e9c6a8014bd647eec50a66afb5bc75b076b35e4d
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / m32r / mm / fault.c
1 /*
2 * linux/arch/m32r/mm/fault.c
3 *
4 * Copyright (c) 2001, 2002 Hitoshi Yamamoto, and H. Kondo
5 * Copyright (c) 2004 Naoto Sugai, NIIBE Yutaka
6 *
7 * Some code taken from i386 version.
8 * Copyright (C) 1995 Linus Torvalds
9 */
10
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/errno.h>
15 #include <linux/string.h>
16 #include <linux/types.h>
17 #include <linux/ptrace.h>
18 #include <linux/mman.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/interrupt.h>
22 #include <linux/init.h>
23 #include <linux/tty.h>
24 #include <linux/vt_kern.h> /* For unblank_screen() */
25 #include <linux/highmem.h>
26 #include <linux/module.h>
27
28 #include <asm/m32r.h>
29 #include <asm/uaccess.h>
30 #include <asm/hardirq.h>
31 #include <asm/mmu_context.h>
32 #include <asm/tlbflush.h>
33
34 extern void die(const char *, struct pt_regs *, long);
35
36 #ifndef CONFIG_SMP
37 asmlinkage unsigned int tlb_entry_i_dat;
38 asmlinkage unsigned int tlb_entry_d_dat;
39 #define tlb_entry_i tlb_entry_i_dat
40 #define tlb_entry_d tlb_entry_d_dat
41 #else
42 unsigned int tlb_entry_i_dat[NR_CPUS];
43 unsigned int tlb_entry_d_dat[NR_CPUS];
44 #define tlb_entry_i tlb_entry_i_dat[smp_processor_id()]
45 #define tlb_entry_d tlb_entry_d_dat[smp_processor_id()]
46 #endif
47
48 extern void init_tlb(void);
49
50 /*======================================================================*
51 * do_page_fault()
52 *======================================================================*
53 * This routine handles page faults. It determines the address,
54 * and the problem, and then passes it off to one of the appropriate
55 * routines.
56 *
57 * ARGUMENT:
58 * regs : M32R SP reg.
59 * error_code : See below
60 * address : M32R MMU MDEVA reg. (Operand ACE)
61 * : M32R BPC reg. (Instruction ACE)
62 *
63 * error_code :
64 * bit 0 == 0 means no page found, 1 means protection fault
65 * bit 1 == 0 means read, 1 means write
66 * bit 2 == 0 means kernel, 1 means user-mode
67 * bit 3 == 0 means data, 1 means instruction
68 *======================================================================*/
69 #define ACE_PROTECTION 1
70 #define ACE_WRITE 2
71 #define ACE_USERMODE 4
72 #define ACE_INSTRUCTION 8
73
74 asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long error_code,
75 unsigned long address)
76 {
77 struct task_struct *tsk;
78 struct mm_struct *mm;
79 struct vm_area_struct * vma;
80 unsigned long page, addr;
81 unsigned long flags = 0;
82 int fault;
83 siginfo_t info;
84
85 /*
86 * If BPSW IE bit enable --> set PSW IE bit
87 */
88 if (regs->psw & M32R_PSW_BIE)
89 local_irq_enable();
90
91 tsk = current;
92
93 info.si_code = SEGV_MAPERR;
94
95 /*
96 * We fault-in kernel-space virtual memory on-demand. The
97 * 'reference' page table is init_mm.pgd.
98 *
99 * NOTE! We MUST NOT take any locks for this case. We may
100 * be in an interrupt or a critical region, and should
101 * only copy the information from the master page table,
102 * nothing more.
103 *
104 * This verifies that the fault happens in kernel space
105 * (error_code & ACE_USERMODE) == 0, and that the fault was not a
106 * protection error (error_code & ACE_PROTECTION) == 0.
107 */
108 if (address >= TASK_SIZE && !(error_code & ACE_USERMODE))
109 goto vmalloc_fault;
110
111 mm = tsk->mm;
112
113 /*
114 * If we're in an interrupt or have no user context or are running in an
115 * atomic region then we must not take the fault..
116 */
117 if (in_atomic() || !mm)
118 goto bad_area_nosemaphore;
119
120 if (error_code & ACE_USERMODE)
121 flags |= FAULT_FLAG_USER;
122
123 /* When running in the kernel we expect faults to occur only to
124 * addresses in user space. All other faults represent errors in the
125 * kernel and should generate an OOPS. Unfortunately, in the case of an
126 * erroneous fault occurring in a code path which already holds mmap_sem
127 * we will deadlock attempting to validate the fault against the
128 * address space. Luckily the kernel only validly references user
129 * space from well defined areas of code, which are listed in the
130 * exceptions table.
131 *
132 * As the vast majority of faults will be valid we will only perform
133 * the source reference check when there is a possibility of a deadlock.
134 * Attempt to lock the address space, if we cannot we then validate the
135 * source. If this is invalid we can skip the address space check,
136 * thus avoiding the deadlock.
137 */
138 if (!down_read_trylock(&mm->mmap_sem)) {
139 if ((error_code & ACE_USERMODE) == 0 &&
140 !search_exception_tables(regs->psw))
141 goto bad_area_nosemaphore;
142 down_read(&mm->mmap_sem);
143 }
144
145 vma = find_vma(mm, address);
146 if (!vma)
147 goto bad_area;
148 if (vma->vm_start <= address)
149 goto good_area;
150 if (!(vma->vm_flags & VM_GROWSDOWN))
151 goto bad_area;
152
153 if (error_code & ACE_USERMODE) {
154 /*
155 * accessing the stack below "spu" is always a bug.
156 * The "+ 4" is there due to the push instruction
157 * doing pre-decrement on the stack and that
158 * doesn't show up until later..
159 */
160 if (address + 4 < regs->spu)
161 goto bad_area;
162 }
163
164 if (expand_stack(vma, address))
165 goto bad_area;
166 /*
167 * Ok, we have a good vm_area for this memory access, so
168 * we can handle it..
169 */
170 good_area:
171 info.si_code = SEGV_ACCERR;
172 switch (error_code & (ACE_WRITE|ACE_PROTECTION)) {
173 default: /* 3: write, present */
174 /* fall through */
175 case ACE_WRITE: /* write, not present */
176 if (!(vma->vm_flags & VM_WRITE))
177 goto bad_area;
178 flags |= FAULT_FLAG_WRITE;
179 break;
180 case ACE_PROTECTION: /* read, present */
181 case 0: /* read, not present */
182 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
183 goto bad_area;
184 }
185
186 /*
187 * For instruction access exception, check if the area is executable
188 */
189 if ((error_code & ACE_INSTRUCTION) && !(vma->vm_flags & VM_EXEC))
190 goto bad_area;
191
192 /*
193 * If for any reason at all we couldn't handle the fault,
194 * make sure we exit gracefully rather than endlessly redo
195 * the fault.
196 */
197 addr = (address & PAGE_MASK);
198 set_thread_fault_code(error_code);
199 fault = handle_mm_fault(mm, vma, addr, flags);
200 if (unlikely(fault & VM_FAULT_ERROR)) {
201 if (fault & VM_FAULT_OOM)
202 goto out_of_memory;
203 else if (fault & VM_FAULT_SIGBUS)
204 goto do_sigbus;
205 BUG();
206 }
207 if (fault & VM_FAULT_MAJOR)
208 tsk->maj_flt++;
209 else
210 tsk->min_flt++;
211 set_thread_fault_code(0);
212 up_read(&mm->mmap_sem);
213 return;
214
215 /*
216 * Something tried to access memory that isn't in our memory map..
217 * Fix it, but check if it's kernel or user first..
218 */
219 bad_area:
220 up_read(&mm->mmap_sem);
221
222 bad_area_nosemaphore:
223 /* User mode accesses just cause a SIGSEGV */
224 if (error_code & ACE_USERMODE) {
225 tsk->thread.address = address;
226 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
227 tsk->thread.trap_no = 14;
228 info.si_signo = SIGSEGV;
229 info.si_errno = 0;
230 /* info.si_code has been set above */
231 info.si_addr = (void __user *)address;
232 force_sig_info(SIGSEGV, &info, tsk);
233 return;
234 }
235
236 no_context:
237 /* Are we prepared to handle this kernel fault? */
238 if (fixup_exception(regs))
239 return;
240
241 /*
242 * Oops. The kernel tried to access some bad page. We'll have to
243 * terminate things with extreme prejudice.
244 */
245
246 bust_spinlocks(1);
247
248 if (address < PAGE_SIZE)
249 printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference");
250 else
251 printk(KERN_ALERT "Unable to handle kernel paging request");
252 printk(" at virtual address %08lx\n",address);
253 printk(KERN_ALERT " printing bpc:\n");
254 printk("%08lx\n", regs->bpc);
255 page = *(unsigned long *)MPTB;
256 page = ((unsigned long *) page)[address >> PGDIR_SHIFT];
257 printk(KERN_ALERT "*pde = %08lx\n", page);
258 if (page & _PAGE_PRESENT) {
259 page &= PAGE_MASK;
260 address &= 0x003ff000;
261 page = ((unsigned long *) __va(page))[address >> PAGE_SHIFT];
262 printk(KERN_ALERT "*pte = %08lx\n", page);
263 }
264 die("Oops", regs, error_code);
265 bust_spinlocks(0);
266 do_exit(SIGKILL);
267
268 /*
269 * We ran out of memory, or some other thing happened to us that made
270 * us unable to handle the page fault gracefully.
271 */
272 out_of_memory:
273 up_read(&mm->mmap_sem);
274 if (!(error_code & ACE_USERMODE))
275 goto no_context;
276 pagefault_out_of_memory();
277 return;
278
279 do_sigbus:
280 up_read(&mm->mmap_sem);
281
282 /* Kernel mode? Handle exception or die */
283 if (!(error_code & ACE_USERMODE))
284 goto no_context;
285
286 tsk->thread.address = address;
287 tsk->thread.error_code = error_code;
288 tsk->thread.trap_no = 14;
289 info.si_signo = SIGBUS;
290 info.si_errno = 0;
291 info.si_code = BUS_ADRERR;
292 info.si_addr = (void __user *)address;
293 force_sig_info(SIGBUS, &info, tsk);
294 return;
295
296 vmalloc_fault:
297 {
298 /*
299 * Synchronize this task's top level page-table
300 * with the 'reference' page table.
301 *
302 * Do _not_ use "tsk" here. We might be inside
303 * an interrupt in the middle of a task switch..
304 */
305 int offset = pgd_index(address);
306 pgd_t *pgd, *pgd_k;
307 pmd_t *pmd, *pmd_k;
308 pte_t *pte_k;
309
310 pgd = (pgd_t *)*(unsigned long *)MPTB;
311 pgd = offset + (pgd_t *)pgd;
312 pgd_k = init_mm.pgd + offset;
313
314 if (!pgd_present(*pgd_k))
315 goto no_context;
316
317 /*
318 * set_pgd(pgd, *pgd_k); here would be useless on PAE
319 * and redundant with the set_pmd() on non-PAE.
320 */
321
322 pmd = pmd_offset(pgd, address);
323 pmd_k = pmd_offset(pgd_k, address);
324 if (!pmd_present(*pmd_k))
325 goto no_context;
326 set_pmd(pmd, *pmd_k);
327
328 pte_k = pte_offset_kernel(pmd_k, address);
329 if (!pte_present(*pte_k))
330 goto no_context;
331
332 addr = (address & PAGE_MASK);
333 set_thread_fault_code(error_code);
334 update_mmu_cache(NULL, addr, pte_k);
335 set_thread_fault_code(0);
336 return;
337 }
338 }
339
340 /*======================================================================*
341 * update_mmu_cache()
342 *======================================================================*/
343 #define TLB_MASK (NR_TLB_ENTRIES - 1)
344 #define ITLB_END (unsigned long *)(ITLB_BASE + (NR_TLB_ENTRIES * 8))
345 #define DTLB_END (unsigned long *)(DTLB_BASE + (NR_TLB_ENTRIES * 8))
346 void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr,
347 pte_t *ptep)
348 {
349 volatile unsigned long *entry1, *entry2;
350 unsigned long pte_data, flags;
351 unsigned int *entry_dat;
352 int inst = get_thread_fault_code() & ACE_INSTRUCTION;
353 int i;
354
355 /* Ptrace may call this routine. */
356 if (vma && current->active_mm != vma->vm_mm)
357 return;
358
359 local_irq_save(flags);
360
361 vaddr = (vaddr & PAGE_MASK) | get_asid();
362
363 pte_data = pte_val(*ptep);
364
365 #ifdef CONFIG_CHIP_OPSP
366 entry1 = (unsigned long *)ITLB_BASE;
367 for (i = 0; i < NR_TLB_ENTRIES; i++) {
368 if (*entry1++ == vaddr) {
369 set_tlb_data(entry1, pte_data);
370 break;
371 }
372 entry1++;
373 }
374 entry2 = (unsigned long *)DTLB_BASE;
375 for (i = 0; i < NR_TLB_ENTRIES; i++) {
376 if (*entry2++ == vaddr) {
377 set_tlb_data(entry2, pte_data);
378 break;
379 }
380 entry2++;
381 }
382 #else
383 /*
384 * Update TLB entries
385 * entry1: ITLB entry address
386 * entry2: DTLB entry address
387 */
388 __asm__ __volatile__ (
389 "seth %0, #high(%4) \n\t"
390 "st %2, @(%5, %0) \n\t"
391 "ldi %1, #1 \n\t"
392 "st %1, @(%6, %0) \n\t"
393 "add3 r4, %0, %7 \n\t"
394 ".fillinsn \n"
395 "1: \n\t"
396 "ld %1, @(%6, %0) \n\t"
397 "bnez %1, 1b \n\t"
398 "ld %0, @r4+ \n\t"
399 "ld %1, @r4 \n\t"
400 "st %3, @+%0 \n\t"
401 "st %3, @+%1 \n\t"
402 : "=&r" (entry1), "=&r" (entry2)
403 : "r" (vaddr), "r" (pte_data), "i" (MMU_REG_BASE),
404 "i" (MSVA_offset), "i" (MTOP_offset), "i" (MIDXI_offset)
405 : "r4", "memory"
406 );
407 #endif
408
409 if ((!inst && entry2 >= DTLB_END) || (inst && entry1 >= ITLB_END))
410 goto notfound;
411
412 found:
413 local_irq_restore(flags);
414
415 return;
416
417 /* Valid entry not found */
418 notfound:
419 /*
420 * Update ITLB or DTLB entry
421 * entry1: TLB entry address
422 * entry2: TLB base address
423 */
424 if (!inst) {
425 entry2 = (unsigned long *)DTLB_BASE;
426 entry_dat = &tlb_entry_d;
427 } else {
428 entry2 = (unsigned long *)ITLB_BASE;
429 entry_dat = &tlb_entry_i;
430 }
431 entry1 = entry2 + (((*entry_dat - 1) & TLB_MASK) << 1);
432
433 for (i = 0 ; i < NR_TLB_ENTRIES ; i++) {
434 if (!(entry1[1] & 2)) /* Valid bit check */
435 break;
436
437 if (entry1 != entry2)
438 entry1 -= 2;
439 else
440 entry1 += TLB_MASK << 1;
441 }
442
443 if (i >= NR_TLB_ENTRIES) { /* Empty entry not found */
444 entry1 = entry2 + (*entry_dat << 1);
445 *entry_dat = (*entry_dat + 1) & TLB_MASK;
446 }
447 *entry1++ = vaddr; /* Set TLB tag */
448 set_tlb_data(entry1, pte_data);
449
450 goto found;
451 }
452
453 /*======================================================================*
454 * flush_tlb_page() : flushes one page
455 *======================================================================*/
456 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
457 {
458 if (vma->vm_mm && mm_context(vma->vm_mm) != NO_CONTEXT) {
459 unsigned long flags;
460
461 local_irq_save(flags);
462 page &= PAGE_MASK;
463 page |= (mm_context(vma->vm_mm) & MMU_CONTEXT_ASID_MASK);
464 __flush_tlb_page(page);
465 local_irq_restore(flags);
466 }
467 }
468
469 /*======================================================================*
470 * flush_tlb_range() : flushes a range of pages
471 *======================================================================*/
472 void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
473 unsigned long end)
474 {
475 struct mm_struct *mm;
476
477 mm = vma->vm_mm;
478 if (mm_context(mm) != NO_CONTEXT) {
479 unsigned long flags;
480 int size;
481
482 local_irq_save(flags);
483 size = (end - start + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
484 if (size > (NR_TLB_ENTRIES / 4)) { /* Too many TLB to flush */
485 mm_context(mm) = NO_CONTEXT;
486 if (mm == current->mm)
487 activate_context(mm);
488 } else {
489 unsigned long asid;
490
491 asid = mm_context(mm) & MMU_CONTEXT_ASID_MASK;
492 start &= PAGE_MASK;
493 end += (PAGE_SIZE - 1);
494 end &= PAGE_MASK;
495
496 start |= asid;
497 end |= asid;
498 while (start < end) {
499 __flush_tlb_page(start);
500 start += PAGE_SIZE;
501 }
502 }
503 local_irq_restore(flags);
504 }
505 }
506
507 /*======================================================================*
508 * flush_tlb_mm() : flushes the specified mm context TLB's
509 *======================================================================*/
510 void local_flush_tlb_mm(struct mm_struct *mm)
511 {
512 /* Invalidate all TLB of this process. */
513 /* Instead of invalidating each TLB, we get new MMU context. */
514 if (mm_context(mm) != NO_CONTEXT) {
515 unsigned long flags;
516
517 local_irq_save(flags);
518 mm_context(mm) = NO_CONTEXT;
519 if (mm == current->mm)
520 activate_context(mm);
521 local_irq_restore(flags);
522 }
523 }
524
525 /*======================================================================*
526 * flush_tlb_all() : flushes all processes TLBs
527 *======================================================================*/
528 void local_flush_tlb_all(void)
529 {
530 unsigned long flags;
531
532 local_irq_save(flags);
533 __flush_tlb_all();
534 local_irq_restore(flags);
535 }
536
537 /*======================================================================*
538 * init_mmu()
539 *======================================================================*/
540 void __init init_mmu(void)
541 {
542 tlb_entry_i = 0;
543 tlb_entry_d = 0;
544 mmu_context_cache = MMU_CONTEXT_FIRST_VERSION;
545 set_asid(mmu_context_cache & MMU_CONTEXT_ASID_MASK);
546 *(volatile unsigned long *)MPTB = (unsigned long)swapper_pg_dir;
547 }