include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / ia64 / kernel / ptrace.c
1 /*
2 * Kernel support for the ptrace() and syscall tracing interfaces.
3 *
4 * Copyright (C) 1999-2005 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Copyright (C) 2006 Intel Co
7 * 2006-08-12 - IA64 Native Utrace implementation support added by
8 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 *
10 * Derived from the x86 and Alpha versions.
11 */
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/mm.h>
15 #include <linux/errno.h>
16 #include <linux/ptrace.h>
17 #include <linux/user.h>
18 #include <linux/security.h>
19 #include <linux/audit.h>
20 #include <linux/signal.h>
21 #include <linux/regset.h>
22 #include <linux/elf.h>
23 #include <linux/tracehook.h>
24
25 #include <asm/pgtable.h>
26 #include <asm/processor.h>
27 #include <asm/ptrace_offsets.h>
28 #include <asm/rse.h>
29 #include <asm/system.h>
30 #include <asm/uaccess.h>
31 #include <asm/unwind.h>
32 #ifdef CONFIG_PERFMON
33 #include <asm/perfmon.h>
34 #endif
35
36 #include "entry.h"
37
38 /*
39 * Bits in the PSR that we allow ptrace() to change:
40 * be, up, ac, mfl, mfh (the user mask; five bits total)
41 * db (debug breakpoint fault; one bit)
42 * id (instruction debug fault disable; one bit)
43 * dd (data debug fault disable; one bit)
44 * ri (restart instruction; two bits)
45 * is (instruction set; one bit)
46 */
47 #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
48 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
49
50 #define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
51 #define PFM_MASK MASK(38)
52
53 #define PTRACE_DEBUG 0
54
55 #if PTRACE_DEBUG
56 # define dprintk(format...) printk(format)
57 # define inline
58 #else
59 # define dprintk(format...)
60 #endif
61
62 /* Return TRUE if PT was created due to kernel-entry via a system-call. */
63
64 static inline int
65 in_syscall (struct pt_regs *pt)
66 {
67 return (long) pt->cr_ifs >= 0;
68 }
69
70 /*
71 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
72 * bitset where bit i is set iff the NaT bit of register i is set.
73 */
74 unsigned long
75 ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
76 {
77 # define GET_BITS(first, last, unat) \
78 ({ \
79 unsigned long bit = ia64_unat_pos(&pt->r##first); \
80 unsigned long nbits = (last - first + 1); \
81 unsigned long mask = MASK(nbits) << first; \
82 unsigned long dist; \
83 if (bit < first) \
84 dist = 64 + bit - first; \
85 else \
86 dist = bit - first; \
87 ia64_rotr(unat, dist) & mask; \
88 })
89 unsigned long val;
90
91 /*
92 * Registers that are stored consecutively in struct pt_regs
93 * can be handled in parallel. If the register order in
94 * struct_pt_regs changes, this code MUST be updated.
95 */
96 val = GET_BITS( 1, 1, scratch_unat);
97 val |= GET_BITS( 2, 3, scratch_unat);
98 val |= GET_BITS(12, 13, scratch_unat);
99 val |= GET_BITS(14, 14, scratch_unat);
100 val |= GET_BITS(15, 15, scratch_unat);
101 val |= GET_BITS( 8, 11, scratch_unat);
102 val |= GET_BITS(16, 31, scratch_unat);
103 return val;
104
105 # undef GET_BITS
106 }
107
108 /*
109 * Set the NaT bits for the scratch registers according to NAT and
110 * return the resulting unat (assuming the scratch registers are
111 * stored in PT).
112 */
113 unsigned long
114 ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
115 {
116 # define PUT_BITS(first, last, nat) \
117 ({ \
118 unsigned long bit = ia64_unat_pos(&pt->r##first); \
119 unsigned long nbits = (last - first + 1); \
120 unsigned long mask = MASK(nbits) << first; \
121 long dist; \
122 if (bit < first) \
123 dist = 64 + bit - first; \
124 else \
125 dist = bit - first; \
126 ia64_rotl(nat & mask, dist); \
127 })
128 unsigned long scratch_unat;
129
130 /*
131 * Registers that are stored consecutively in struct pt_regs
132 * can be handled in parallel. If the register order in
133 * struct_pt_regs changes, this code MUST be updated.
134 */
135 scratch_unat = PUT_BITS( 1, 1, nat);
136 scratch_unat |= PUT_BITS( 2, 3, nat);
137 scratch_unat |= PUT_BITS(12, 13, nat);
138 scratch_unat |= PUT_BITS(14, 14, nat);
139 scratch_unat |= PUT_BITS(15, 15, nat);
140 scratch_unat |= PUT_BITS( 8, 11, nat);
141 scratch_unat |= PUT_BITS(16, 31, nat);
142
143 return scratch_unat;
144
145 # undef PUT_BITS
146 }
147
148 #define IA64_MLX_TEMPLATE 0x2
149 #define IA64_MOVL_OPCODE 6
150
151 void
152 ia64_increment_ip (struct pt_regs *regs)
153 {
154 unsigned long w0, ri = ia64_psr(regs)->ri + 1;
155
156 if (ri > 2) {
157 ri = 0;
158 regs->cr_iip += 16;
159 } else if (ri == 2) {
160 get_user(w0, (char __user *) regs->cr_iip + 0);
161 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
162 /*
163 * rfi'ing to slot 2 of an MLX bundle causes
164 * an illegal operation fault. We don't want
165 * that to happen...
166 */
167 ri = 0;
168 regs->cr_iip += 16;
169 }
170 }
171 ia64_psr(regs)->ri = ri;
172 }
173
174 void
175 ia64_decrement_ip (struct pt_regs *regs)
176 {
177 unsigned long w0, ri = ia64_psr(regs)->ri - 1;
178
179 if (ia64_psr(regs)->ri == 0) {
180 regs->cr_iip -= 16;
181 ri = 2;
182 get_user(w0, (char __user *) regs->cr_iip + 0);
183 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
184 /*
185 * rfi'ing to slot 2 of an MLX bundle causes
186 * an illegal operation fault. We don't want
187 * that to happen...
188 */
189 ri = 1;
190 }
191 }
192 ia64_psr(regs)->ri = ri;
193 }
194
195 /*
196 * This routine is used to read an rnat bits that are stored on the
197 * kernel backing store. Since, in general, the alignment of the user
198 * and kernel are different, this is not completely trivial. In
199 * essence, we need to construct the user RNAT based on up to two
200 * kernel RNAT values and/or the RNAT value saved in the child's
201 * pt_regs.
202 *
203 * user rbs
204 *
205 * +--------+ <-- lowest address
206 * | slot62 |
207 * +--------+
208 * | rnat | 0x....1f8
209 * +--------+
210 * | slot00 | \
211 * +--------+ |
212 * | slot01 | > child_regs->ar_rnat
213 * +--------+ |
214 * | slot02 | / kernel rbs
215 * +--------+ +--------+
216 * <- child_regs->ar_bspstore | slot61 | <-- krbs
217 * +- - - - + +--------+
218 * | slot62 |
219 * +- - - - + +--------+
220 * | rnat |
221 * +- - - - + +--------+
222 * vrnat | slot00 |
223 * +- - - - + +--------+
224 * = =
225 * +--------+
226 * | slot00 | \
227 * +--------+ |
228 * | slot01 | > child_stack->ar_rnat
229 * +--------+ |
230 * | slot02 | /
231 * +--------+
232 * <--- child_stack->ar_bspstore
233 *
234 * The way to think of this code is as follows: bit 0 in the user rnat
235 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
236 * value. The kernel rnat value holding this bit is stored in
237 * variable rnat0. rnat1 is loaded with the kernel rnat value that
238 * form the upper bits of the user rnat value.
239 *
240 * Boundary cases:
241 *
242 * o when reading the rnat "below" the first rnat slot on the kernel
243 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
244 * merged in from pt->ar_rnat.
245 *
246 * o when reading the rnat "above" the last rnat slot on the kernel
247 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
248 */
249 static unsigned long
250 get_rnat (struct task_struct *task, struct switch_stack *sw,
251 unsigned long *krbs, unsigned long *urnat_addr,
252 unsigned long *urbs_end)
253 {
254 unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
255 unsigned long umask = 0, mask, m;
256 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
257 long num_regs, nbits;
258 struct pt_regs *pt;
259
260 pt = task_pt_regs(task);
261 kbsp = (unsigned long *) sw->ar_bspstore;
262 ubspstore = (unsigned long *) pt->ar_bspstore;
263
264 if (urbs_end < urnat_addr)
265 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
266 else
267 nbits = 63;
268 mask = MASK(nbits);
269 /*
270 * First, figure out which bit number slot 0 in user-land maps
271 * to in the kernel rnat. Do this by figuring out how many
272 * register slots we're beyond the user's backingstore and
273 * then computing the equivalent address in kernel space.
274 */
275 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
276 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
277 shift = ia64_rse_slot_num(slot0_kaddr);
278 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
279 rnat0_kaddr = rnat1_kaddr - 64;
280
281 if (ubspstore + 63 > urnat_addr) {
282 /* some bits need to be merged in from pt->ar_rnat */
283 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
284 urnat = (pt->ar_rnat & umask);
285 mask &= ~umask;
286 if (!mask)
287 return urnat;
288 }
289
290 m = mask << shift;
291 if (rnat0_kaddr >= kbsp)
292 rnat0 = sw->ar_rnat;
293 else if (rnat0_kaddr > krbs)
294 rnat0 = *rnat0_kaddr;
295 urnat |= (rnat0 & m) >> shift;
296
297 m = mask >> (63 - shift);
298 if (rnat1_kaddr >= kbsp)
299 rnat1 = sw->ar_rnat;
300 else if (rnat1_kaddr > krbs)
301 rnat1 = *rnat1_kaddr;
302 urnat |= (rnat1 & m) << (63 - shift);
303 return urnat;
304 }
305
306 /*
307 * The reverse of get_rnat.
308 */
309 static void
310 put_rnat (struct task_struct *task, struct switch_stack *sw,
311 unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
312 unsigned long *urbs_end)
313 {
314 unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
315 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
316 long num_regs, nbits;
317 struct pt_regs *pt;
318 unsigned long cfm, *urbs_kargs;
319
320 pt = task_pt_regs(task);
321 kbsp = (unsigned long *) sw->ar_bspstore;
322 ubspstore = (unsigned long *) pt->ar_bspstore;
323
324 urbs_kargs = urbs_end;
325 if (in_syscall(pt)) {
326 /*
327 * If entered via syscall, don't allow user to set rnat bits
328 * for syscall args.
329 */
330 cfm = pt->cr_ifs;
331 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
332 }
333
334 if (urbs_kargs >= urnat_addr)
335 nbits = 63;
336 else {
337 if ((urnat_addr - 63) >= urbs_kargs)
338 return;
339 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
340 }
341 mask = MASK(nbits);
342
343 /*
344 * First, figure out which bit number slot 0 in user-land maps
345 * to in the kernel rnat. Do this by figuring out how many
346 * register slots we're beyond the user's backingstore and
347 * then computing the equivalent address in kernel space.
348 */
349 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
350 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
351 shift = ia64_rse_slot_num(slot0_kaddr);
352 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
353 rnat0_kaddr = rnat1_kaddr - 64;
354
355 if (ubspstore + 63 > urnat_addr) {
356 /* some bits need to be place in pt->ar_rnat: */
357 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
358 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
359 mask &= ~umask;
360 if (!mask)
361 return;
362 }
363 /*
364 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
365 * rnat slot is ignored. so we don't have to clear it here.
366 */
367 rnat0 = (urnat << shift);
368 m = mask << shift;
369 if (rnat0_kaddr >= kbsp)
370 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
371 else if (rnat0_kaddr > krbs)
372 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
373
374 rnat1 = (urnat >> (63 - shift));
375 m = mask >> (63 - shift);
376 if (rnat1_kaddr >= kbsp)
377 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
378 else if (rnat1_kaddr > krbs)
379 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
380 }
381
382 static inline int
383 on_kernel_rbs (unsigned long addr, unsigned long bspstore,
384 unsigned long urbs_end)
385 {
386 unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
387 urbs_end);
388 return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
389 }
390
391 /*
392 * Read a word from the user-level backing store of task CHILD. ADDR
393 * is the user-level address to read the word from, VAL a pointer to
394 * the return value, and USER_BSP gives the end of the user-level
395 * backing store (i.e., it's the address that would be in ar.bsp after
396 * the user executed a "cover" instruction).
397 *
398 * This routine takes care of accessing the kernel register backing
399 * store for those registers that got spilled there. It also takes
400 * care of calculating the appropriate RNaT collection words.
401 */
402 long
403 ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
404 unsigned long user_rbs_end, unsigned long addr, long *val)
405 {
406 unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
407 struct pt_regs *child_regs;
408 size_t copied;
409 long ret;
410
411 urbs_end = (long *) user_rbs_end;
412 laddr = (unsigned long *) addr;
413 child_regs = task_pt_regs(child);
414 bspstore = (unsigned long *) child_regs->ar_bspstore;
415 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
416 if (on_kernel_rbs(addr, (unsigned long) bspstore,
417 (unsigned long) urbs_end))
418 {
419 /*
420 * Attempt to read the RBS in an area that's actually
421 * on the kernel RBS => read the corresponding bits in
422 * the kernel RBS.
423 */
424 rnat_addr = ia64_rse_rnat_addr(laddr);
425 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
426
427 if (laddr == rnat_addr) {
428 /* return NaT collection word itself */
429 *val = ret;
430 return 0;
431 }
432
433 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
434 /*
435 * It is implementation dependent whether the
436 * data portion of a NaT value gets saved on a
437 * st8.spill or RSE spill (e.g., see EAS 2.6,
438 * 4.4.4.6 Register Spill and Fill). To get
439 * consistent behavior across all possible
440 * IA-64 implementations, we return zero in
441 * this case.
442 */
443 *val = 0;
444 return 0;
445 }
446
447 if (laddr < urbs_end) {
448 /*
449 * The desired word is on the kernel RBS and
450 * is not a NaT.
451 */
452 regnum = ia64_rse_num_regs(bspstore, laddr);
453 *val = *ia64_rse_skip_regs(krbs, regnum);
454 return 0;
455 }
456 }
457 copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
458 if (copied != sizeof(ret))
459 return -EIO;
460 *val = ret;
461 return 0;
462 }
463
464 long
465 ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
466 unsigned long user_rbs_end, unsigned long addr, long val)
467 {
468 unsigned long *bspstore, *krbs, regnum, *laddr;
469 unsigned long *urbs_end = (long *) user_rbs_end;
470 struct pt_regs *child_regs;
471
472 laddr = (unsigned long *) addr;
473 child_regs = task_pt_regs(child);
474 bspstore = (unsigned long *) child_regs->ar_bspstore;
475 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
476 if (on_kernel_rbs(addr, (unsigned long) bspstore,
477 (unsigned long) urbs_end))
478 {
479 /*
480 * Attempt to write the RBS in an area that's actually
481 * on the kernel RBS => write the corresponding bits
482 * in the kernel RBS.
483 */
484 if (ia64_rse_is_rnat_slot(laddr))
485 put_rnat(child, child_stack, krbs, laddr, val,
486 urbs_end);
487 else {
488 if (laddr < urbs_end) {
489 regnum = ia64_rse_num_regs(bspstore, laddr);
490 *ia64_rse_skip_regs(krbs, regnum) = val;
491 }
492 }
493 } else if (access_process_vm(child, addr, &val, sizeof(val), 1)
494 != sizeof(val))
495 return -EIO;
496 return 0;
497 }
498
499 /*
500 * Calculate the address of the end of the user-level register backing
501 * store. This is the address that would have been stored in ar.bsp
502 * if the user had executed a "cover" instruction right before
503 * entering the kernel. If CFMP is not NULL, it is used to return the
504 * "current frame mask" that was active at the time the kernel was
505 * entered.
506 */
507 unsigned long
508 ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
509 unsigned long *cfmp)
510 {
511 unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
512 long ndirty;
513
514 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
515 bspstore = (unsigned long *) pt->ar_bspstore;
516 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
517
518 if (in_syscall(pt))
519 ndirty += (cfm & 0x7f);
520 else
521 cfm &= ~(1UL << 63); /* clear valid bit */
522
523 if (cfmp)
524 *cfmp = cfm;
525 return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
526 }
527
528 /*
529 * Synchronize (i.e, write) the RSE backing store living in kernel
530 * space to the VM of the CHILD task. SW and PT are the pointers to
531 * the switch_stack and pt_regs structures, respectively.
532 * USER_RBS_END is the user-level address at which the backing store
533 * ends.
534 */
535 long
536 ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
537 unsigned long user_rbs_start, unsigned long user_rbs_end)
538 {
539 unsigned long addr, val;
540 long ret;
541
542 /* now copy word for word from kernel rbs to user rbs: */
543 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
544 ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
545 if (ret < 0)
546 return ret;
547 if (access_process_vm(child, addr, &val, sizeof(val), 1)
548 != sizeof(val))
549 return -EIO;
550 }
551 return 0;
552 }
553
554 static long
555 ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
556 unsigned long user_rbs_start, unsigned long user_rbs_end)
557 {
558 unsigned long addr, val;
559 long ret;
560
561 /* now copy word for word from user rbs to kernel rbs: */
562 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
563 if (access_process_vm(child, addr, &val, sizeof(val), 0)
564 != sizeof(val))
565 return -EIO;
566
567 ret = ia64_poke(child, sw, user_rbs_end, addr, val);
568 if (ret < 0)
569 return ret;
570 }
571 return 0;
572 }
573
574 typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
575 unsigned long, unsigned long);
576
577 static void do_sync_rbs(struct unw_frame_info *info, void *arg)
578 {
579 struct pt_regs *pt;
580 unsigned long urbs_end;
581 syncfunc_t fn = arg;
582
583 if (unw_unwind_to_user(info) < 0)
584 return;
585 pt = task_pt_regs(info->task);
586 urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
587
588 fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
589 }
590
591 /*
592 * when a thread is stopped (ptraced), debugger might change thread's user
593 * stack (change memory directly), and we must avoid the RSE stored in kernel
594 * to override user stack (user space's RSE is newer than kernel's in the
595 * case). To workaround the issue, we copy kernel RSE to user RSE before the
596 * task is stopped, so user RSE has updated data. we then copy user RSE to
597 * kernel after the task is resummed from traced stop and kernel will use the
598 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
599 * synchronize user RSE to kernel.
600 */
601 void ia64_ptrace_stop(void)
602 {
603 if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
604 return;
605 set_notify_resume(current);
606 unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
607 }
608
609 /*
610 * This is called to read back the register backing store.
611 */
612 void ia64_sync_krbs(void)
613 {
614 clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
615
616 unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
617 }
618
619 /*
620 * After PTRACE_ATTACH, a thread's register backing store area in user
621 * space is assumed to contain correct data whenever the thread is
622 * stopped. arch_ptrace_stop takes care of this on tracing stops.
623 * But if the child was already stopped for job control when we attach
624 * to it, then it might not ever get into ptrace_stop by the time we
625 * want to examine the user memory containing the RBS.
626 */
627 void
628 ptrace_attach_sync_user_rbs (struct task_struct *child)
629 {
630 int stopped = 0;
631 struct unw_frame_info info;
632
633 /*
634 * If the child is in TASK_STOPPED, we need to change that to
635 * TASK_TRACED momentarily while we operate on it. This ensures
636 * that the child won't be woken up and return to user mode while
637 * we are doing the sync. (It can only be woken up for SIGKILL.)
638 */
639
640 read_lock(&tasklist_lock);
641 if (child->signal) {
642 spin_lock_irq(&child->sighand->siglock);
643 if (child->state == TASK_STOPPED &&
644 !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
645 set_notify_resume(child);
646
647 child->state = TASK_TRACED;
648 stopped = 1;
649 }
650 spin_unlock_irq(&child->sighand->siglock);
651 }
652 read_unlock(&tasklist_lock);
653
654 if (!stopped)
655 return;
656
657 unw_init_from_blocked_task(&info, child);
658 do_sync_rbs(&info, ia64_sync_user_rbs);
659
660 /*
661 * Now move the child back into TASK_STOPPED if it should be in a
662 * job control stop, so that SIGCONT can be used to wake it up.
663 */
664 read_lock(&tasklist_lock);
665 if (child->signal) {
666 spin_lock_irq(&child->sighand->siglock);
667 if (child->state == TASK_TRACED &&
668 (child->signal->flags & SIGNAL_STOP_STOPPED)) {
669 child->state = TASK_STOPPED;
670 }
671 spin_unlock_irq(&child->sighand->siglock);
672 }
673 read_unlock(&tasklist_lock);
674 }
675
676 static inline int
677 thread_matches (struct task_struct *thread, unsigned long addr)
678 {
679 unsigned long thread_rbs_end;
680 struct pt_regs *thread_regs;
681
682 if (ptrace_check_attach(thread, 0) < 0)
683 /*
684 * If the thread is not in an attachable state, we'll
685 * ignore it. The net effect is that if ADDR happens
686 * to overlap with the portion of the thread's
687 * register backing store that is currently residing
688 * on the thread's kernel stack, then ptrace() may end
689 * up accessing a stale value. But if the thread
690 * isn't stopped, that's a problem anyhow, so we're
691 * doing as well as we can...
692 */
693 return 0;
694
695 thread_regs = task_pt_regs(thread);
696 thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
697 if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
698 return 0;
699
700 return 1; /* looks like we've got a winner */
701 }
702
703 /*
704 * Write f32-f127 back to task->thread.fph if it has been modified.
705 */
706 inline void
707 ia64_flush_fph (struct task_struct *task)
708 {
709 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
710
711 /*
712 * Prevent migrating this task while
713 * we're fiddling with the FPU state
714 */
715 preempt_disable();
716 if (ia64_is_local_fpu_owner(task) && psr->mfh) {
717 psr->mfh = 0;
718 task->thread.flags |= IA64_THREAD_FPH_VALID;
719 ia64_save_fpu(&task->thread.fph[0]);
720 }
721 preempt_enable();
722 }
723
724 /*
725 * Sync the fph state of the task so that it can be manipulated
726 * through thread.fph. If necessary, f32-f127 are written back to
727 * thread.fph or, if the fph state hasn't been used before, thread.fph
728 * is cleared to zeroes. Also, access to f32-f127 is disabled to
729 * ensure that the task picks up the state from thread.fph when it
730 * executes again.
731 */
732 void
733 ia64_sync_fph (struct task_struct *task)
734 {
735 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
736
737 ia64_flush_fph(task);
738 if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
739 task->thread.flags |= IA64_THREAD_FPH_VALID;
740 memset(&task->thread.fph, 0, sizeof(task->thread.fph));
741 }
742 ia64_drop_fpu(task);
743 psr->dfh = 1;
744 }
745
746 /*
747 * Change the machine-state of CHILD such that it will return via the normal
748 * kernel exit-path, rather than the syscall-exit path.
749 */
750 static void
751 convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
752 unsigned long cfm)
753 {
754 struct unw_frame_info info, prev_info;
755 unsigned long ip, sp, pr;
756
757 unw_init_from_blocked_task(&info, child);
758 while (1) {
759 prev_info = info;
760 if (unw_unwind(&info) < 0)
761 return;
762
763 unw_get_sp(&info, &sp);
764 if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
765 < IA64_PT_REGS_SIZE) {
766 dprintk("ptrace.%s: ran off the top of the kernel "
767 "stack\n", __func__);
768 return;
769 }
770 if (unw_get_pr (&prev_info, &pr) < 0) {
771 unw_get_rp(&prev_info, &ip);
772 dprintk("ptrace.%s: failed to read "
773 "predicate register (ip=0x%lx)\n",
774 __func__, ip);
775 return;
776 }
777 if (unw_is_intr_frame(&info)
778 && (pr & (1UL << PRED_USER_STACK)))
779 break;
780 }
781
782 /*
783 * Note: at the time of this call, the target task is blocked
784 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
785 * (aka, "pLvSys") we redirect execution from
786 * .work_pending_syscall_end to .work_processed_kernel.
787 */
788 unw_get_pr(&prev_info, &pr);
789 pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
790 pr |= (1UL << PRED_NON_SYSCALL);
791 unw_set_pr(&prev_info, pr);
792
793 pt->cr_ifs = (1UL << 63) | cfm;
794 /*
795 * Clear the memory that is NOT written on syscall-entry to
796 * ensure we do not leak kernel-state to user when execution
797 * resumes.
798 */
799 pt->r2 = 0;
800 pt->r3 = 0;
801 pt->r14 = 0;
802 memset(&pt->r16, 0, 16*8); /* clear r16-r31 */
803 memset(&pt->f6, 0, 6*16); /* clear f6-f11 */
804 pt->b7 = 0;
805 pt->ar_ccv = 0;
806 pt->ar_csd = 0;
807 pt->ar_ssd = 0;
808 }
809
810 static int
811 access_nat_bits (struct task_struct *child, struct pt_regs *pt,
812 struct unw_frame_info *info,
813 unsigned long *data, int write_access)
814 {
815 unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
816 char nat = 0;
817
818 if (write_access) {
819 nat_bits = *data;
820 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
821 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
822 dprintk("ptrace: failed to set ar.unat\n");
823 return -1;
824 }
825 for (regnum = 4; regnum <= 7; ++regnum) {
826 unw_get_gr(info, regnum, &dummy, &nat);
827 unw_set_gr(info, regnum, dummy,
828 (nat_bits >> regnum) & 1);
829 }
830 } else {
831 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
832 dprintk("ptrace: failed to read ar.unat\n");
833 return -1;
834 }
835 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
836 for (regnum = 4; regnum <= 7; ++regnum) {
837 unw_get_gr(info, regnum, &dummy, &nat);
838 nat_bits |= (nat != 0) << regnum;
839 }
840 *data = nat_bits;
841 }
842 return 0;
843 }
844
845 static int
846 access_uarea (struct task_struct *child, unsigned long addr,
847 unsigned long *data, int write_access);
848
849 static long
850 ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
851 {
852 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
853 struct unw_frame_info info;
854 struct ia64_fpreg fpval;
855 struct switch_stack *sw;
856 struct pt_regs *pt;
857 long ret, retval = 0;
858 char nat = 0;
859 int i;
860
861 if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
862 return -EIO;
863
864 pt = task_pt_regs(child);
865 sw = (struct switch_stack *) (child->thread.ksp + 16);
866 unw_init_from_blocked_task(&info, child);
867 if (unw_unwind_to_user(&info) < 0) {
868 return -EIO;
869 }
870
871 if (((unsigned long) ppr & 0x7) != 0) {
872 dprintk("ptrace:unaligned register address %p\n", ppr);
873 return -EIO;
874 }
875
876 if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
877 || access_uarea(child, PT_AR_EC, &ec, 0) < 0
878 || access_uarea(child, PT_AR_LC, &lc, 0) < 0
879 || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
880 || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
881 || access_uarea(child, PT_CFM, &cfm, 0)
882 || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
883 return -EIO;
884
885 /* control regs */
886
887 retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
888 retval |= __put_user(psr, &ppr->cr_ipsr);
889
890 /* app regs */
891
892 retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
893 retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
894 retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
895 retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
896 retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
897 retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
898
899 retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
900 retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
901 retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
902 retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
903 retval |= __put_user(cfm, &ppr->cfm);
904
905 /* gr1-gr3 */
906
907 retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
908 retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
909
910 /* gr4-gr7 */
911
912 for (i = 4; i < 8; i++) {
913 if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
914 return -EIO;
915 retval |= __put_user(val, &ppr->gr[i]);
916 }
917
918 /* gr8-gr11 */
919
920 retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
921
922 /* gr12-gr15 */
923
924 retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
925 retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
926 retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
927
928 /* gr16-gr31 */
929
930 retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
931
932 /* b0 */
933
934 retval |= __put_user(pt->b0, &ppr->br[0]);
935
936 /* b1-b5 */
937
938 for (i = 1; i < 6; i++) {
939 if (unw_access_br(&info, i, &val, 0) < 0)
940 return -EIO;
941 __put_user(val, &ppr->br[i]);
942 }
943
944 /* b6-b7 */
945
946 retval |= __put_user(pt->b6, &ppr->br[6]);
947 retval |= __put_user(pt->b7, &ppr->br[7]);
948
949 /* fr2-fr5 */
950
951 for (i = 2; i < 6; i++) {
952 if (unw_get_fr(&info, i, &fpval) < 0)
953 return -EIO;
954 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
955 }
956
957 /* fr6-fr11 */
958
959 retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
960 sizeof(struct ia64_fpreg) * 6);
961
962 /* fp scratch regs(12-15) */
963
964 retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
965 sizeof(struct ia64_fpreg) * 4);
966
967 /* fr16-fr31 */
968
969 for (i = 16; i < 32; i++) {
970 if (unw_get_fr(&info, i, &fpval) < 0)
971 return -EIO;
972 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
973 }
974
975 /* fph */
976
977 ia64_flush_fph(child);
978 retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
979 sizeof(ppr->fr[32]) * 96);
980
981 /* preds */
982
983 retval |= __put_user(pt->pr, &ppr->pr);
984
985 /* nat bits */
986
987 retval |= __put_user(nat_bits, &ppr->nat);
988
989 ret = retval ? -EIO : 0;
990 return ret;
991 }
992
993 static long
994 ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
995 {
996 unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
997 struct unw_frame_info info;
998 struct switch_stack *sw;
999 struct ia64_fpreg fpval;
1000 struct pt_regs *pt;
1001 long ret, retval = 0;
1002 int i;
1003
1004 memset(&fpval, 0, sizeof(fpval));
1005
1006 if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
1007 return -EIO;
1008
1009 pt = task_pt_regs(child);
1010 sw = (struct switch_stack *) (child->thread.ksp + 16);
1011 unw_init_from_blocked_task(&info, child);
1012 if (unw_unwind_to_user(&info) < 0) {
1013 return -EIO;
1014 }
1015
1016 if (((unsigned long) ppr & 0x7) != 0) {
1017 dprintk("ptrace:unaligned register address %p\n", ppr);
1018 return -EIO;
1019 }
1020
1021 /* control regs */
1022
1023 retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
1024 retval |= __get_user(psr, &ppr->cr_ipsr);
1025
1026 /* app regs */
1027
1028 retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1029 retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1030 retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1031 retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1032 retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1033 retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1034
1035 retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1036 retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1037 retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1038 retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1039 retval |= __get_user(cfm, &ppr->cfm);
1040
1041 /* gr1-gr3 */
1042
1043 retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1044 retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1045
1046 /* gr4-gr7 */
1047
1048 for (i = 4; i < 8; i++) {
1049 retval |= __get_user(val, &ppr->gr[i]);
1050 /* NaT bit will be set via PT_NAT_BITS: */
1051 if (unw_set_gr(&info, i, val, 0) < 0)
1052 return -EIO;
1053 }
1054
1055 /* gr8-gr11 */
1056
1057 retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1058
1059 /* gr12-gr15 */
1060
1061 retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1062 retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1063 retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1064
1065 /* gr16-gr31 */
1066
1067 retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1068
1069 /* b0 */
1070
1071 retval |= __get_user(pt->b0, &ppr->br[0]);
1072
1073 /* b1-b5 */
1074
1075 for (i = 1; i < 6; i++) {
1076 retval |= __get_user(val, &ppr->br[i]);
1077 unw_set_br(&info, i, val);
1078 }
1079
1080 /* b6-b7 */
1081
1082 retval |= __get_user(pt->b6, &ppr->br[6]);
1083 retval |= __get_user(pt->b7, &ppr->br[7]);
1084
1085 /* fr2-fr5 */
1086
1087 for (i = 2; i < 6; i++) {
1088 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1089 if (unw_set_fr(&info, i, fpval) < 0)
1090 return -EIO;
1091 }
1092
1093 /* fr6-fr11 */
1094
1095 retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1096 sizeof(ppr->fr[6]) * 6);
1097
1098 /* fp scratch regs(12-15) */
1099
1100 retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1101 sizeof(ppr->fr[12]) * 4);
1102
1103 /* fr16-fr31 */
1104
1105 for (i = 16; i < 32; i++) {
1106 retval |= __copy_from_user(&fpval, &ppr->fr[i],
1107 sizeof(fpval));
1108 if (unw_set_fr(&info, i, fpval) < 0)
1109 return -EIO;
1110 }
1111
1112 /* fph */
1113
1114 ia64_sync_fph(child);
1115 retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1116 sizeof(ppr->fr[32]) * 96);
1117
1118 /* preds */
1119
1120 retval |= __get_user(pt->pr, &ppr->pr);
1121
1122 /* nat bits */
1123
1124 retval |= __get_user(nat_bits, &ppr->nat);
1125
1126 retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1127 retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
1128 retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1129 retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1130 retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1131 retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1132 retval |= access_uarea(child, PT_CFM, &cfm, 1);
1133 retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1134
1135 ret = retval ? -EIO : 0;
1136 return ret;
1137 }
1138
1139 void
1140 user_enable_single_step (struct task_struct *child)
1141 {
1142 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1143
1144 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1145 child_psr->ss = 1;
1146 }
1147
1148 void
1149 user_enable_block_step (struct task_struct *child)
1150 {
1151 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1152
1153 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1154 child_psr->tb = 1;
1155 }
1156
1157 void
1158 user_disable_single_step (struct task_struct *child)
1159 {
1160 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1161
1162 /* make sure the single step/taken-branch trap bits are not set: */
1163 clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1164 child_psr->ss = 0;
1165 child_psr->tb = 0;
1166 }
1167
1168 /*
1169 * Called by kernel/ptrace.c when detaching..
1170 *
1171 * Make sure the single step bit is not set.
1172 */
1173 void
1174 ptrace_disable (struct task_struct *child)
1175 {
1176 user_disable_single_step(child);
1177 }
1178
1179 long
1180 arch_ptrace (struct task_struct *child, long request, long addr, long data)
1181 {
1182 switch (request) {
1183 case PTRACE_PEEKTEXT:
1184 case PTRACE_PEEKDATA:
1185 /* read word at location addr */
1186 if (access_process_vm(child, addr, &data, sizeof(data), 0)
1187 != sizeof(data))
1188 return -EIO;
1189 /* ensure return value is not mistaken for error code */
1190 force_successful_syscall_return();
1191 return data;
1192
1193 /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1194 * by the generic ptrace_request().
1195 */
1196
1197 case PTRACE_PEEKUSR:
1198 /* read the word at addr in the USER area */
1199 if (access_uarea(child, addr, &data, 0) < 0)
1200 return -EIO;
1201 /* ensure return value is not mistaken for error code */
1202 force_successful_syscall_return();
1203 return data;
1204
1205 case PTRACE_POKEUSR:
1206 /* write the word at addr in the USER area */
1207 if (access_uarea(child, addr, &data, 1) < 0)
1208 return -EIO;
1209 return 0;
1210
1211 case PTRACE_OLD_GETSIGINFO:
1212 /* for backwards-compatibility */
1213 return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1214
1215 case PTRACE_OLD_SETSIGINFO:
1216 /* for backwards-compatibility */
1217 return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1218
1219 case PTRACE_GETREGS:
1220 return ptrace_getregs(child,
1221 (struct pt_all_user_regs __user *) data);
1222
1223 case PTRACE_SETREGS:
1224 return ptrace_setregs(child,
1225 (struct pt_all_user_regs __user *) data);
1226
1227 default:
1228 return ptrace_request(child, request, addr, data);
1229 }
1230 }
1231
1232
1233 /* "asmlinkage" so the input arguments are preserved... */
1234
1235 asmlinkage long
1236 syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1237 long arg4, long arg5, long arg6, long arg7,
1238 struct pt_regs regs)
1239 {
1240 if (test_thread_flag(TIF_SYSCALL_TRACE))
1241 if (tracehook_report_syscall_entry(&regs))
1242 return -ENOSYS;
1243
1244 /* copy user rbs to kernel rbs */
1245 if (test_thread_flag(TIF_RESTORE_RSE))
1246 ia64_sync_krbs();
1247
1248 if (unlikely(current->audit_context)) {
1249 long syscall;
1250 int arch;
1251
1252 syscall = regs.r15;
1253 arch = AUDIT_ARCH_IA64;
1254
1255 audit_syscall_entry(arch, syscall, arg0, arg1, arg2, arg3);
1256 }
1257
1258 return 0;
1259 }
1260
1261 /* "asmlinkage" so the input arguments are preserved... */
1262
1263 asmlinkage void
1264 syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1265 long arg4, long arg5, long arg6, long arg7,
1266 struct pt_regs regs)
1267 {
1268 int step;
1269
1270 if (unlikely(current->audit_context)) {
1271 int success = AUDITSC_RESULT(regs.r10);
1272 long result = regs.r8;
1273
1274 if (success != AUDITSC_SUCCESS)
1275 result = -result;
1276 audit_syscall_exit(success, result);
1277 }
1278
1279 step = test_thread_flag(TIF_SINGLESTEP);
1280 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1281 tracehook_report_syscall_exit(&regs, step);
1282
1283 /* copy user rbs to kernel rbs */
1284 if (test_thread_flag(TIF_RESTORE_RSE))
1285 ia64_sync_krbs();
1286 }
1287
1288 /* Utrace implementation starts here */
1289 struct regset_get {
1290 void *kbuf;
1291 void __user *ubuf;
1292 };
1293
1294 struct regset_set {
1295 const void *kbuf;
1296 const void __user *ubuf;
1297 };
1298
1299 struct regset_getset {
1300 struct task_struct *target;
1301 const struct user_regset *regset;
1302 union {
1303 struct regset_get get;
1304 struct regset_set set;
1305 } u;
1306 unsigned int pos;
1307 unsigned int count;
1308 int ret;
1309 };
1310
1311 static int
1312 access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1313 unsigned long addr, unsigned long *data, int write_access)
1314 {
1315 struct pt_regs *pt;
1316 unsigned long *ptr = NULL;
1317 int ret;
1318 char nat = 0;
1319
1320 pt = task_pt_regs(target);
1321 switch (addr) {
1322 case ELF_GR_OFFSET(1):
1323 ptr = &pt->r1;
1324 break;
1325 case ELF_GR_OFFSET(2):
1326 case ELF_GR_OFFSET(3):
1327 ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2));
1328 break;
1329 case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
1330 if (write_access) {
1331 /* read NaT bit first: */
1332 unsigned long dummy;
1333
1334 ret = unw_get_gr(info, addr/8, &dummy, &nat);
1335 if (ret < 0)
1336 return ret;
1337 }
1338 return unw_access_gr(info, addr/8, data, &nat, write_access);
1339 case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
1340 ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8);
1341 break;
1342 case ELF_GR_OFFSET(12):
1343 case ELF_GR_OFFSET(13):
1344 ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12);
1345 break;
1346 case ELF_GR_OFFSET(14):
1347 ptr = &pt->r14;
1348 break;
1349 case ELF_GR_OFFSET(15):
1350 ptr = &pt->r15;
1351 }
1352 if (write_access)
1353 *ptr = *data;
1354 else
1355 *data = *ptr;
1356 return 0;
1357 }
1358
1359 static int
1360 access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1361 unsigned long addr, unsigned long *data, int write_access)
1362 {
1363 struct pt_regs *pt;
1364 unsigned long *ptr = NULL;
1365
1366 pt = task_pt_regs(target);
1367 switch (addr) {
1368 case ELF_BR_OFFSET(0):
1369 ptr = &pt->b0;
1370 break;
1371 case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1372 return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1373 data, write_access);
1374 case ELF_BR_OFFSET(6):
1375 ptr = &pt->b6;
1376 break;
1377 case ELF_BR_OFFSET(7):
1378 ptr = &pt->b7;
1379 }
1380 if (write_access)
1381 *ptr = *data;
1382 else
1383 *data = *ptr;
1384 return 0;
1385 }
1386
1387 static int
1388 access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1389 unsigned long addr, unsigned long *data, int write_access)
1390 {
1391 struct pt_regs *pt;
1392 unsigned long cfm, urbs_end;
1393 unsigned long *ptr = NULL;
1394
1395 pt = task_pt_regs(target);
1396 if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1397 switch (addr) {
1398 case ELF_AR_RSC_OFFSET:
1399 /* force PL3 */
1400 if (write_access)
1401 pt->ar_rsc = *data | (3 << 2);
1402 else
1403 *data = pt->ar_rsc;
1404 return 0;
1405 case ELF_AR_BSP_OFFSET:
1406 /*
1407 * By convention, we use PT_AR_BSP to refer to
1408 * the end of the user-level backing store.
1409 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1410 * to get the real value of ar.bsp at the time
1411 * the kernel was entered.
1412 *
1413 * Furthermore, when changing the contents of
1414 * PT_AR_BSP (or PT_CFM) while the task is
1415 * blocked in a system call, convert the state
1416 * so that the non-system-call exit
1417 * path is used. This ensures that the proper
1418 * state will be picked up when resuming
1419 * execution. However, it *also* means that
1420 * once we write PT_AR_BSP/PT_CFM, it won't be
1421 * possible to modify the syscall arguments of
1422 * the pending system call any longer. This
1423 * shouldn't be an issue because modifying
1424 * PT_AR_BSP/PT_CFM generally implies that
1425 * we're either abandoning the pending system
1426 * call or that we defer it's re-execution
1427 * (e.g., due to GDB doing an inferior
1428 * function call).
1429 */
1430 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1431 if (write_access) {
1432 if (*data != urbs_end) {
1433 if (in_syscall(pt))
1434 convert_to_non_syscall(target,
1435 pt,
1436 cfm);
1437 /*
1438 * Simulate user-level write
1439 * of ar.bsp:
1440 */
1441 pt->loadrs = 0;
1442 pt->ar_bspstore = *data;
1443 }
1444 } else
1445 *data = urbs_end;
1446 return 0;
1447 case ELF_AR_BSPSTORE_OFFSET:
1448 ptr = &pt->ar_bspstore;
1449 break;
1450 case ELF_AR_RNAT_OFFSET:
1451 ptr = &pt->ar_rnat;
1452 break;
1453 case ELF_AR_CCV_OFFSET:
1454 ptr = &pt->ar_ccv;
1455 break;
1456 case ELF_AR_UNAT_OFFSET:
1457 ptr = &pt->ar_unat;
1458 break;
1459 case ELF_AR_FPSR_OFFSET:
1460 ptr = &pt->ar_fpsr;
1461 break;
1462 case ELF_AR_PFS_OFFSET:
1463 ptr = &pt->ar_pfs;
1464 break;
1465 case ELF_AR_LC_OFFSET:
1466 return unw_access_ar(info, UNW_AR_LC, data,
1467 write_access);
1468 case ELF_AR_EC_OFFSET:
1469 return unw_access_ar(info, UNW_AR_EC, data,
1470 write_access);
1471 case ELF_AR_CSD_OFFSET:
1472 ptr = &pt->ar_csd;
1473 break;
1474 case ELF_AR_SSD_OFFSET:
1475 ptr = &pt->ar_ssd;
1476 }
1477 } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1478 switch (addr) {
1479 case ELF_CR_IIP_OFFSET:
1480 ptr = &pt->cr_iip;
1481 break;
1482 case ELF_CFM_OFFSET:
1483 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1484 if (write_access) {
1485 if (((cfm ^ *data) & PFM_MASK) != 0) {
1486 if (in_syscall(pt))
1487 convert_to_non_syscall(target,
1488 pt,
1489 cfm);
1490 pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1491 | (*data & PFM_MASK));
1492 }
1493 } else
1494 *data = cfm;
1495 return 0;
1496 case ELF_CR_IPSR_OFFSET:
1497 if (write_access) {
1498 unsigned long tmp = *data;
1499 /* psr.ri==3 is a reserved value: SDM 2:25 */
1500 if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1501 tmp &= ~IA64_PSR_RI;
1502 pt->cr_ipsr = ((tmp & IPSR_MASK)
1503 | (pt->cr_ipsr & ~IPSR_MASK));
1504 } else
1505 *data = (pt->cr_ipsr & IPSR_MASK);
1506 return 0;
1507 }
1508 } else if (addr == ELF_NAT_OFFSET)
1509 return access_nat_bits(target, pt, info,
1510 data, write_access);
1511 else if (addr == ELF_PR_OFFSET)
1512 ptr = &pt->pr;
1513 else
1514 return -1;
1515
1516 if (write_access)
1517 *ptr = *data;
1518 else
1519 *data = *ptr;
1520
1521 return 0;
1522 }
1523
1524 static int
1525 access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1526 unsigned long addr, unsigned long *data, int write_access)
1527 {
1528 if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15))
1529 return access_elf_gpreg(target, info, addr, data, write_access);
1530 else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1531 return access_elf_breg(target, info, addr, data, write_access);
1532 else
1533 return access_elf_areg(target, info, addr, data, write_access);
1534 }
1535
1536 void do_gpregs_get(struct unw_frame_info *info, void *arg)
1537 {
1538 struct pt_regs *pt;
1539 struct regset_getset *dst = arg;
1540 elf_greg_t tmp[16];
1541 unsigned int i, index, min_copy;
1542
1543 if (unw_unwind_to_user(info) < 0)
1544 return;
1545
1546 /*
1547 * coredump format:
1548 * r0-r31
1549 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1550 * predicate registers (p0-p63)
1551 * b0-b7
1552 * ip cfm user-mask
1553 * ar.rsc ar.bsp ar.bspstore ar.rnat
1554 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1555 */
1556
1557
1558 /* Skip r0 */
1559 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1560 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1561 &dst->u.get.kbuf,
1562 &dst->u.get.ubuf,
1563 0, ELF_GR_OFFSET(1));
1564 if (dst->ret || dst->count == 0)
1565 return;
1566 }
1567
1568 /* gr1 - gr15 */
1569 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1570 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1571 min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ?
1572 (dst->pos + dst->count) : ELF_GR_OFFSET(16);
1573 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1574 index++)
1575 if (access_elf_reg(dst->target, info, i,
1576 &tmp[index], 0) < 0) {
1577 dst->ret = -EIO;
1578 return;
1579 }
1580 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1581 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1582 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1583 if (dst->ret || dst->count == 0)
1584 return;
1585 }
1586
1587 /* r16-r31 */
1588 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1589 pt = task_pt_regs(dst->target);
1590 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1591 &dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16,
1592 ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1593 if (dst->ret || dst->count == 0)
1594 return;
1595 }
1596
1597 /* nat, pr, b0 - b7 */
1598 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1599 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1600 min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ?
1601 (dst->pos + dst->count) : ELF_CR_IIP_OFFSET;
1602 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1603 index++)
1604 if (access_elf_reg(dst->target, info, i,
1605 &tmp[index], 0) < 0) {
1606 dst->ret = -EIO;
1607 return;
1608 }
1609 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1610 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1611 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1612 if (dst->ret || dst->count == 0)
1613 return;
1614 }
1615
1616 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1617 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1618 */
1619 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1620 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1621 min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ?
1622 (dst->pos + dst->count) : ELF_AR_END_OFFSET;
1623 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1624 index++)
1625 if (access_elf_reg(dst->target, info, i,
1626 &tmp[index], 0) < 0) {
1627 dst->ret = -EIO;
1628 return;
1629 }
1630 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1631 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1632 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1633 }
1634 }
1635
1636 void do_gpregs_set(struct unw_frame_info *info, void *arg)
1637 {
1638 struct pt_regs *pt;
1639 struct regset_getset *dst = arg;
1640 elf_greg_t tmp[16];
1641 unsigned int i, index;
1642
1643 if (unw_unwind_to_user(info) < 0)
1644 return;
1645
1646 /* Skip r0 */
1647 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1648 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1649 &dst->u.set.kbuf,
1650 &dst->u.set.ubuf,
1651 0, ELF_GR_OFFSET(1));
1652 if (dst->ret || dst->count == 0)
1653 return;
1654 }
1655
1656 /* gr1-gr15 */
1657 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1658 i = dst->pos;
1659 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1660 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1661 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1662 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1663 if (dst->ret)
1664 return;
1665 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1666 if (access_elf_reg(dst->target, info, i,
1667 &tmp[index], 1) < 0) {
1668 dst->ret = -EIO;
1669 return;
1670 }
1671 if (dst->count == 0)
1672 return;
1673 }
1674
1675 /* gr16-gr31 */
1676 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1677 pt = task_pt_regs(dst->target);
1678 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1679 &dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16,
1680 ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1681 if (dst->ret || dst->count == 0)
1682 return;
1683 }
1684
1685 /* nat, pr, b0 - b7 */
1686 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1687 i = dst->pos;
1688 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1689 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1690 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1691 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1692 if (dst->ret)
1693 return;
1694 for (; i < dst->pos; i += sizeof(elf_greg_t), index++)
1695 if (access_elf_reg(dst->target, info, i,
1696 &tmp[index], 1) < 0) {
1697 dst->ret = -EIO;
1698 return;
1699 }
1700 if (dst->count == 0)
1701 return;
1702 }
1703
1704 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1705 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1706 */
1707 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1708 i = dst->pos;
1709 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1710 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1711 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1712 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1713 if (dst->ret)
1714 return;
1715 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1716 if (access_elf_reg(dst->target, info, i,
1717 &tmp[index], 1) < 0) {
1718 dst->ret = -EIO;
1719 return;
1720 }
1721 }
1722 }
1723
1724 #define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t))
1725
1726 void do_fpregs_get(struct unw_frame_info *info, void *arg)
1727 {
1728 struct regset_getset *dst = arg;
1729 struct task_struct *task = dst->target;
1730 elf_fpreg_t tmp[30];
1731 int index, min_copy, i;
1732
1733 if (unw_unwind_to_user(info) < 0)
1734 return;
1735
1736 /* Skip pos 0 and 1 */
1737 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1738 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1739 &dst->u.get.kbuf,
1740 &dst->u.get.ubuf,
1741 0, ELF_FP_OFFSET(2));
1742 if (dst->count == 0 || dst->ret)
1743 return;
1744 }
1745
1746 /* fr2-fr31 */
1747 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1748 index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t);
1749
1750 min_copy = min(((unsigned int)ELF_FP_OFFSET(32)),
1751 dst->pos + dst->count);
1752 for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t),
1753 index++)
1754 if (unw_get_fr(info, i / sizeof(elf_fpreg_t),
1755 &tmp[index])) {
1756 dst->ret = -EIO;
1757 return;
1758 }
1759 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1760 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1761 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1762 if (dst->count == 0 || dst->ret)
1763 return;
1764 }
1765
1766 /* fph */
1767 if (dst->count > 0) {
1768 ia64_flush_fph(dst->target);
1769 if (task->thread.flags & IA64_THREAD_FPH_VALID)
1770 dst->ret = user_regset_copyout(
1771 &dst->pos, &dst->count,
1772 &dst->u.get.kbuf, &dst->u.get.ubuf,
1773 &dst->target->thread.fph,
1774 ELF_FP_OFFSET(32), -1);
1775 else
1776 /* Zero fill instead. */
1777 dst->ret = user_regset_copyout_zero(
1778 &dst->pos, &dst->count,
1779 &dst->u.get.kbuf, &dst->u.get.ubuf,
1780 ELF_FP_OFFSET(32), -1);
1781 }
1782 }
1783
1784 void do_fpregs_set(struct unw_frame_info *info, void *arg)
1785 {
1786 struct regset_getset *dst = arg;
1787 elf_fpreg_t fpreg, tmp[30];
1788 int index, start, end;
1789
1790 if (unw_unwind_to_user(info) < 0)
1791 return;
1792
1793 /* Skip pos 0 and 1 */
1794 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1795 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1796 &dst->u.set.kbuf,
1797 &dst->u.set.ubuf,
1798 0, ELF_FP_OFFSET(2));
1799 if (dst->count == 0 || dst->ret)
1800 return;
1801 }
1802
1803 /* fr2-fr31 */
1804 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1805 start = dst->pos;
1806 end = min(((unsigned int)ELF_FP_OFFSET(32)),
1807 dst->pos + dst->count);
1808 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1809 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1810 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1811 if (dst->ret)
1812 return;
1813
1814 if (start & 0xF) { /* only write high part */
1815 if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1816 &fpreg)) {
1817 dst->ret = -EIO;
1818 return;
1819 }
1820 tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1821 = fpreg.u.bits[0];
1822 start &= ~0xFUL;
1823 }
1824 if (end & 0xF) { /* only write low part */
1825 if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1826 &fpreg)) {
1827 dst->ret = -EIO;
1828 return;
1829 }
1830 tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1831 = fpreg.u.bits[1];
1832 end = (end + 0xF) & ~0xFUL;
1833 }
1834
1835 for ( ; start < end ; start += sizeof(elf_fpreg_t)) {
1836 index = start / sizeof(elf_fpreg_t);
1837 if (unw_set_fr(info, index, tmp[index - 2])) {
1838 dst->ret = -EIO;
1839 return;
1840 }
1841 }
1842 if (dst->ret || dst->count == 0)
1843 return;
1844 }
1845
1846 /* fph */
1847 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1848 ia64_sync_fph(dst->target);
1849 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1850 &dst->u.set.kbuf,
1851 &dst->u.set.ubuf,
1852 &dst->target->thread.fph,
1853 ELF_FP_OFFSET(32), -1);
1854 }
1855 }
1856
1857 static int
1858 do_regset_call(void (*call)(struct unw_frame_info *, void *),
1859 struct task_struct *target,
1860 const struct user_regset *regset,
1861 unsigned int pos, unsigned int count,
1862 const void *kbuf, const void __user *ubuf)
1863 {
1864 struct regset_getset info = { .target = target, .regset = regset,
1865 .pos = pos, .count = count,
1866 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1867 .ret = 0 };
1868
1869 if (target == current)
1870 unw_init_running(call, &info);
1871 else {
1872 struct unw_frame_info ufi;
1873 memset(&ufi, 0, sizeof(ufi));
1874 unw_init_from_blocked_task(&ufi, target);
1875 (*call)(&ufi, &info);
1876 }
1877
1878 return info.ret;
1879 }
1880
1881 static int
1882 gpregs_get(struct task_struct *target,
1883 const struct user_regset *regset,
1884 unsigned int pos, unsigned int count,
1885 void *kbuf, void __user *ubuf)
1886 {
1887 return do_regset_call(do_gpregs_get, target, regset, pos, count,
1888 kbuf, ubuf);
1889 }
1890
1891 static int gpregs_set(struct task_struct *target,
1892 const struct user_regset *regset,
1893 unsigned int pos, unsigned int count,
1894 const void *kbuf, const void __user *ubuf)
1895 {
1896 return do_regset_call(do_gpregs_set, target, regset, pos, count,
1897 kbuf, ubuf);
1898 }
1899
1900 static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1901 {
1902 do_sync_rbs(info, ia64_sync_user_rbs);
1903 }
1904
1905 /*
1906 * This is called to write back the register backing store.
1907 * ptrace does this before it stops, so that a tracer reading the user
1908 * memory after the thread stops will get the current register data.
1909 */
1910 static int
1911 gpregs_writeback(struct task_struct *target,
1912 const struct user_regset *regset,
1913 int now)
1914 {
1915 if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1916 return 0;
1917 set_notify_resume(target);
1918 return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1919 NULL, NULL);
1920 }
1921
1922 static int
1923 fpregs_active(struct task_struct *target, const struct user_regset *regset)
1924 {
1925 return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1926 }
1927
1928 static int fpregs_get(struct task_struct *target,
1929 const struct user_regset *regset,
1930 unsigned int pos, unsigned int count,
1931 void *kbuf, void __user *ubuf)
1932 {
1933 return do_regset_call(do_fpregs_get, target, regset, pos, count,
1934 kbuf, ubuf);
1935 }
1936
1937 static int fpregs_set(struct task_struct *target,
1938 const struct user_regset *regset,
1939 unsigned int pos, unsigned int count,
1940 const void *kbuf, const void __user *ubuf)
1941 {
1942 return do_regset_call(do_fpregs_set, target, regset, pos, count,
1943 kbuf, ubuf);
1944 }
1945
1946 static int
1947 access_uarea(struct task_struct *child, unsigned long addr,
1948 unsigned long *data, int write_access)
1949 {
1950 unsigned int pos = -1; /* an invalid value */
1951 int ret;
1952 unsigned long *ptr, regnum;
1953
1954 if ((addr & 0x7) != 0) {
1955 dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1956 return -1;
1957 }
1958 if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1959 (addr >= PT_R7 + 8 && addr < PT_B1) ||
1960 (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1961 (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1962 dprintk("ptrace: rejecting access to register "
1963 "address 0x%lx\n", addr);
1964 return -1;
1965 }
1966
1967 switch (addr) {
1968 case PT_F32 ... (PT_F127 + 15):
1969 pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1970 break;
1971 case PT_F2 ... (PT_F5 + 15):
1972 pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1973 break;
1974 case PT_F10 ... (PT_F31 + 15):
1975 pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1976 break;
1977 case PT_F6 ... (PT_F9 + 15):
1978 pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1979 break;
1980 }
1981
1982 if (pos != -1) {
1983 if (write_access)
1984 ret = fpregs_set(child, NULL, pos,
1985 sizeof(unsigned long), data, NULL);
1986 else
1987 ret = fpregs_get(child, NULL, pos,
1988 sizeof(unsigned long), data, NULL);
1989 if (ret != 0)
1990 return -1;
1991 return 0;
1992 }
1993
1994 switch (addr) {
1995 case PT_NAT_BITS:
1996 pos = ELF_NAT_OFFSET;
1997 break;
1998 case PT_R4 ... PT_R7:
1999 pos = addr - PT_R4 + ELF_GR_OFFSET(4);
2000 break;
2001 case PT_B1 ... PT_B5:
2002 pos = addr - PT_B1 + ELF_BR_OFFSET(1);
2003 break;
2004 case PT_AR_EC:
2005 pos = ELF_AR_EC_OFFSET;
2006 break;
2007 case PT_AR_LC:
2008 pos = ELF_AR_LC_OFFSET;
2009 break;
2010 case PT_CR_IPSR:
2011 pos = ELF_CR_IPSR_OFFSET;
2012 break;
2013 case PT_CR_IIP:
2014 pos = ELF_CR_IIP_OFFSET;
2015 break;
2016 case PT_CFM:
2017 pos = ELF_CFM_OFFSET;
2018 break;
2019 case PT_AR_UNAT:
2020 pos = ELF_AR_UNAT_OFFSET;
2021 break;
2022 case PT_AR_PFS:
2023 pos = ELF_AR_PFS_OFFSET;
2024 break;
2025 case PT_AR_RSC:
2026 pos = ELF_AR_RSC_OFFSET;
2027 break;
2028 case PT_AR_RNAT:
2029 pos = ELF_AR_RNAT_OFFSET;
2030 break;
2031 case PT_AR_BSPSTORE:
2032 pos = ELF_AR_BSPSTORE_OFFSET;
2033 break;
2034 case PT_PR:
2035 pos = ELF_PR_OFFSET;
2036 break;
2037 case PT_B6:
2038 pos = ELF_BR_OFFSET(6);
2039 break;
2040 case PT_AR_BSP:
2041 pos = ELF_AR_BSP_OFFSET;
2042 break;
2043 case PT_R1 ... PT_R3:
2044 pos = addr - PT_R1 + ELF_GR_OFFSET(1);
2045 break;
2046 case PT_R12 ... PT_R15:
2047 pos = addr - PT_R12 + ELF_GR_OFFSET(12);
2048 break;
2049 case PT_R8 ... PT_R11:
2050 pos = addr - PT_R8 + ELF_GR_OFFSET(8);
2051 break;
2052 case PT_R16 ... PT_R31:
2053 pos = addr - PT_R16 + ELF_GR_OFFSET(16);
2054 break;
2055 case PT_AR_CCV:
2056 pos = ELF_AR_CCV_OFFSET;
2057 break;
2058 case PT_AR_FPSR:
2059 pos = ELF_AR_FPSR_OFFSET;
2060 break;
2061 case PT_B0:
2062 pos = ELF_BR_OFFSET(0);
2063 break;
2064 case PT_B7:
2065 pos = ELF_BR_OFFSET(7);
2066 break;
2067 case PT_AR_CSD:
2068 pos = ELF_AR_CSD_OFFSET;
2069 break;
2070 case PT_AR_SSD:
2071 pos = ELF_AR_SSD_OFFSET;
2072 break;
2073 }
2074
2075 if (pos != -1) {
2076 if (write_access)
2077 ret = gpregs_set(child, NULL, pos,
2078 sizeof(unsigned long), data, NULL);
2079 else
2080 ret = gpregs_get(child, NULL, pos,
2081 sizeof(unsigned long), data, NULL);
2082 if (ret != 0)
2083 return -1;
2084 return 0;
2085 }
2086
2087 /* access debug registers */
2088 if (addr >= PT_IBR) {
2089 regnum = (addr - PT_IBR) >> 3;
2090 ptr = &child->thread.ibr[0];
2091 } else {
2092 regnum = (addr - PT_DBR) >> 3;
2093 ptr = &child->thread.dbr[0];
2094 }
2095
2096 if (regnum >= 8) {
2097 dprintk("ptrace: rejecting access to register "
2098 "address 0x%lx\n", addr);
2099 return -1;
2100 }
2101 #ifdef CONFIG_PERFMON
2102 /*
2103 * Check if debug registers are used by perfmon. This
2104 * test must be done once we know that we can do the
2105 * operation, i.e. the arguments are all valid, but
2106 * before we start modifying the state.
2107 *
2108 * Perfmon needs to keep a count of how many processes
2109 * are trying to modify the debug registers for system
2110 * wide monitoring sessions.
2111 *
2112 * We also include read access here, because they may
2113 * cause the PMU-installed debug register state
2114 * (dbr[], ibr[]) to be reset. The two arrays are also
2115 * used by perfmon, but we do not use
2116 * IA64_THREAD_DBG_VALID. The registers are restored
2117 * by the PMU context switch code.
2118 */
2119 if (pfm_use_debug_registers(child))
2120 return -1;
2121 #endif
2122
2123 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
2124 child->thread.flags |= IA64_THREAD_DBG_VALID;
2125 memset(child->thread.dbr, 0,
2126 sizeof(child->thread.dbr));
2127 memset(child->thread.ibr, 0,
2128 sizeof(child->thread.ibr));
2129 }
2130
2131 ptr += regnum;
2132
2133 if ((regnum & 1) && write_access) {
2134 /* don't let the user set kernel-level breakpoints: */
2135 *ptr = *data & ~(7UL << 56);
2136 return 0;
2137 }
2138 if (write_access)
2139 *ptr = *data;
2140 else
2141 *data = *ptr;
2142 return 0;
2143 }
2144
2145 static const struct user_regset native_regsets[] = {
2146 {
2147 .core_note_type = NT_PRSTATUS,
2148 .n = ELF_NGREG,
2149 .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
2150 .get = gpregs_get, .set = gpregs_set,
2151 .writeback = gpregs_writeback
2152 },
2153 {
2154 .core_note_type = NT_PRFPREG,
2155 .n = ELF_NFPREG,
2156 .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
2157 .get = fpregs_get, .set = fpregs_set, .active = fpregs_active
2158 },
2159 };
2160
2161 static const struct user_regset_view user_ia64_view = {
2162 .name = "ia64",
2163 .e_machine = EM_IA_64,
2164 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2165 };
2166
2167 const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
2168 {
2169 return &user_ia64_view;
2170 }
2171
2172 struct syscall_get_set_args {
2173 unsigned int i;
2174 unsigned int n;
2175 unsigned long *args;
2176 struct pt_regs *regs;
2177 int rw;
2178 };
2179
2180 static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data)
2181 {
2182 struct syscall_get_set_args *args = data;
2183 struct pt_regs *pt = args->regs;
2184 unsigned long *krbs, cfm, ndirty;
2185 int i, count;
2186
2187 if (unw_unwind_to_user(info) < 0)
2188 return;
2189
2190 cfm = pt->cr_ifs;
2191 krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
2192 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
2193
2194 count = 0;
2195 if (in_syscall(pt))
2196 count = min_t(int, args->n, cfm & 0x7f);
2197
2198 for (i = 0; i < count; i++) {
2199 if (args->rw)
2200 *ia64_rse_skip_regs(krbs, ndirty + i + args->i) =
2201 args->args[i];
2202 else
2203 args->args[i] = *ia64_rse_skip_regs(krbs,
2204 ndirty + i + args->i);
2205 }
2206
2207 if (!args->rw) {
2208 while (i < args->n) {
2209 args->args[i] = 0;
2210 i++;
2211 }
2212 }
2213 }
2214
2215 void ia64_syscall_get_set_arguments(struct task_struct *task,
2216 struct pt_regs *regs, unsigned int i, unsigned int n,
2217 unsigned long *args, int rw)
2218 {
2219 struct syscall_get_set_args data = {
2220 .i = i,
2221 .n = n,
2222 .args = args,
2223 .regs = regs,
2224 .rw = rw,
2225 };
2226
2227 if (task == current)
2228 unw_init_running(syscall_get_set_args_cb, &data);
2229 else {
2230 struct unw_frame_info ufi;
2231 memset(&ufi, 0, sizeof(ufi));
2232 unw_init_from_blocked_task(&ufi, task);
2233 syscall_get_set_args_cb(&ufi, &data);
2234 }
2235 }