Linux-2.6.12-rc2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / ia64 / lib / swiotlb.c
1 /*
2 * Dynamic DMA mapping support.
3 *
4 * This implementation is for IA-64 platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 */
16
17 #include <linux/cache.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/pci.h>
21 #include <linux/spinlock.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/ctype.h>
25
26 #include <asm/io.h>
27 #include <asm/pci.h>
28 #include <asm/dma.h>
29
30 #include <linux/init.h>
31 #include <linux/bootmem.h>
32
33 #define OFFSET(val,align) ((unsigned long) \
34 ( (val) & ( (align) - 1)))
35
36 #define SG_ENT_VIRT_ADDRESS(sg) (page_address((sg)->page) + (sg)->offset)
37 #define SG_ENT_PHYS_ADDRESS(SG) virt_to_phys(SG_ENT_VIRT_ADDRESS(SG))
38
39 /*
40 * Maximum allowable number of contiguous slabs to map,
41 * must be a power of 2. What is the appropriate value ?
42 * The complexity of {map,unmap}_single is linearly dependent on this value.
43 */
44 #define IO_TLB_SEGSIZE 128
45
46 /*
47 * log of the size of each IO TLB slab. The number of slabs is command line
48 * controllable.
49 */
50 #define IO_TLB_SHIFT 11
51
52 int swiotlb_force;
53
54 /*
55 * Used to do a quick range check in swiotlb_unmap_single and
56 * swiotlb_sync_single_*, to see if the memory was in fact allocated by this
57 * API.
58 */
59 static char *io_tlb_start, *io_tlb_end;
60
61 /*
62 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
63 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
64 */
65 static unsigned long io_tlb_nslabs;
66
67 /*
68 * When the IOMMU overflows we return a fallback buffer. This sets the size.
69 */
70 static unsigned long io_tlb_overflow = 32*1024;
71
72 void *io_tlb_overflow_buffer;
73
74 /*
75 * This is a free list describing the number of free entries available from
76 * each index
77 */
78 static unsigned int *io_tlb_list;
79 static unsigned int io_tlb_index;
80
81 /*
82 * We need to save away the original address corresponding to a mapped entry
83 * for the sync operations.
84 */
85 static unsigned char **io_tlb_orig_addr;
86
87 /*
88 * Protect the above data structures in the map and unmap calls
89 */
90 static DEFINE_SPINLOCK(io_tlb_lock);
91
92 static int __init
93 setup_io_tlb_npages(char *str)
94 {
95 if (isdigit(*str)) {
96 io_tlb_nslabs = simple_strtoul(str, &str, 0) <<
97 (PAGE_SHIFT - IO_TLB_SHIFT);
98 /* avoid tail segment of size < IO_TLB_SEGSIZE */
99 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
100 }
101 if (*str == ',')
102 ++str;
103 if (!strcmp(str, "force"))
104 swiotlb_force = 1;
105 return 1;
106 }
107 __setup("swiotlb=", setup_io_tlb_npages);
108 /* make io_tlb_overflow tunable too? */
109
110 /*
111 * Statically reserve bounce buffer space and initialize bounce buffer data
112 * structures for the software IO TLB used to implement the PCI DMA API.
113 */
114 void
115 swiotlb_init_with_default_size (size_t default_size)
116 {
117 unsigned long i;
118
119 if (!io_tlb_nslabs) {
120 io_tlb_nslabs = (default_size >> PAGE_SHIFT);
121 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
122 }
123
124 /*
125 * Get IO TLB memory from the low pages
126 */
127 io_tlb_start = alloc_bootmem_low_pages(io_tlb_nslabs *
128 (1 << IO_TLB_SHIFT));
129 if (!io_tlb_start)
130 panic("Cannot allocate SWIOTLB buffer");
131 io_tlb_end = io_tlb_start + io_tlb_nslabs * (1 << IO_TLB_SHIFT);
132
133 /*
134 * Allocate and initialize the free list array. This array is used
135 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
136 * between io_tlb_start and io_tlb_end.
137 */
138 io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
139 for (i = 0; i < io_tlb_nslabs; i++)
140 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
141 io_tlb_index = 0;
142 io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(char *));
143
144 /*
145 * Get the overflow emergency buffer
146 */
147 io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
148 printk(KERN_INFO "Placing software IO TLB between 0x%lx - 0x%lx\n",
149 virt_to_phys(io_tlb_start), virt_to_phys(io_tlb_end));
150 }
151
152 void
153 swiotlb_init (void)
154 {
155 swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */
156 }
157
158 static inline int
159 address_needs_mapping(struct device *hwdev, dma_addr_t addr)
160 {
161 dma_addr_t mask = 0xffffffff;
162 /* If the device has a mask, use it, otherwise default to 32 bits */
163 if (hwdev && hwdev->dma_mask)
164 mask = *hwdev->dma_mask;
165 return (addr & ~mask) != 0;
166 }
167
168 /*
169 * Allocates bounce buffer and returns its kernel virtual address.
170 */
171 static void *
172 map_single(struct device *hwdev, char *buffer, size_t size, int dir)
173 {
174 unsigned long flags;
175 char *dma_addr;
176 unsigned int nslots, stride, index, wrap;
177 int i;
178
179 /*
180 * For mappings greater than a page, we limit the stride (and
181 * hence alignment) to a page size.
182 */
183 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
184 if (size > PAGE_SIZE)
185 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
186 else
187 stride = 1;
188
189 if (!nslots)
190 BUG();
191
192 /*
193 * Find suitable number of IO TLB entries size that will fit this
194 * request and allocate a buffer from that IO TLB pool.
195 */
196 spin_lock_irqsave(&io_tlb_lock, flags);
197 {
198 wrap = index = ALIGN(io_tlb_index, stride);
199
200 if (index >= io_tlb_nslabs)
201 wrap = index = 0;
202
203 do {
204 /*
205 * If we find a slot that indicates we have 'nslots'
206 * number of contiguous buffers, we allocate the
207 * buffers from that slot and mark the entries as '0'
208 * indicating unavailable.
209 */
210 if (io_tlb_list[index] >= nslots) {
211 int count = 0;
212
213 for (i = index; i < (int) (index + nslots); i++)
214 io_tlb_list[i] = 0;
215 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
216 io_tlb_list[i] = ++count;
217 dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
218
219 /*
220 * Update the indices to avoid searching in
221 * the next round.
222 */
223 io_tlb_index = ((index + nslots) < io_tlb_nslabs
224 ? (index + nslots) : 0);
225
226 goto found;
227 }
228 index += stride;
229 if (index >= io_tlb_nslabs)
230 index = 0;
231 } while (index != wrap);
232
233 spin_unlock_irqrestore(&io_tlb_lock, flags);
234 return NULL;
235 }
236 found:
237 spin_unlock_irqrestore(&io_tlb_lock, flags);
238
239 /*
240 * Save away the mapping from the original address to the DMA address.
241 * This is needed when we sync the memory. Then we sync the buffer if
242 * needed.
243 */
244 io_tlb_orig_addr[index] = buffer;
245 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
246 memcpy(dma_addr, buffer, size);
247
248 return dma_addr;
249 }
250
251 /*
252 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
253 */
254 static void
255 unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
256 {
257 unsigned long flags;
258 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
259 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
260 char *buffer = io_tlb_orig_addr[index];
261
262 /*
263 * First, sync the memory before unmapping the entry
264 */
265 if (buffer && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
266 /*
267 * bounce... copy the data back into the original buffer * and
268 * delete the bounce buffer.
269 */
270 memcpy(buffer, dma_addr, size);
271
272 /*
273 * Return the buffer to the free list by setting the corresponding
274 * entries to indicate the number of contigous entries available.
275 * While returning the entries to the free list, we merge the entries
276 * with slots below and above the pool being returned.
277 */
278 spin_lock_irqsave(&io_tlb_lock, flags);
279 {
280 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
281 io_tlb_list[index + nslots] : 0);
282 /*
283 * Step 1: return the slots to the free list, merging the
284 * slots with superceeding slots
285 */
286 for (i = index + nslots - 1; i >= index; i--)
287 io_tlb_list[i] = ++count;
288 /*
289 * Step 2: merge the returned slots with the preceding slots,
290 * if available (non zero)
291 */
292 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
293 io_tlb_list[i] = ++count;
294 }
295 spin_unlock_irqrestore(&io_tlb_lock, flags);
296 }
297
298 static void
299 sync_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
300 {
301 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
302 char *buffer = io_tlb_orig_addr[index];
303
304 /*
305 * bounce... copy the data back into/from the original buffer
306 * XXX How do you handle DMA_BIDIRECTIONAL here ?
307 */
308 if (dir == DMA_FROM_DEVICE)
309 memcpy(buffer, dma_addr, size);
310 else if (dir == DMA_TO_DEVICE)
311 memcpy(dma_addr, buffer, size);
312 else
313 BUG();
314 }
315
316 void *
317 swiotlb_alloc_coherent(struct device *hwdev, size_t size,
318 dma_addr_t *dma_handle, int flags)
319 {
320 unsigned long dev_addr;
321 void *ret;
322 int order = get_order(size);
323
324 /*
325 * XXX fix me: the DMA API should pass us an explicit DMA mask
326 * instead, or use ZONE_DMA32 (ia64 overloads ZONE_DMA to be a ~32
327 * bit range instead of a 16MB one).
328 */
329 flags |= GFP_DMA;
330
331 ret = (void *)__get_free_pages(flags, order);
332 if (ret && address_needs_mapping(hwdev, virt_to_phys(ret))) {
333 /*
334 * The allocated memory isn't reachable by the device.
335 * Fall back on swiotlb_map_single().
336 */
337 free_pages((unsigned long) ret, order);
338 ret = NULL;
339 }
340 if (!ret) {
341 /*
342 * We are either out of memory or the device can't DMA
343 * to GFP_DMA memory; fall back on
344 * swiotlb_map_single(), which will grab memory from
345 * the lowest available address range.
346 */
347 dma_addr_t handle;
348 handle = swiotlb_map_single(NULL, NULL, size, DMA_FROM_DEVICE);
349 if (dma_mapping_error(handle))
350 return NULL;
351
352 ret = phys_to_virt(handle);
353 }
354
355 memset(ret, 0, size);
356 dev_addr = virt_to_phys(ret);
357
358 /* Confirm address can be DMA'd by device */
359 if (address_needs_mapping(hwdev, dev_addr)) {
360 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016lx\n",
361 (unsigned long long)*hwdev->dma_mask, dev_addr);
362 panic("swiotlb_alloc_coherent: allocated memory is out of "
363 "range for device");
364 }
365 *dma_handle = dev_addr;
366 return ret;
367 }
368
369 void
370 swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
371 dma_addr_t dma_handle)
372 {
373 if (!(vaddr >= (void *)io_tlb_start
374 && vaddr < (void *)io_tlb_end))
375 free_pages((unsigned long) vaddr, get_order(size));
376 else
377 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
378 swiotlb_unmap_single (hwdev, dma_handle, size, DMA_TO_DEVICE);
379 }
380
381 static void
382 swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
383 {
384 /*
385 * Ran out of IOMMU space for this operation. This is very bad.
386 * Unfortunately the drivers cannot handle this operation properly.
387 * unless they check for pci_dma_mapping_error (most don't)
388 * When the mapping is small enough return a static buffer to limit
389 * the damage, or panic when the transfer is too big.
390 */
391 printk(KERN_ERR "PCI-DMA: Out of SW-IOMMU space for %lu bytes at "
392 "device %s\n", size, dev ? dev->bus_id : "?");
393
394 if (size > io_tlb_overflow && do_panic) {
395 if (dir == PCI_DMA_FROMDEVICE || dir == PCI_DMA_BIDIRECTIONAL)
396 panic("PCI-DMA: Memory would be corrupted\n");
397 if (dir == PCI_DMA_TODEVICE || dir == PCI_DMA_BIDIRECTIONAL)
398 panic("PCI-DMA: Random memory would be DMAed\n");
399 }
400 }
401
402 /*
403 * Map a single buffer of the indicated size for DMA in streaming mode. The
404 * PCI address to use is returned.
405 *
406 * Once the device is given the dma address, the device owns this memory until
407 * either swiotlb_unmap_single or swiotlb_dma_sync_single is performed.
408 */
409 dma_addr_t
410 swiotlb_map_single(struct device *hwdev, void *ptr, size_t size, int dir)
411 {
412 unsigned long dev_addr = virt_to_phys(ptr);
413 void *map;
414
415 if (dir == DMA_NONE)
416 BUG();
417 /*
418 * If the pointer passed in happens to be in the device's DMA window,
419 * we can safely return the device addr and not worry about bounce
420 * buffering it.
421 */
422 if (!address_needs_mapping(hwdev, dev_addr) && !swiotlb_force)
423 return dev_addr;
424
425 /*
426 * Oh well, have to allocate and map a bounce buffer.
427 */
428 map = map_single(hwdev, ptr, size, dir);
429 if (!map) {
430 swiotlb_full(hwdev, size, dir, 1);
431 map = io_tlb_overflow_buffer;
432 }
433
434 dev_addr = virt_to_phys(map);
435
436 /*
437 * Ensure that the address returned is DMA'ble
438 */
439 if (address_needs_mapping(hwdev, dev_addr))
440 panic("map_single: bounce buffer is not DMA'ble");
441
442 return dev_addr;
443 }
444
445 /*
446 * Since DMA is i-cache coherent, any (complete) pages that were written via
447 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
448 * flush them when they get mapped into an executable vm-area.
449 */
450 static void
451 mark_clean(void *addr, size_t size)
452 {
453 unsigned long pg_addr, end;
454
455 pg_addr = PAGE_ALIGN((unsigned long) addr);
456 end = (unsigned long) addr + size;
457 while (pg_addr + PAGE_SIZE <= end) {
458 struct page *page = virt_to_page(pg_addr);
459 set_bit(PG_arch_1, &page->flags);
460 pg_addr += PAGE_SIZE;
461 }
462 }
463
464 /*
465 * Unmap a single streaming mode DMA translation. The dma_addr and size must
466 * match what was provided for in a previous swiotlb_map_single call. All
467 * other usages are undefined.
468 *
469 * After this call, reads by the cpu to the buffer are guaranteed to see
470 * whatever the device wrote there.
471 */
472 void
473 swiotlb_unmap_single(struct device *hwdev, dma_addr_t dev_addr, size_t size,
474 int dir)
475 {
476 char *dma_addr = phys_to_virt(dev_addr);
477
478 if (dir == DMA_NONE)
479 BUG();
480 if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
481 unmap_single(hwdev, dma_addr, size, dir);
482 else if (dir == DMA_FROM_DEVICE)
483 mark_clean(dma_addr, size);
484 }
485
486 /*
487 * Make physical memory consistent for a single streaming mode DMA translation
488 * after a transfer.
489 *
490 * If you perform a swiotlb_map_single() but wish to interrogate the buffer
491 * using the cpu, yet do not wish to teardown the PCI dma mapping, you must
492 * call this function before doing so. At the next point you give the PCI dma
493 * address back to the card, you must first perform a
494 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
495 */
496 void
497 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
498 size_t size, int dir)
499 {
500 char *dma_addr = phys_to_virt(dev_addr);
501
502 if (dir == DMA_NONE)
503 BUG();
504 if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
505 sync_single(hwdev, dma_addr, size, dir);
506 else if (dir == DMA_FROM_DEVICE)
507 mark_clean(dma_addr, size);
508 }
509
510 void
511 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
512 size_t size, int dir)
513 {
514 char *dma_addr = phys_to_virt(dev_addr);
515
516 if (dir == DMA_NONE)
517 BUG();
518 if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
519 sync_single(hwdev, dma_addr, size, dir);
520 else if (dir == DMA_FROM_DEVICE)
521 mark_clean(dma_addr, size);
522 }
523
524 /*
525 * Map a set of buffers described by scatterlist in streaming mode for DMA.
526 * This is the scatter-gather version of the above swiotlb_map_single
527 * interface. Here the scatter gather list elements are each tagged with the
528 * appropriate dma address and length. They are obtained via
529 * sg_dma_{address,length}(SG).
530 *
531 * NOTE: An implementation may be able to use a smaller number of
532 * DMA address/length pairs than there are SG table elements.
533 * (for example via virtual mapping capabilities)
534 * The routine returns the number of addr/length pairs actually
535 * used, at most nents.
536 *
537 * Device ownership issues as mentioned above for swiotlb_map_single are the
538 * same here.
539 */
540 int
541 swiotlb_map_sg(struct device *hwdev, struct scatterlist *sg, int nelems,
542 int dir)
543 {
544 void *addr;
545 unsigned long dev_addr;
546 int i;
547
548 if (dir == DMA_NONE)
549 BUG();
550
551 for (i = 0; i < nelems; i++, sg++) {
552 addr = SG_ENT_VIRT_ADDRESS(sg);
553 dev_addr = virt_to_phys(addr);
554 if (swiotlb_force || address_needs_mapping(hwdev, dev_addr)) {
555 sg->dma_address = (dma_addr_t) virt_to_phys(map_single(hwdev, addr, sg->length, dir));
556 if (!sg->dma_address) {
557 /* Don't panic here, we expect map_sg users
558 to do proper error handling. */
559 swiotlb_full(hwdev, sg->length, dir, 0);
560 swiotlb_unmap_sg(hwdev, sg - i, i, dir);
561 sg[0].dma_length = 0;
562 return 0;
563 }
564 } else
565 sg->dma_address = dev_addr;
566 sg->dma_length = sg->length;
567 }
568 return nelems;
569 }
570
571 /*
572 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
573 * concerning calls here are the same as for swiotlb_unmap_single() above.
574 */
575 void
576 swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sg, int nelems,
577 int dir)
578 {
579 int i;
580
581 if (dir == DMA_NONE)
582 BUG();
583
584 for (i = 0; i < nelems; i++, sg++)
585 if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
586 unmap_single(hwdev, (void *) phys_to_virt(sg->dma_address), sg->dma_length, dir);
587 else if (dir == DMA_FROM_DEVICE)
588 mark_clean(SG_ENT_VIRT_ADDRESS(sg), sg->dma_length);
589 }
590
591 /*
592 * Make physical memory consistent for a set of streaming mode DMA translations
593 * after a transfer.
594 *
595 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
596 * and usage.
597 */
598 void
599 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
600 int nelems, int dir)
601 {
602 int i;
603
604 if (dir == DMA_NONE)
605 BUG();
606
607 for (i = 0; i < nelems; i++, sg++)
608 if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
609 sync_single(hwdev, (void *) sg->dma_address,
610 sg->dma_length, dir);
611 }
612
613 void
614 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
615 int nelems, int dir)
616 {
617 int i;
618
619 if (dir == DMA_NONE)
620 BUG();
621
622 for (i = 0; i < nelems; i++, sg++)
623 if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
624 sync_single(hwdev, (void *) sg->dma_address,
625 sg->dma_length, dir);
626 }
627
628 int
629 swiotlb_dma_mapping_error(dma_addr_t dma_addr)
630 {
631 return (dma_addr == virt_to_phys(io_tlb_overflow_buffer));
632 }
633
634 /*
635 * Return whether the given PCI device DMA address mask can be supported
636 * properly. For example, if your device can only drive the low 24-bits
637 * during PCI bus mastering, then you would pass 0x00ffffff as the mask to
638 * this function.
639 */
640 int
641 swiotlb_dma_supported (struct device *hwdev, u64 mask)
642 {
643 return (virt_to_phys (io_tlb_end) - 1) <= mask;
644 }
645
646 EXPORT_SYMBOL(swiotlb_init);
647 EXPORT_SYMBOL(swiotlb_map_single);
648 EXPORT_SYMBOL(swiotlb_unmap_single);
649 EXPORT_SYMBOL(swiotlb_map_sg);
650 EXPORT_SYMBOL(swiotlb_unmap_sg);
651 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
652 EXPORT_SYMBOL(swiotlb_sync_single_for_device);
653 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
654 EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
655 EXPORT_SYMBOL(swiotlb_dma_mapping_error);
656 EXPORT_SYMBOL(swiotlb_alloc_coherent);
657 EXPORT_SYMBOL(swiotlb_free_coherent);
658 EXPORT_SYMBOL(swiotlb_dma_supported);