361
3362 /*
3363 * At this point we make a shift in register usage
3364 * a1 = address of console_font pointer
3365 */
3366 lea %pc@(L(console_font)),%a1
3367 movel %a0,%a1@ /* store pointer to struct fbcon_font_desc in console_font */
3368 tstl %a0
3369 jeq 1f
3370 lea %pc@(L(console_font_data)),%a4
3371 movel %a0@(FONT_DESC_DATA),%d0
3372 subl #L(console_font),%a1
3373 addl %a1,%d0
3374 movel %d0,%a4@
3375
3376 /*
3377 * Calculate global maxs
3378 * Note - we can use either an
3379 * 8 x 16 or 8 x 8 character font
3380 * 6 x 11 also supported
3381 */
3382 /* ASSERT: a0 = contents of Lconsole_font */
3383 movel %d3,%d0 /* screen width in pixels */
3384 divul %a0@(FONT_DESC_WIDTH),%d0 /* d0 = max num chars per row */
3385
3386 movel %d4,%d1 /* screen height in pixels */
3387 divul %a0@(FONT_DESC_HEIGHT),%d1 /* d1 = max num rows */
3388
3389 movel %d0,%a2@(Lconsole_struct_num_columns)
3390 movel %d1,%a2@(Lconsole_struct_num_rows)
3391
3392 /*
3393 * Clear the current row and column
3394 */
3395 clrl %a2@(Lconsole_struct_cur_column)
3396 clrl %a2@(Lconsole_struct_cur_row)
3397 clrl %a2@(Lconsole_struct_left_edge)
3398
3399 /*
3400 * Initialization is complete
3401 */
3402 1:
3403 func_return console_init
3404
3405 func_start console_put_stats,%a0/%d7
3406 /*
3407 * Some of the register usage that follows
3408 * a0 = pointer to boot_info
3409 * d7 = value of boot_info fields
3410 */
3411 puts "\nMacLinux\n"
3412
3413 #ifdef SERIAL_DEBUG
3414 puts "\n vidaddr:"
3415 putn %pc@(L(mac_videobase)) /* video addr. */
3416
3417 puts "\n _stext:"
3418 lea %pc@(_stext),%a0
3419 putn %a0
3420
3421 puts "\nbootinfo:"
3422 lea %pc@(_end),%a0
3423 putn %a0
3424
3425 puts "\n cpuid:"
3426 putn %pc@(L(cputype))
3427
3428 # ifdef CONFIG_MAC
3429 puts "\n sccbase:"
3430 putn %pc@(L(mac_sccbase))
3431 # endif
3432 # ifdef MMU_PRINT
3433 putc '\n'
3434 jbsr mmu_print_machine_cpu_types
3435 # endif
3436 #endif /* SERIAL_DEBUG */
3437
3438 putc '\n'
3439
3440 func_return console_put_stats
3441
3442 #ifdef CONSOLE_PENGUIN
3443 func_start console_put_penguin,%a0-%a1/%d0-%d7
3444 /*
3445 * Get 'that_penguin' onto the screen in the upper right corner
3446 * penguin is 64 x 74 pixels, align against right edge of screen
3447 */
3448 lea %pc@(L(mac_dimensions)),%a0
3449 movel %a0@,%d0
3450 andil #0xffff,%d0
3451 subil #64,%d0 /* snug up against the right edge */
3452 clrl %d1 /* start at the top */
3453 movel #73,%d7
3454 lea %pc@(L(that_penguin)),%a1
3455 L(console_penguin_row):
3456 movel #31,%d6
3457 L(console_penguin_pixel_pair):
3458 moveb %a1@,%d2
3459 lsrb #4,%d2
3460 console_plot_pixel %d0,%d1,%d2
3461 addq #1,%d0
3462 moveb %a1@+,%d2
3463 console_plot_pixel %d0,%d1,%d2
3464 addq #1,%d0
3465 dbra %d6,L(console_penguin_pixel_pair)
3466
3467 subil #64,%d0
3468 addq #1,%d1
3469 dbra %d7,L(console_penguin_row)
3470
3471 func_return console_put_penguin
3472
3473 /* include penguin bitmap */
3474 L(that_penguin):
3475 #include "../mac/mac_penguin.S"
3476 #endif
3477
3478 /*
3479 * Calculate source and destination addresses
3480 * output a1 = dest
3481 * a2 = source
3482 */
3483
3484 func_start console_scroll,%a0-%a4/%d0-%d7
3485 lea %pc@(L(mac_videobase)),%a0
3486 movel %a0@,%a1
3487 movel %a1,%a2
3488 lea %pc@(L(mac_rowbytes)),%a0
3489 movel %a0@,%d5
3490 movel %pc@(L(console_font)),%a0
3491 tstl %a0
3492 jeq 1f
3493 mulul %a0@(FONT_DESC_HEIGHT),%d5 /* account for # scan lines per character */
3494 addal %d5,%a2
3495
3496 /*
3497 * Get dimensions
3498 */
3499 lea %pc@(L(mac_dimensions)),%a0
3500 movel %a0@,%d3
3501 movel %d3,%d4
3502 swap %d4
3503 andl #0xffff,%d3 /* d3 = screen width in pixels */
3504 andl #0xffff,%d4 /* d4 = screen height in pixels */
3505
3506 /*
3507 * Calculate number of bytes to move
3508 */
3509 lea %pc@(L(mac_rowbytes)),%a0
3510 movel %a0@,%d6
3511 movel %pc@(L(console_font)),%a0
3512 subl %a0@(FONT_DESC_HEIGHT),%d4 /* we're not scrolling the top row! */
3513 mulul %d4,%d6 /* scan line bytes x num scan lines */
3514 divul #32,%d6 /* we'll move 8 longs at a time */
3515 subq #1,%d6
3516
3517 L(console_scroll_loop):
3518 movel %a2@+,%a1@+
3519 movel %a2@+,%a1@+
3520 movel %a2@+,%a1@+
3521 movel %a2@+,%a1@+
3522 movel %a2@+,%a1@+
3523 movel %a2@+,%a1@+
3524 movel %a2@+,%a1@+
3525 movel %a2@+,%a1@+
3526 dbra %d6,L(console_scroll_loop)
3527
3528 lea %pc@(L(mac_rowbytes)),%a0
3529 movel %a0@,%d6
3530 movel %pc@(L(console_font)),%a0
3531 mulul %a0@(FONT_DESC_HEIGHT),%d6 /* scan line bytes x font height */
3532 divul #32,%d6 /* we'll move 8 words at a time */
3533 subq #1,%d6
3534
3535 moveq #-1,%d0
3536 L(console_scroll_clear_loop):
3537 movel %d0,%a1@+
3538 movel %d0,%a1@+
3539 movel %d0,%a1@+
3540 movel %d0,%a1@+
3541 movel %d0,%a1@+
3542 movel %d0,%a1@+
3543 movel %d0,%a1@+
3544 movel %d0,%a1@+
3545 dbra %d6,L(console_scroll_clear_loop)
3546
3547 1:
3548 func_return console_scroll
3549
3550
3551 func_start console_putc,%a0/%a1/%d0-%d7
3552
3553 is_not_mac(L(console_exit))
3554 tstl %pc@(L(console_font))
3555 jeq L(console_exit)
3556
3557 /* Output character in d7 on console.
3558 */
3559 movel ARG1,%d7
3560 cmpib #'\n',%d7
3561 jbne 1f
3562
3563 /* A little safe recursion is good for the soul */
3564 console_putc #'\r'
3565 1:
3566 lea %pc@(L(console_globals)),%a0
3567
3568 cmpib #10,%d7
3569 jne L(console_not_lf)
3570 movel %a0@(Lconsole_struct_cur_row),%d0
3571 addil #1,%d0
3572 movel %d0,%a0@(Lconsole_struct_cur_row)
3573 movel %a0@(Lconsole_struct_num_rows),%d1
3574 cmpl %d1,%d0
3575 jcs 1f
3576 subil #1,%d0
3577 movel %d0,%a0@(Lconsole_struct_cur_row)
3578 console_scroll
3579 1:
3580 jra L(console_exit)
3581
3582 L(console_not_lf):
3583 cmpib #13,%d7
3584 jne L(console_not_cr)
3585 clrl %a0@(Lconsole_struct_cur_column)
3586 jra L(console_exit)
3587
3588 L(console_not_cr):
3589 cmpib #1,%d7
3590 jne L(console_not_home)
3591 clrl %a0@(Lconsole_struct_cur_row)
3592 clrl %a0@(Lconsole_struct_cur_column)
3593 jra L(console_exit)
3594
3595 /*
3596 * At this point we know that the %d7 character is going to be
3597 * rendered on the screen. Register usage is -
3598 * a0 = pointer to console globals
3599 * a1 = font data
3600 * d0 = cursor column
3601 * d1 = cursor row to draw the character
3602 * d7 = character number
3603 */
3604 L(console_not_home):
3605 movel %a0@(Lconsole_struct_cur_column),%d0
3606 addql #1,%a0@(Lconsole_struct_cur_column)
3607 movel %a0@(Lconsole_struct_num_columns),%d1
3608 cmpl %d1,%d0
3609 jcs 1f
3610 console_putc #'\n' /* recursion is OK! */
3611 1:
3612 movel %a0@(Lconsole_struct_cur_row),%d1
3613
3614 /*
3615 * At this point we make a shift in register usage
3616 * a0 = address of pointer to font data (fbcon_font_desc)
3617 */
3618 movel %pc@(L(console_font)),%a0
3619 movel %pc@(L(console_font_data)),%a1 /* Load fbcon_font_desc.data into a1 */
3620 andl #0x000000ff,%d7
3621 /* ASSERT: a0 = contents of Lconsole_font */
3622 mulul %a0@(FONT_DESC_HEIGHT),%d7 /* d7 = index into font data */
3623 addl %d7,%a1 /* a1 = points to char image */
3624
3625 /*
3626 * At this point we make a shift in register usage
3627 * d0 = pixel coordinate, x
3628 * d1 = pixel coordinate, y
3629 * d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3630 * d3 = font scan line data (8 pixels)
3631 * d6 = count down for the font's pixel width (8)
3632 * d7 = count down for the font's pixel count in height
3633 */
3634 /* ASSERT: a0 = contents of Lconsole_font */
3635 mulul %a0@(FONT_DESC_WIDTH),%d0
3636 mulul %a0@(FONT_DESC_HEIGHT),%d1
3637 movel %a0@(FONT_DESC_HEIGHT),%d7 /* Load fbcon_font_desc.height into d7 */
3638 subq #1,%d7
3639 L(console_read_char_scanline):
3640 moveb %a1@+,%d3
3641
3642 /* ASSERT: a0 = contents of Lconsole_font */
3643 movel %a0@(FONT_DESC_WIDTH),%d6 /* Load fbcon_font_desc.width into d6 */
3644 subql #1,%d6
3645
3646 L(console_do_font_scanline):
3647 lslb #1,%d3
3648 scsb %d2 /* convert 1 bit into a byte */
3649 console_plot_pixel %d0,%d1,%d2
3650 addq #1,%d0
3651 dbra %d6,L(console_do_font_scanline)
3652
3653 /* ASSERT: a0 = contents of Lconsole_font */
3654 subl %a0@(FONT_DESC_WIDTH),%d0
3655 addq #1,%d1
3656 dbra %d7,L(console_read_char_scanline)
3657
3658 L(console_exit):
3659 func_return console_putc
3660
3661 /*
3662 * Input:
3663 * d0 = x coordinate
3664 * d1 = y coordinate
3665 * d2 = (bit 0) 1/0 for white/black (!)
3666 * All registers are preserved
3667 */
3668 func_start console_plot_pixel,%a0-%a1/%d0-%d4
3669
3670 movel %pc@(L(mac_videobase)),%a1
3671 movel %pc@(L(mac_videodepth)),%d3
3672 movel ARG1,%d0
3673 movel ARG2,%d1
3674 mulul %pc@(L(mac_rowbytes)),%d1
3675 movel ARG3,%d2
3676
3677 /*
3678 * Register usage:
3679 * d0 = x coord becomes byte offset into frame buffer
3680 * d1 = y coord
3681 * d2 = black or white (0/1)
3682 * d3 = video depth
3683 * d4 = temp of x (d0) for many bit depths
3684 */
3685 L(test_1bit):
3686 cmpb #1,%d3
3687 jbne L(test_2bit)
3688 movel %d0,%d4 /* we need the low order 3 bits! */
3689 divul #8,%d0
3690 addal %d0,%a1
3691 addal %d1,%a1
3692 andb #7,%d4
3693 eorb #7,%d4 /* reverse the x-coordinate w/ screen-bit # */
3694 andb #1,%d2
3695 jbne L(white_1)
3696 bsetb %d4,%a1@
3697 jbra L(console_plot_pixel_exit)
3698 L(white_1):
3699 bclrb %d4,%a1@
3700 jbra L(console_plot_pixel_exit)
3701
3702 L(test_2bit):
3703 cmpb #2,%d3
3704 jbne L(test_4bit)
3705 movel %d0,%d4 /* we need the low order 2 bits! */
3706 divul #4,%d0
3707 addal %d0,%a1
3708 addal %d1,%a1
3709 andb #3,%d4
3710 eorb #3,%d4 /* reverse the x-coordinate w/ screen-bit # */
3711 lsll #1,%d4 /* ! */
3712 andb #1,%d2
3713 jbne L(white_2)
3714 bsetb %d4,%a1@
3715 addq #1,%d4
3716 bsetb %d4,%a1@
3717 jbra L(console_plot_pixel_exit)
3718 L(white_2):
3719 bclrb %d4,%a1@
3720 addq #1,%d4
3721 bclrb %d4,%a1@
3722 jbra L(console_plot_pixel_exit)
3723
3724 L(test_4bit):
3725 cmpb #4,%d3
3726 jbne L(test_8bit)
3727 movel %d0,%d4 /* we need the low order bit! */
3728 divul #2,%d0
3729 addal %d0,%a1
3730 addal %d1,%a1
3731 andb #1,%d4
3732 eorb #1,%d4
3733 lsll #2,%d4 /* ! */
3734 andb #1,%d2
3735 jbne L(white_4)
3736 bsetb %d4,%a1@
3737 addq #1,%d4
3738 bsetb %d4,%a1@
3739 addq #1,%d4
3740 bsetb %d4,%a1@
3741 addq #1,%d4
3742 bsetb %d4,%a1@
3743 jbra L(console_plot_pixel_exit)
3744 L(white_4):
3745 bclrb %d4,%a1@
3746 addq #1,%d4
3747 bclrb %d4,%a1@
3748 addq #1,%d4
3749 bclrb %d4,%a1@
3750 addq #1,%d4
3751 bclrb %d4,%a1@
3752 jbra L(console_plot_pixel_exit)
3753
3754 L(test_8bit):
3755 cmpb #8,%d3
3756 jbne L(test_16bit)
3757 addal %d0,%a1
3758 addal %d1,%a1
3759 andb #1,%d2
3760 jbne L(white_8)
3761 moveb #0xff,%a1@
3762 jbra L(console_plot_pixel_exit)
3763 L(white_8):
3764 clrb %a1@
3765 jbra L(console_plot_pixel_exit)
3766
3767 L(test_16bit):
3768 cmpb #16,%d3
3769 jbne L(console_plot_pixel_exit)
3770 addal %d0,%a1
3771 addal %d0,%a1
3772 addal %d1,%a1
3773 andb #1,%d2
3774 jbne L(white_16)
3775 clrw %a1@
3776 jbra L(console_plot_pixel_exit)
3777 L(white_16):
3778 movew #0x0fff,%a1@
3779 jbra L(console_plot_pixel_exit)
3780
3781 L(console_plot_pixel_exit):
3782 func_return console_plot_pixel
3783 #endif /* CONSOLE */
3784
3785 #if 0
3786 /*
3787 * This is some old code lying around. I don't believe
3788 * it's used or important anymore. My guess is it contributed
3789 * to getting to this point, but it's done for now.
3790 * It was still in the 2.1.77 head.S, so it's still here.
3791 * (And still not used!)
3792 */
3793 L(showtest):
3794 moveml %a0/%d7,%sp@-
3795 puts "A="
3796 putn %a1
3797
3798 .long 0xf0119f15 | ptestr #5,%a1@,#7,%a0
3799
3800 puts "DA="
3801 putn %a0
3802
3803 puts "D="
3804 putn %a0@
3805
3806 puts "S="
3807 lea %pc@(L(mmu)),%a0
3808 .long 0xf0106200 | pmove %psr,%a0@
3809 clrl %d7
3810 movew %a0@,%d7
3811 putn %d7
3812
3813 putc '\n'
3814 moveml %sp@+,%a0/%d7
3815 rts
3816 #endif /* 0 */
3817
3818 __INITDATA
3819 .align 4
3820
3821 #if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3822 defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3823 L(custom):
3824 L(iobase):
3825 .long 0
3826 #endif
3827
3828 #if defined(CONSOLE)
3829 L(console_globals):
3830 .long 0 /* cursor column */
3831 .long 0 /* cursor row */
3832 .long 0 /* max num columns */
3833 .long 0 /* max num rows */
3834 .long 0 /* left edge */
3835 .long 0 /* mac putc */
3836 L(console_font):
3837 .long 0 /* pointer to console font (struct font_desc) */
3838 L(console_font_data):
3839 .long 0 /* pointer to console font data */
3840 #endif /* CONSOLE */
3841
3842 #if defined(MMU_PRINT)
3843 L(mmu_print_data):
3844 .long 0 /* valid flag */
3845 .long 0 /* start logical */
3846 .long 0 /* next logical */
3847 .long 0 /* start physical */
3848 .long 0 /* next physical */
3849 #endif /* MMU_PRINT */
3850
3851 L(cputype):
3852 .long 0
3853 L(mmu_cached_pointer_tables):
3854 .long 0
3855 L(mmu_num_pointer_tables):
3856 .long 0
3857 L(phys_kernel_start):
3858 .long 0
3859 L(kernel_end):
3860 .long 0
3861 L(memory_start):
3862 .long 0
3863 L(kernel_pgdir_ptr):
3864 .long 0
3865 L(temp_mmap_mem):
3866 .long 0
3867
3868 #if defined (CONFIG_MVME147)
3869 M147_SCC_CTRL_A = 0xfffe3002
3870 M147_SCC_DATA_A = 0xfffe3003
3871 #endif
3872
3873 #if defined (CONFIG_MVME16x)
3874 M162_SCC_CTRL_A = 0xfff45005
3875 M167_CYCAR = 0xfff450ee
3876 M167_CYIER = 0xfff45011
3877 M167_CYLICR = 0xfff45026
3878 M167_CYTEOIR = 0xfff45085
3879 M167_CYTDR = 0xfff450f8
3880 M167_PCSCCTICR = 0xfff4201e
3881 M167_PCTPIACKR = 0xfff42025
3882 #endif
3883
3884 #if defined (CONFIG_BVME6000)
3885 BVME_SCC_CTRL_A = 0xffb0000b
3886 BVME_SCC_DATA_A = 0xffb0000f
3887 #endif
3888
3889 #if defined(CONFIG_MAC)
3890 L(mac_booter_data):
3891 .long 0
3892 L(mac_videobase):
3893 .long 0
3894 L(mac_videodepth):
3895 .long 0
3896 L(mac_dimensions):
3897 .long 0
3898 L(mac_rowbytes):
3899 .long 0
3900 #ifdef SERIAL_DEBUG
3901 L(mac_sccbase):
3902 .long 0
3903 #endif
3904 #endif /* CONFIG_MAC */
3905
3906 #if defined (CONFIG_APOLLO)
3907 LSRB0 = 0x10412
3908 LTHRB0 = 0x10416
3909 LCPUCTRL = 0x10100
3910 #endif
3911
3912 #if defined(CONFIG_HP300)
3913 DCADATA = 0x11
3914 DCALSR = 0x1b
3915 APCIDATA = 0x00
3916 APCILSR = 0x14
3917 L(uartbase):
3918 .long 0
3919 L(uart_scode):
3920 .long -1
3921 #endif
3922
3923 __FINIT
3924 .data
3925 .align 4
3926
3927 availmem:
3928 .long 0
3929 m68k_pgtable_cachemode:
3930 .long 0
3931 m68k_supervisor_cachemode:
3932 .long 0
3933 #if defined(CONFIG_MVME16x)
3934 mvme_bdid:
3935 .long 0,0,0,0,0,0,0,0
3936 #endif
3937 #if defined(CONFIG_Q40)
3938 q40_mem_cptr:
3939 .long 0
3940 L(q40_do_debug):
3941 .long 0
3942 #endif