numa: ia64: use generic percpu var numa_node_id() implementation
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / ia64 / kernel / smpboot.c
1 /*
2 * SMP boot-related support
3 *
4 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Copyright (C) 2001, 2004-2005 Intel Corp
7 * Rohit Seth <rohit.seth@intel.com>
8 * Suresh Siddha <suresh.b.siddha@intel.com>
9 * Gordon Jin <gordon.jin@intel.com>
10 * Ashok Raj <ashok.raj@intel.com>
11 *
12 * 01/05/16 Rohit Seth <rohit.seth@intel.com> Moved SMP booting functions from smp.c to here.
13 * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
14 * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence.
15 * smp_boot_cpus()/smp_commence() is replaced by
16 * smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
17 * 04/06/21 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
18 * 04/12/26 Jin Gordon <gordon.jin@intel.com>
19 * 04/12/26 Rohit Seth <rohit.seth@intel.com>
20 * Add multi-threading and multi-core detection
21 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
22 * Setup cpu_sibling_map and cpu_core_map
23 */
24
25 #include <linux/module.h>
26 #include <linux/acpi.h>
27 #include <linux/bootmem.h>
28 #include <linux/cpu.h>
29 #include <linux/delay.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/irq.h>
33 #include <linux/kernel.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/mm.h>
36 #include <linux/notifier.h>
37 #include <linux/smp.h>
38 #include <linux/spinlock.h>
39 #include <linux/efi.h>
40 #include <linux/percpu.h>
41 #include <linux/bitops.h>
42
43 #include <asm/atomic.h>
44 #include <asm/cache.h>
45 #include <asm/current.h>
46 #include <asm/delay.h>
47 #include <asm/io.h>
48 #include <asm/irq.h>
49 #include <asm/machvec.h>
50 #include <asm/mca.h>
51 #include <asm/page.h>
52 #include <asm/paravirt.h>
53 #include <asm/pgalloc.h>
54 #include <asm/pgtable.h>
55 #include <asm/processor.h>
56 #include <asm/ptrace.h>
57 #include <asm/sal.h>
58 #include <asm/system.h>
59 #include <asm/tlbflush.h>
60 #include <asm/unistd.h>
61 #include <asm/sn/arch.h>
62
63 #define SMP_DEBUG 0
64
65 #if SMP_DEBUG
66 #define Dprintk(x...) printk(x)
67 #else
68 #define Dprintk(x...)
69 #endif
70
71 #ifdef CONFIG_HOTPLUG_CPU
72 #ifdef CONFIG_PERMIT_BSP_REMOVE
73 #define bsp_remove_ok 1
74 #else
75 #define bsp_remove_ok 0
76 #endif
77
78 /*
79 * Store all idle threads, this can be reused instead of creating
80 * a new thread. Also avoids complicated thread destroy functionality
81 * for idle threads.
82 */
83 struct task_struct *idle_thread_array[NR_CPUS];
84
85 /*
86 * Global array allocated for NR_CPUS at boot time
87 */
88 struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
89
90 /*
91 * start_ap in head.S uses this to store current booting cpu
92 * info.
93 */
94 struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
95
96 #define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
97
98 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
99 #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
100
101 #else
102
103 #define get_idle_for_cpu(x) (NULL)
104 #define set_idle_for_cpu(x,p)
105 #define set_brendez_area(x)
106 #endif
107
108
109 /*
110 * ITC synchronization related stuff:
111 */
112 #define MASTER (0)
113 #define SLAVE (SMP_CACHE_BYTES/8)
114
115 #define NUM_ROUNDS 64 /* magic value */
116 #define NUM_ITERS 5 /* likewise */
117
118 static DEFINE_SPINLOCK(itc_sync_lock);
119 static volatile unsigned long go[SLAVE + 1];
120
121 #define DEBUG_ITC_SYNC 0
122
123 extern void start_ap (void);
124 extern unsigned long ia64_iobase;
125
126 struct task_struct *task_for_booting_cpu;
127
128 /*
129 * State for each CPU
130 */
131 DEFINE_PER_CPU(int, cpu_state);
132
133 cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
134 EXPORT_SYMBOL(cpu_core_map);
135 DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
136 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
137
138 int smp_num_siblings = 1;
139
140 /* which logical CPU number maps to which CPU (physical APIC ID) */
141 volatile int ia64_cpu_to_sapicid[NR_CPUS];
142 EXPORT_SYMBOL(ia64_cpu_to_sapicid);
143
144 static volatile cpumask_t cpu_callin_map;
145
146 struct smp_boot_data smp_boot_data __initdata;
147
148 unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
149
150 char __initdata no_int_routing;
151
152 unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
153
154 #ifdef CONFIG_FORCE_CPEI_RETARGET
155 #define CPEI_OVERRIDE_DEFAULT (1)
156 #else
157 #define CPEI_OVERRIDE_DEFAULT (0)
158 #endif
159
160 unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
161
162 static int __init
163 cmdl_force_cpei(char *str)
164 {
165 int value=0;
166
167 get_option (&str, &value);
168 force_cpei_retarget = value;
169
170 return 1;
171 }
172
173 __setup("force_cpei=", cmdl_force_cpei);
174
175 static int __init
176 nointroute (char *str)
177 {
178 no_int_routing = 1;
179 printk ("no_int_routing on\n");
180 return 1;
181 }
182
183 __setup("nointroute", nointroute);
184
185 static void fix_b0_for_bsp(void)
186 {
187 #ifdef CONFIG_HOTPLUG_CPU
188 int cpuid;
189 static int fix_bsp_b0 = 1;
190
191 cpuid = smp_processor_id();
192
193 /*
194 * Cache the b0 value on the first AP that comes up
195 */
196 if (!(fix_bsp_b0 && cpuid))
197 return;
198
199 sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
200 printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
201
202 fix_bsp_b0 = 0;
203 #endif
204 }
205
206 void
207 sync_master (void *arg)
208 {
209 unsigned long flags, i;
210
211 go[MASTER] = 0;
212
213 local_irq_save(flags);
214 {
215 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
216 while (!go[MASTER])
217 cpu_relax();
218 go[MASTER] = 0;
219 go[SLAVE] = ia64_get_itc();
220 }
221 }
222 local_irq_restore(flags);
223 }
224
225 /*
226 * Return the number of cycles by which our itc differs from the itc on the master
227 * (time-keeper) CPU. A positive number indicates our itc is ahead of the master,
228 * negative that it is behind.
229 */
230 static inline long
231 get_delta (long *rt, long *master)
232 {
233 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
234 unsigned long tcenter, t0, t1, tm;
235 long i;
236
237 for (i = 0; i < NUM_ITERS; ++i) {
238 t0 = ia64_get_itc();
239 go[MASTER] = 1;
240 while (!(tm = go[SLAVE]))
241 cpu_relax();
242 go[SLAVE] = 0;
243 t1 = ia64_get_itc();
244
245 if (t1 - t0 < best_t1 - best_t0)
246 best_t0 = t0, best_t1 = t1, best_tm = tm;
247 }
248
249 *rt = best_t1 - best_t0;
250 *master = best_tm - best_t0;
251
252 /* average best_t0 and best_t1 without overflow: */
253 tcenter = (best_t0/2 + best_t1/2);
254 if (best_t0 % 2 + best_t1 % 2 == 2)
255 ++tcenter;
256 return tcenter - best_tm;
257 }
258
259 /*
260 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
261 * (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of
262 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
263 * step). The basic idea is for the slave to ask the master what itc value it has and to
264 * read its own itc before and after the master responds. Each iteration gives us three
265 * timestamps:
266 *
267 * slave master
268 *
269 * t0 ---\
270 * ---\
271 * --->
272 * tm
273 * /---
274 * /---
275 * t1 <---
276 *
277 *
278 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
279 * and t1. If we achieve this, the clocks are synchronized provided the interconnect
280 * between the slave and the master is symmetric. Even if the interconnect were
281 * asymmetric, we would still know that the synchronization error is smaller than the
282 * roundtrip latency (t0 - t1).
283 *
284 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
285 * within one or two cycles. However, we can only *guarantee* that the synchronization is
286 * accurate to within a round-trip time, which is typically in the range of several
287 * hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually
288 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
289 * than half a micro second or so.
290 */
291 void
292 ia64_sync_itc (unsigned int master)
293 {
294 long i, delta, adj, adjust_latency = 0, done = 0;
295 unsigned long flags, rt, master_time_stamp, bound;
296 #if DEBUG_ITC_SYNC
297 struct {
298 long rt; /* roundtrip time */
299 long master; /* master's timestamp */
300 long diff; /* difference between midpoint and master's timestamp */
301 long lat; /* estimate of itc adjustment latency */
302 } t[NUM_ROUNDS];
303 #endif
304
305 /*
306 * Make sure local timer ticks are disabled while we sync. If
307 * they were enabled, we'd have to worry about nasty issues
308 * like setting the ITC ahead of (or a long time before) the
309 * next scheduled tick.
310 */
311 BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
312
313 go[MASTER] = 1;
314
315 if (smp_call_function_single(master, sync_master, NULL, 0) < 0) {
316 printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
317 return;
318 }
319
320 while (go[MASTER])
321 cpu_relax(); /* wait for master to be ready */
322
323 spin_lock_irqsave(&itc_sync_lock, flags);
324 {
325 for (i = 0; i < NUM_ROUNDS; ++i) {
326 delta = get_delta(&rt, &master_time_stamp);
327 if (delta == 0) {
328 done = 1; /* let's lock on to this... */
329 bound = rt;
330 }
331
332 if (!done) {
333 if (i > 0) {
334 adjust_latency += -delta;
335 adj = -delta + adjust_latency/4;
336 } else
337 adj = -delta;
338
339 ia64_set_itc(ia64_get_itc() + adj);
340 }
341 #if DEBUG_ITC_SYNC
342 t[i].rt = rt;
343 t[i].master = master_time_stamp;
344 t[i].diff = delta;
345 t[i].lat = adjust_latency/4;
346 #endif
347 }
348 }
349 spin_unlock_irqrestore(&itc_sync_lock, flags);
350
351 #if DEBUG_ITC_SYNC
352 for (i = 0; i < NUM_ROUNDS; ++i)
353 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
354 t[i].rt, t[i].master, t[i].diff, t[i].lat);
355 #endif
356
357 printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
358 "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
359 }
360
361 /*
362 * Ideally sets up per-cpu profiling hooks. Doesn't do much now...
363 */
364 static inline void __devinit
365 smp_setup_percpu_timer (void)
366 {
367 }
368
369 static void __cpuinit
370 smp_callin (void)
371 {
372 int cpuid, phys_id, itc_master;
373 struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
374 extern void ia64_init_itm(void);
375 extern volatile int time_keeper_id;
376
377 #ifdef CONFIG_PERFMON
378 extern void pfm_init_percpu(void);
379 #endif
380
381 cpuid = smp_processor_id();
382 phys_id = hard_smp_processor_id();
383 itc_master = time_keeper_id;
384
385 if (cpu_online(cpuid)) {
386 printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
387 phys_id, cpuid);
388 BUG();
389 }
390
391 fix_b0_for_bsp();
392
393 /*
394 * numa_node_id() works after this.
395 */
396 set_numa_node(cpu_to_node_map[cpuid]);
397
398 ipi_call_lock_irq();
399 spin_lock(&vector_lock);
400 /* Setup the per cpu irq handling data structures */
401 __setup_vector_irq(cpuid);
402 notify_cpu_starting(cpuid);
403 cpu_set(cpuid, cpu_online_map);
404 per_cpu(cpu_state, cpuid) = CPU_ONLINE;
405 spin_unlock(&vector_lock);
406 ipi_call_unlock_irq();
407
408 smp_setup_percpu_timer();
409
410 ia64_mca_cmc_vector_setup(); /* Setup vector on AP */
411
412 #ifdef CONFIG_PERFMON
413 pfm_init_percpu();
414 #endif
415
416 local_irq_enable();
417
418 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
419 /*
420 * Synchronize the ITC with the BP. Need to do this after irqs are
421 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
422 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
423 * local_bh_enable(), which bugs out if irqs are not enabled...
424 */
425 Dprintk("Going to syncup ITC with ITC Master.\n");
426 ia64_sync_itc(itc_master);
427 }
428
429 /*
430 * Get our bogomips.
431 */
432 ia64_init_itm();
433
434 /*
435 * Delay calibration can be skipped if new processor is identical to the
436 * previous processor.
437 */
438 last_cpuinfo = cpu_data(cpuid - 1);
439 this_cpuinfo = local_cpu_data;
440 if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
441 last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
442 last_cpuinfo->features != this_cpuinfo->features ||
443 last_cpuinfo->revision != this_cpuinfo->revision ||
444 last_cpuinfo->family != this_cpuinfo->family ||
445 last_cpuinfo->archrev != this_cpuinfo->archrev ||
446 last_cpuinfo->model != this_cpuinfo->model)
447 calibrate_delay();
448 local_cpu_data->loops_per_jiffy = loops_per_jiffy;
449
450 /*
451 * Allow the master to continue.
452 */
453 cpu_set(cpuid, cpu_callin_map);
454 Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
455 }
456
457
458 /*
459 * Activate a secondary processor. head.S calls this.
460 */
461 int __cpuinit
462 start_secondary (void *unused)
463 {
464 /* Early console may use I/O ports */
465 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
466 #ifndef CONFIG_PRINTK_TIME
467 Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
468 #endif
469 efi_map_pal_code();
470 cpu_init();
471 preempt_disable();
472 smp_callin();
473
474 cpu_idle();
475 return 0;
476 }
477
478 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
479 {
480 return NULL;
481 }
482
483 struct create_idle {
484 struct work_struct work;
485 struct task_struct *idle;
486 struct completion done;
487 int cpu;
488 };
489
490 void __cpuinit
491 do_fork_idle(struct work_struct *work)
492 {
493 struct create_idle *c_idle =
494 container_of(work, struct create_idle, work);
495
496 c_idle->idle = fork_idle(c_idle->cpu);
497 complete(&c_idle->done);
498 }
499
500 static int __cpuinit
501 do_boot_cpu (int sapicid, int cpu)
502 {
503 int timeout;
504 struct create_idle c_idle = {
505 .work = __WORK_INITIALIZER(c_idle.work, do_fork_idle),
506 .cpu = cpu,
507 .done = COMPLETION_INITIALIZER(c_idle.done),
508 };
509
510 c_idle.idle = get_idle_for_cpu(cpu);
511 if (c_idle.idle) {
512 init_idle(c_idle.idle, cpu);
513 goto do_rest;
514 }
515
516 /*
517 * We can't use kernel_thread since we must avoid to reschedule the child.
518 */
519 if (!keventd_up() || current_is_keventd())
520 c_idle.work.func(&c_idle.work);
521 else {
522 schedule_work(&c_idle.work);
523 wait_for_completion(&c_idle.done);
524 }
525
526 if (IS_ERR(c_idle.idle))
527 panic("failed fork for CPU %d", cpu);
528
529 set_idle_for_cpu(cpu, c_idle.idle);
530
531 do_rest:
532 task_for_booting_cpu = c_idle.idle;
533
534 Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
535
536 set_brendez_area(cpu);
537 platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
538
539 /*
540 * Wait 10s total for the AP to start
541 */
542 Dprintk("Waiting on callin_map ...");
543 for (timeout = 0; timeout < 100000; timeout++) {
544 if (cpu_isset(cpu, cpu_callin_map))
545 break; /* It has booted */
546 udelay(100);
547 }
548 Dprintk("\n");
549
550 if (!cpu_isset(cpu, cpu_callin_map)) {
551 printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
552 ia64_cpu_to_sapicid[cpu] = -1;
553 cpu_clear(cpu, cpu_online_map); /* was set in smp_callin() */
554 return -EINVAL;
555 }
556 return 0;
557 }
558
559 static int __init
560 decay (char *str)
561 {
562 int ticks;
563 get_option (&str, &ticks);
564 return 1;
565 }
566
567 __setup("decay=", decay);
568
569 /*
570 * Initialize the logical CPU number to SAPICID mapping
571 */
572 void __init
573 smp_build_cpu_map (void)
574 {
575 int sapicid, cpu, i;
576 int boot_cpu_id = hard_smp_processor_id();
577
578 for (cpu = 0; cpu < NR_CPUS; cpu++) {
579 ia64_cpu_to_sapicid[cpu] = -1;
580 }
581
582 ia64_cpu_to_sapicid[0] = boot_cpu_id;
583 cpus_clear(cpu_present_map);
584 set_cpu_present(0, true);
585 set_cpu_possible(0, true);
586 for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
587 sapicid = smp_boot_data.cpu_phys_id[i];
588 if (sapicid == boot_cpu_id)
589 continue;
590 set_cpu_present(cpu, true);
591 set_cpu_possible(cpu, true);
592 ia64_cpu_to_sapicid[cpu] = sapicid;
593 cpu++;
594 }
595 }
596
597 /*
598 * Cycle through the APs sending Wakeup IPIs to boot each.
599 */
600 void __init
601 smp_prepare_cpus (unsigned int max_cpus)
602 {
603 int boot_cpu_id = hard_smp_processor_id();
604
605 /*
606 * Initialize the per-CPU profiling counter/multiplier
607 */
608
609 smp_setup_percpu_timer();
610
611 /*
612 * We have the boot CPU online for sure.
613 */
614 cpu_set(0, cpu_online_map);
615 cpu_set(0, cpu_callin_map);
616
617 local_cpu_data->loops_per_jiffy = loops_per_jiffy;
618 ia64_cpu_to_sapicid[0] = boot_cpu_id;
619
620 printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
621
622 current_thread_info()->cpu = 0;
623
624 /*
625 * If SMP should be disabled, then really disable it!
626 */
627 if (!max_cpus) {
628 printk(KERN_INFO "SMP mode deactivated.\n");
629 init_cpu_online(cpumask_of(0));
630 init_cpu_present(cpumask_of(0));
631 init_cpu_possible(cpumask_of(0));
632 return;
633 }
634 }
635
636 void __devinit smp_prepare_boot_cpu(void)
637 {
638 cpu_set(smp_processor_id(), cpu_online_map);
639 cpu_set(smp_processor_id(), cpu_callin_map);
640 set_numa_node(cpu_to_node_map[smp_processor_id()]);
641 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
642 paravirt_post_smp_prepare_boot_cpu();
643 }
644
645 #ifdef CONFIG_HOTPLUG_CPU
646 static inline void
647 clear_cpu_sibling_map(int cpu)
648 {
649 int i;
650
651 for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
652 cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
653 for_each_cpu_mask(i, cpu_core_map[cpu])
654 cpu_clear(cpu, cpu_core_map[i]);
655
656 per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
657 }
658
659 static void
660 remove_siblinginfo(int cpu)
661 {
662 int last = 0;
663
664 if (cpu_data(cpu)->threads_per_core == 1 &&
665 cpu_data(cpu)->cores_per_socket == 1) {
666 cpu_clear(cpu, cpu_core_map[cpu]);
667 cpu_clear(cpu, per_cpu(cpu_sibling_map, cpu));
668 return;
669 }
670
671 last = (cpus_weight(cpu_core_map[cpu]) == 1 ? 1 : 0);
672
673 /* remove it from all sibling map's */
674 clear_cpu_sibling_map(cpu);
675 }
676
677 extern void fixup_irqs(void);
678
679 int migrate_platform_irqs(unsigned int cpu)
680 {
681 int new_cpei_cpu;
682 struct irq_desc *desc = NULL;
683 const struct cpumask *mask;
684 int retval = 0;
685
686 /*
687 * dont permit CPEI target to removed.
688 */
689 if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
690 printk ("CPU (%d) is CPEI Target\n", cpu);
691 if (can_cpei_retarget()) {
692 /*
693 * Now re-target the CPEI to a different processor
694 */
695 new_cpei_cpu = any_online_cpu(cpu_online_map);
696 mask = cpumask_of(new_cpei_cpu);
697 set_cpei_target_cpu(new_cpei_cpu);
698 desc = irq_desc + ia64_cpe_irq;
699 /*
700 * Switch for now, immediately, we need to do fake intr
701 * as other interrupts, but need to study CPEI behaviour with
702 * polling before making changes.
703 */
704 if (desc) {
705 desc->chip->disable(ia64_cpe_irq);
706 desc->chip->set_affinity(ia64_cpe_irq, mask);
707 desc->chip->enable(ia64_cpe_irq);
708 printk ("Re-targetting CPEI to cpu %d\n", new_cpei_cpu);
709 }
710 }
711 if (!desc) {
712 printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
713 retval = -EBUSY;
714 }
715 }
716 return retval;
717 }
718
719 /* must be called with cpucontrol mutex held */
720 int __cpu_disable(void)
721 {
722 int cpu = smp_processor_id();
723
724 /*
725 * dont permit boot processor for now
726 */
727 if (cpu == 0 && !bsp_remove_ok) {
728 printk ("Your platform does not support removal of BSP\n");
729 return (-EBUSY);
730 }
731
732 if (ia64_platform_is("sn2")) {
733 if (!sn_cpu_disable_allowed(cpu))
734 return -EBUSY;
735 }
736
737 cpu_clear(cpu, cpu_online_map);
738
739 if (migrate_platform_irqs(cpu)) {
740 cpu_set(cpu, cpu_online_map);
741 return -EBUSY;
742 }
743
744 remove_siblinginfo(cpu);
745 fixup_irqs();
746 local_flush_tlb_all();
747 cpu_clear(cpu, cpu_callin_map);
748 return 0;
749 }
750
751 void __cpu_die(unsigned int cpu)
752 {
753 unsigned int i;
754
755 for (i = 0; i < 100; i++) {
756 /* They ack this in play_dead by setting CPU_DEAD */
757 if (per_cpu(cpu_state, cpu) == CPU_DEAD)
758 {
759 printk ("CPU %d is now offline\n", cpu);
760 return;
761 }
762 msleep(100);
763 }
764 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
765 }
766 #endif /* CONFIG_HOTPLUG_CPU */
767
768 void
769 smp_cpus_done (unsigned int dummy)
770 {
771 int cpu;
772 unsigned long bogosum = 0;
773
774 /*
775 * Allow the user to impress friends.
776 */
777
778 for_each_online_cpu(cpu) {
779 bogosum += cpu_data(cpu)->loops_per_jiffy;
780 }
781
782 printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
783 (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
784 }
785
786 static inline void __devinit
787 set_cpu_sibling_map(int cpu)
788 {
789 int i;
790
791 for_each_online_cpu(i) {
792 if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
793 cpu_set(i, cpu_core_map[cpu]);
794 cpu_set(cpu, cpu_core_map[i]);
795 if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
796 cpu_set(i, per_cpu(cpu_sibling_map, cpu));
797 cpu_set(cpu, per_cpu(cpu_sibling_map, i));
798 }
799 }
800 }
801 }
802
803 int __cpuinit
804 __cpu_up (unsigned int cpu)
805 {
806 int ret;
807 int sapicid;
808
809 sapicid = ia64_cpu_to_sapicid[cpu];
810 if (sapicid == -1)
811 return -EINVAL;
812
813 /*
814 * Already booted cpu? not valid anymore since we dont
815 * do idle loop tightspin anymore.
816 */
817 if (cpu_isset(cpu, cpu_callin_map))
818 return -EINVAL;
819
820 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
821 /* Processor goes to start_secondary(), sets online flag */
822 ret = do_boot_cpu(sapicid, cpu);
823 if (ret < 0)
824 return ret;
825
826 if (cpu_data(cpu)->threads_per_core == 1 &&
827 cpu_data(cpu)->cores_per_socket == 1) {
828 cpu_set(cpu, per_cpu(cpu_sibling_map, cpu));
829 cpu_set(cpu, cpu_core_map[cpu]);
830 return 0;
831 }
832
833 set_cpu_sibling_map(cpu);
834
835 return 0;
836 }
837
838 /*
839 * Assume that CPUs have been discovered by some platform-dependent interface. For
840 * SoftSDV/Lion, that would be ACPI.
841 *
842 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
843 */
844 void __init
845 init_smp_config(void)
846 {
847 struct fptr {
848 unsigned long fp;
849 unsigned long gp;
850 } *ap_startup;
851 long sal_ret;
852
853 /* Tell SAL where to drop the APs. */
854 ap_startup = (struct fptr *) start_ap;
855 sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
856 ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
857 if (sal_ret < 0)
858 printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
859 ia64_sal_strerror(sal_ret));
860 }
861
862 /*
863 * identify_siblings(cpu) gets called from identify_cpu. This populates the
864 * information related to logical execution units in per_cpu_data structure.
865 */
866 void __devinit
867 identify_siblings(struct cpuinfo_ia64 *c)
868 {
869 long status;
870 u16 pltid;
871 pal_logical_to_physical_t info;
872
873 status = ia64_pal_logical_to_phys(-1, &info);
874 if (status != PAL_STATUS_SUCCESS) {
875 if (status != PAL_STATUS_UNIMPLEMENTED) {
876 printk(KERN_ERR
877 "ia64_pal_logical_to_phys failed with %ld\n",
878 status);
879 return;
880 }
881
882 info.overview_ppid = 0;
883 info.overview_cpp = 1;
884 info.overview_tpc = 1;
885 }
886
887 status = ia64_sal_physical_id_info(&pltid);
888 if (status != PAL_STATUS_SUCCESS) {
889 if (status != PAL_STATUS_UNIMPLEMENTED)
890 printk(KERN_ERR
891 "ia64_sal_pltid failed with %ld\n",
892 status);
893 return;
894 }
895
896 c->socket_id = (pltid << 8) | info.overview_ppid;
897
898 if (info.overview_cpp == 1 && info.overview_tpc == 1)
899 return;
900
901 c->cores_per_socket = info.overview_cpp;
902 c->threads_per_core = info.overview_tpc;
903 c->num_log = info.overview_num_log;
904
905 c->core_id = info.log1_cid;
906 c->thread_id = info.log1_tid;
907 }
908
909 /*
910 * returns non zero, if multi-threading is enabled
911 * on at least one physical package. Due to hotplug cpu
912 * and (maxcpus=), all threads may not necessarily be enabled
913 * even though the processor supports multi-threading.
914 */
915 int is_multithreading_enabled(void)
916 {
917 int i, j;
918
919 for_each_present_cpu(i) {
920 for_each_present_cpu(j) {
921 if (j == i)
922 continue;
923 if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
924 if (cpu_data(j)->core_id == cpu_data(i)->core_id)
925 return 1;
926 }
927 }
928 }
929 return 0;
930 }
931 EXPORT_SYMBOL_GPL(is_multithreading_enabled);