Linux-2.6.12-rc2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / ia64 / pci / pci.c
1 /*
2 * pci.c - Low-Level PCI Access in IA-64
3 *
4 * Derived from bios32.c of i386 tree.
5 *
6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Bjorn Helgaas <bjorn.helgaas@hp.com>
9 * Copyright (C) 2004 Silicon Graphics, Inc.
10 *
11 * Note: Above list of copyright holders is incomplete...
12 */
13 #include <linux/config.h>
14
15 #include <linux/acpi.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/pci.h>
19 #include <linux/init.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/smp_lock.h>
23 #include <linux/spinlock.h>
24
25 #include <asm/machvec.h>
26 #include <asm/page.h>
27 #include <asm/segment.h>
28 #include <asm/system.h>
29 #include <asm/io.h>
30 #include <asm/sal.h>
31 #include <asm/smp.h>
32 #include <asm/irq.h>
33 #include <asm/hw_irq.h>
34
35
36 static int pci_routeirq;
37
38 /*
39 * Low-level SAL-based PCI configuration access functions. Note that SAL
40 * calls are already serialized (via sal_lock), so we don't need another
41 * synchronization mechanism here.
42 */
43
44 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
45 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
46
47 /* SAL 3.2 adds support for extended config space. */
48
49 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
50 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
51
52 static int
53 pci_sal_read (unsigned int seg, unsigned int bus, unsigned int devfn,
54 int reg, int len, u32 *value)
55 {
56 u64 addr, data = 0;
57 int mode, result;
58
59 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
60 return -EINVAL;
61
62 if ((seg | reg) <= 255) {
63 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
64 mode = 0;
65 } else {
66 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
67 mode = 1;
68 }
69 result = ia64_sal_pci_config_read(addr, mode, len, &data);
70 if (result != 0)
71 return -EINVAL;
72
73 *value = (u32) data;
74 return 0;
75 }
76
77 static int
78 pci_sal_write (unsigned int seg, unsigned int bus, unsigned int devfn,
79 int reg, int len, u32 value)
80 {
81 u64 addr;
82 int mode, result;
83
84 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
85 return -EINVAL;
86
87 if ((seg | reg) <= 255) {
88 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
89 mode = 0;
90 } else {
91 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
92 mode = 1;
93 }
94 result = ia64_sal_pci_config_write(addr, mode, len, value);
95 if (result != 0)
96 return -EINVAL;
97 return 0;
98 }
99
100 static struct pci_raw_ops pci_sal_ops = {
101 .read = pci_sal_read,
102 .write = pci_sal_write
103 };
104
105 struct pci_raw_ops *raw_pci_ops = &pci_sal_ops;
106
107 static int
108 pci_read (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value)
109 {
110 return raw_pci_ops->read(pci_domain_nr(bus), bus->number,
111 devfn, where, size, value);
112 }
113
114 static int
115 pci_write (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value)
116 {
117 return raw_pci_ops->write(pci_domain_nr(bus), bus->number,
118 devfn, where, size, value);
119 }
120
121 struct pci_ops pci_root_ops = {
122 .read = pci_read,
123 .write = pci_write,
124 };
125
126 #ifdef CONFIG_NUMA
127 extern acpi_status acpi_map_iosapic(acpi_handle, u32, void *, void **);
128 static void acpi_map_iosapics(void)
129 {
130 acpi_get_devices(NULL, acpi_map_iosapic, NULL, NULL);
131 }
132 #else
133 static void acpi_map_iosapics(void)
134 {
135 return;
136 }
137 #endif /* CONFIG_NUMA */
138
139 static int __init
140 pci_acpi_init (void)
141 {
142 struct pci_dev *dev = NULL;
143
144 printk(KERN_INFO "PCI: Using ACPI for IRQ routing\n");
145
146 acpi_map_iosapics();
147
148 if (pci_routeirq) {
149 /*
150 * PCI IRQ routing is set up by pci_enable_device(), but we
151 * also do it here in case there are still broken drivers that
152 * don't use pci_enable_device().
153 */
154 printk(KERN_INFO "PCI: Routing interrupts for all devices because \"pci=routeirq\" specified\n");
155 for_each_pci_dev(dev)
156 acpi_pci_irq_enable(dev);
157 } else
158 printk(KERN_INFO "PCI: If a device doesn't work, try \"pci=routeirq\". If it helps, post a report\n");
159
160 return 0;
161 }
162
163 subsys_initcall(pci_acpi_init);
164
165 /* Called by ACPI when it finds a new root bus. */
166
167 static struct pci_controller * __devinit
168 alloc_pci_controller (int seg)
169 {
170 struct pci_controller *controller;
171
172 controller = kmalloc(sizeof(*controller), GFP_KERNEL);
173 if (!controller)
174 return NULL;
175
176 memset(controller, 0, sizeof(*controller));
177 controller->segment = seg;
178 return controller;
179 }
180
181 static u64 __devinit
182 add_io_space (struct acpi_resource_address64 *addr)
183 {
184 u64 offset;
185 int sparse = 0;
186 int i;
187
188 if (addr->address_translation_offset == 0)
189 return IO_SPACE_BASE(0); /* part of legacy IO space */
190
191 if (addr->attribute.io.translation_attribute == ACPI_SPARSE_TRANSLATION)
192 sparse = 1;
193
194 offset = (u64) ioremap(addr->address_translation_offset, 0);
195 for (i = 0; i < num_io_spaces; i++)
196 if (io_space[i].mmio_base == offset &&
197 io_space[i].sparse == sparse)
198 return IO_SPACE_BASE(i);
199
200 if (num_io_spaces == MAX_IO_SPACES) {
201 printk("Too many IO port spaces\n");
202 return ~0;
203 }
204
205 i = num_io_spaces++;
206 io_space[i].mmio_base = offset;
207 io_space[i].sparse = sparse;
208
209 return IO_SPACE_BASE(i);
210 }
211
212 static acpi_status __devinit
213 count_window (struct acpi_resource *resource, void *data)
214 {
215 unsigned int *windows = (unsigned int *) data;
216 struct acpi_resource_address64 addr;
217 acpi_status status;
218
219 status = acpi_resource_to_address64(resource, &addr);
220 if (ACPI_SUCCESS(status))
221 if (addr.resource_type == ACPI_MEMORY_RANGE ||
222 addr.resource_type == ACPI_IO_RANGE)
223 (*windows)++;
224
225 return AE_OK;
226 }
227
228 struct pci_root_info {
229 struct pci_controller *controller;
230 char *name;
231 };
232
233 static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
234 {
235 struct pci_root_info *info = data;
236 struct pci_window *window;
237 struct acpi_resource_address64 addr;
238 acpi_status status;
239 unsigned long flags, offset = 0;
240 struct resource *root;
241
242 status = acpi_resource_to_address64(res, &addr);
243 if (!ACPI_SUCCESS(status))
244 return AE_OK;
245
246 if (!addr.address_length)
247 return AE_OK;
248
249 if (addr.resource_type == ACPI_MEMORY_RANGE) {
250 flags = IORESOURCE_MEM;
251 root = &iomem_resource;
252 offset = addr.address_translation_offset;
253 } else if (addr.resource_type == ACPI_IO_RANGE) {
254 flags = IORESOURCE_IO;
255 root = &ioport_resource;
256 offset = add_io_space(&addr);
257 if (offset == ~0)
258 return AE_OK;
259 } else
260 return AE_OK;
261
262 window = &info->controller->window[info->controller->windows++];
263 window->resource.name = info->name;
264 window->resource.flags = flags;
265 window->resource.start = addr.min_address_range + offset;
266 window->resource.end = addr.max_address_range + offset;
267 window->resource.child = NULL;
268 window->offset = offset;
269
270 if (insert_resource(root, &window->resource)) {
271 printk(KERN_ERR "alloc 0x%lx-0x%lx from %s for %s failed\n",
272 window->resource.start, window->resource.end,
273 root->name, info->name);
274 }
275
276 return AE_OK;
277 }
278
279 static void __devinit
280 pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl)
281 {
282 int i, j;
283
284 j = 0;
285 for (i = 0; i < ctrl->windows; i++) {
286 struct resource *res = &ctrl->window[i].resource;
287 /* HP's firmware has a hack to work around a Windows bug.
288 * Ignore these tiny memory ranges */
289 if ((res->flags & IORESOURCE_MEM) &&
290 (res->end - res->start < 16))
291 continue;
292 if (j >= PCI_BUS_NUM_RESOURCES) {
293 printk("Ignoring range [%lx-%lx] (%lx)\n", res->start,
294 res->end, res->flags);
295 continue;
296 }
297 bus->resource[j++] = res;
298 }
299 }
300
301 struct pci_bus * __devinit
302 pci_acpi_scan_root(struct acpi_device *device, int domain, int bus)
303 {
304 struct pci_root_info info;
305 struct pci_controller *controller;
306 unsigned int windows = 0;
307 struct pci_bus *pbus;
308 char *name;
309
310 controller = alloc_pci_controller(domain);
311 if (!controller)
312 goto out1;
313
314 controller->acpi_handle = device->handle;
315
316 acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
317 &windows);
318 controller->window = kmalloc(sizeof(*controller->window) * windows,
319 GFP_KERNEL);
320 if (!controller->window)
321 goto out2;
322
323 name = kmalloc(16, GFP_KERNEL);
324 if (!name)
325 goto out3;
326
327 sprintf(name, "PCI Bus %04x:%02x", domain, bus);
328 info.controller = controller;
329 info.name = name;
330 acpi_walk_resources(device->handle, METHOD_NAME__CRS, add_window,
331 &info);
332
333 pbus = pci_scan_bus(bus, &pci_root_ops, controller);
334 if (pbus)
335 pcibios_setup_root_windows(pbus, controller);
336
337 return pbus;
338
339 out3:
340 kfree(controller->window);
341 out2:
342 kfree(controller);
343 out1:
344 return NULL;
345 }
346
347 void pcibios_resource_to_bus(struct pci_dev *dev,
348 struct pci_bus_region *region, struct resource *res)
349 {
350 struct pci_controller *controller = PCI_CONTROLLER(dev);
351 unsigned long offset = 0;
352 int i;
353
354 for (i = 0; i < controller->windows; i++) {
355 struct pci_window *window = &controller->window[i];
356 if (!(window->resource.flags & res->flags))
357 continue;
358 if (window->resource.start > res->start)
359 continue;
360 if (window->resource.end < res->end)
361 continue;
362 offset = window->offset;
363 break;
364 }
365
366 region->start = res->start - offset;
367 region->end = res->end - offset;
368 }
369 EXPORT_SYMBOL(pcibios_resource_to_bus);
370
371 void pcibios_bus_to_resource(struct pci_dev *dev,
372 struct resource *res, struct pci_bus_region *region)
373 {
374 struct pci_controller *controller = PCI_CONTROLLER(dev);
375 unsigned long offset = 0;
376 int i;
377
378 for (i = 0; i < controller->windows; i++) {
379 struct pci_window *window = &controller->window[i];
380 if (!(window->resource.flags & res->flags))
381 continue;
382 if (window->resource.start - window->offset > region->start)
383 continue;
384 if (window->resource.end - window->offset < region->end)
385 continue;
386 offset = window->offset;
387 break;
388 }
389
390 res->start = region->start + offset;
391 res->end = region->end + offset;
392 }
393
394 static void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
395 {
396 struct pci_bus_region region;
397 int i;
398 int limit = (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) ? \
399 PCI_BRIDGE_RESOURCES : PCI_NUM_RESOURCES;
400
401 for (i = 0; i < limit; i++) {
402 if (!dev->resource[i].flags)
403 continue;
404 region.start = dev->resource[i].start;
405 region.end = dev->resource[i].end;
406 pcibios_bus_to_resource(dev, &dev->resource[i], &region);
407 pci_claim_resource(dev, i);
408 }
409 }
410
411 /*
412 * Called after each bus is probed, but before its children are examined.
413 */
414 void __devinit
415 pcibios_fixup_bus (struct pci_bus *b)
416 {
417 struct pci_dev *dev;
418
419 list_for_each_entry(dev, &b->devices, bus_list)
420 pcibios_fixup_device_resources(dev);
421
422 return;
423 }
424
425 void __devinit
426 pcibios_update_irq (struct pci_dev *dev, int irq)
427 {
428 pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
429
430 /* ??? FIXME -- record old value for shutdown. */
431 }
432
433 static inline int
434 pcibios_enable_resources (struct pci_dev *dev, int mask)
435 {
436 u16 cmd, old_cmd;
437 int idx;
438 struct resource *r;
439
440 if (!dev)
441 return -EINVAL;
442
443 pci_read_config_word(dev, PCI_COMMAND, &cmd);
444 old_cmd = cmd;
445 for (idx=0; idx<6; idx++) {
446 /* Only set up the desired resources. */
447 if (!(mask & (1 << idx)))
448 continue;
449
450 r = &dev->resource[idx];
451 if (!r->start && r->end) {
452 printk(KERN_ERR
453 "PCI: Device %s not available because of resource collisions\n",
454 pci_name(dev));
455 return -EINVAL;
456 }
457 if (r->flags & IORESOURCE_IO)
458 cmd |= PCI_COMMAND_IO;
459 if (r->flags & IORESOURCE_MEM)
460 cmd |= PCI_COMMAND_MEMORY;
461 }
462 if (dev->resource[PCI_ROM_RESOURCE].start)
463 cmd |= PCI_COMMAND_MEMORY;
464 if (cmd != old_cmd) {
465 printk("PCI: Enabling device %s (%04x -> %04x)\n", pci_name(dev), old_cmd, cmd);
466 pci_write_config_word(dev, PCI_COMMAND, cmd);
467 }
468 return 0;
469 }
470
471 int
472 pcibios_enable_device (struct pci_dev *dev, int mask)
473 {
474 int ret;
475
476 ret = pcibios_enable_resources(dev, mask);
477 if (ret < 0)
478 return ret;
479
480 return acpi_pci_irq_enable(dev);
481 }
482
483 #ifdef CONFIG_ACPI_DEALLOCATE_IRQ
484 void
485 pcibios_disable_device (struct pci_dev *dev)
486 {
487 acpi_pci_irq_disable(dev);
488 }
489 #endif /* CONFIG_ACPI_DEALLOCATE_IRQ */
490
491 void
492 pcibios_align_resource (void *data, struct resource *res,
493 unsigned long size, unsigned long align)
494 {
495 }
496
497 /*
498 * PCI BIOS setup, always defaults to SAL interface
499 */
500 char * __init
501 pcibios_setup (char *str)
502 {
503 if (!strcmp(str, "routeirq"))
504 pci_routeirq = 1;
505 return NULL;
506 }
507
508 int
509 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
510 enum pci_mmap_state mmap_state, int write_combine)
511 {
512 /*
513 * I/O space cannot be accessed via normal processor loads and
514 * stores on this platform.
515 */
516 if (mmap_state == pci_mmap_io)
517 /*
518 * XXX we could relax this for I/O spaces for which ACPI
519 * indicates that the space is 1-to-1 mapped. But at the
520 * moment, we don't support multiple PCI address spaces and
521 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
522 */
523 return -EINVAL;
524
525 /*
526 * Leave vm_pgoff as-is, the PCI space address is the physical
527 * address on this platform.
528 */
529 vma->vm_flags |= (VM_SHM | VM_RESERVED | VM_IO);
530
531 if (write_combine && efi_range_is_wc(vma->vm_start,
532 vma->vm_end - vma->vm_start))
533 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
534 else
535 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
536
537 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
538 vma->vm_end - vma->vm_start, vma->vm_page_prot))
539 return -EAGAIN;
540
541 return 0;
542 }
543
544 /**
545 * ia64_pci_get_legacy_mem - generic legacy mem routine
546 * @bus: bus to get legacy memory base address for
547 *
548 * Find the base of legacy memory for @bus. This is typically the first
549 * megabyte of bus address space for @bus or is simply 0 on platforms whose
550 * chipsets support legacy I/O and memory routing. Returns the base address
551 * or an error pointer if an error occurred.
552 *
553 * This is the ia64 generic version of this routine. Other platforms
554 * are free to override it with a machine vector.
555 */
556 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
557 {
558 return (char *)__IA64_UNCACHED_OFFSET;
559 }
560
561 /**
562 * pci_mmap_legacy_page_range - map legacy memory space to userland
563 * @bus: bus whose legacy space we're mapping
564 * @vma: vma passed in by mmap
565 *
566 * Map legacy memory space for this device back to userspace using a machine
567 * vector to get the base address.
568 */
569 int
570 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma)
571 {
572 char *addr;
573
574 addr = pci_get_legacy_mem(bus);
575 if (IS_ERR(addr))
576 return PTR_ERR(addr);
577
578 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
579 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
580 vma->vm_flags |= (VM_SHM | VM_RESERVED | VM_IO);
581
582 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
583 vma->vm_end - vma->vm_start, vma->vm_page_prot))
584 return -EAGAIN;
585
586 return 0;
587 }
588
589 /**
590 * ia64_pci_legacy_read - read from legacy I/O space
591 * @bus: bus to read
592 * @port: legacy port value
593 * @val: caller allocated storage for returned value
594 * @size: number of bytes to read
595 *
596 * Simply reads @size bytes from @port and puts the result in @val.
597 *
598 * Again, this (and the write routine) are generic versions that can be
599 * overridden by the platform. This is necessary on platforms that don't
600 * support legacy I/O routing or that hard fail on legacy I/O timeouts.
601 */
602 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
603 {
604 int ret = size;
605
606 switch (size) {
607 case 1:
608 *val = inb(port);
609 break;
610 case 2:
611 *val = inw(port);
612 break;
613 case 4:
614 *val = inl(port);
615 break;
616 default:
617 ret = -EINVAL;
618 break;
619 }
620
621 return ret;
622 }
623
624 /**
625 * ia64_pci_legacy_write - perform a legacy I/O write
626 * @bus: bus pointer
627 * @port: port to write
628 * @val: value to write
629 * @size: number of bytes to write from @val
630 *
631 * Simply writes @size bytes of @val to @port.
632 */
633 int ia64_pci_legacy_write(struct pci_dev *bus, u16 port, u32 val, u8 size)
634 {
635 int ret = 0;
636
637 switch (size) {
638 case 1:
639 outb(val, port);
640 break;
641 case 2:
642 outw(val, port);
643 break;
644 case 4:
645 outl(val, port);
646 break;
647 default:
648 ret = -EINVAL;
649 break;
650 }
651
652 return ret;
653 }
654
655 /**
656 * pci_cacheline_size - determine cacheline size for PCI devices
657 * @dev: void
658 *
659 * We want to use the line-size of the outer-most cache. We assume
660 * that this line-size is the same for all CPUs.
661 *
662 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
663 *
664 * RETURNS: An appropriate -ERRNO error value on eror, or zero for success.
665 */
666 static unsigned long
667 pci_cacheline_size (void)
668 {
669 u64 levels, unique_caches;
670 s64 status;
671 pal_cache_config_info_t cci;
672 static u8 cacheline_size;
673
674 if (cacheline_size)
675 return cacheline_size;
676
677 status = ia64_pal_cache_summary(&levels, &unique_caches);
678 if (status != 0) {
679 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
680 __FUNCTION__, status);
681 return SMP_CACHE_BYTES;
682 }
683
684 status = ia64_pal_cache_config_info(levels - 1, /* cache_type (data_or_unified)= */ 2,
685 &cci);
686 if (status != 0) {
687 printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed (status=%ld)\n",
688 __FUNCTION__, status);
689 return SMP_CACHE_BYTES;
690 }
691 cacheline_size = 1 << cci.pcci_line_size;
692 return cacheline_size;
693 }
694
695 /**
696 * pcibios_prep_mwi - helper function for drivers/pci/pci.c:pci_set_mwi()
697 * @dev: the PCI device for which MWI is enabled
698 *
699 * For ia64, we can get the cacheline sizes from PAL.
700 *
701 * RETURNS: An appropriate -ERRNO error value on eror, or zero for success.
702 */
703 int
704 pcibios_prep_mwi (struct pci_dev *dev)
705 {
706 unsigned long desired_linesize, current_linesize;
707 int rc = 0;
708 u8 pci_linesize;
709
710 desired_linesize = pci_cacheline_size();
711
712 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &pci_linesize);
713 current_linesize = 4 * pci_linesize;
714 if (desired_linesize != current_linesize) {
715 printk(KERN_WARNING "PCI: slot %s has incorrect PCI cache line size of %lu bytes,",
716 pci_name(dev), current_linesize);
717 if (current_linesize > desired_linesize) {
718 printk(" expected %lu bytes instead\n", desired_linesize);
719 rc = -EINVAL;
720 } else {
721 printk(" correcting to %lu\n", desired_linesize);
722 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, desired_linesize / 4);
723 }
724 }
725 return rc;
726 }
727
728 int pci_vector_resources(int last, int nr_released)
729 {
730 int count = nr_released;
731
732 count += (IA64_LAST_DEVICE_VECTOR - last);
733
734 return count;
735 }