Linux-2.6.12-rc2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / ia64 / kernel / mca.c
1 /*
2 * File: mca.c
3 * Purpose: Generic MCA handling layer
4 *
5 * Updated for latest kernel
6 * Copyright (C) 2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 *
9 * Copyright (C) 2002 Dell Inc.
10 * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
11 *
12 * Copyright (C) 2002 Intel
13 * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
14 *
15 * Copyright (C) 2001 Intel
16 * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
17 *
18 * Copyright (C) 2000 Intel
19 * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
20 *
21 * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22 * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
23 *
24 * 03/04/15 D. Mosberger Added INIT backtrace support.
25 * 02/03/25 M. Domsch GUID cleanups
26 *
27 * 02/01/04 J. Hall Aligned MCA stack to 16 bytes, added platform vs. CPU
28 * error flag, set SAL default return values, changed
29 * error record structure to linked list, added init call
30 * to sal_get_state_info_size().
31 *
32 * 01/01/03 F. Lewis Added setup of CMCI and CPEI IRQs, logging of corrected
33 * platform errors, completed code for logging of
34 * corrected & uncorrected machine check errors, and
35 * updated for conformance with Nov. 2000 revision of the
36 * SAL 3.0 spec.
37 * 00/03/29 C. Fleckenstein Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38 * added min save state dump, added INIT handler.
39 *
40 * 2003-12-08 Keith Owens <kaos@sgi.com>
41 * smp_call_function() must not be called from interrupt context (can
42 * deadlock on tasklist_lock). Use keventd to call smp_call_function().
43 *
44 * 2004-02-01 Keith Owens <kaos@sgi.com>
45 * Avoid deadlock when using printk() for MCA and INIT records.
46 * Delete all record printing code, moved to salinfo_decode in user space.
47 * Mark variables and functions static where possible.
48 * Delete dead variables and functions.
49 * Reorder to remove the need for forward declarations and to consolidate
50 * related code.
51 */
52 #include <linux/config.h>
53 #include <linux/types.h>
54 #include <linux/init.h>
55 #include <linux/sched.h>
56 #include <linux/interrupt.h>
57 #include <linux/irq.h>
58 #include <linux/kallsyms.h>
59 #include <linux/smp_lock.h>
60 #include <linux/bootmem.h>
61 #include <linux/acpi.h>
62 #include <linux/timer.h>
63 #include <linux/module.h>
64 #include <linux/kernel.h>
65 #include <linux/smp.h>
66 #include <linux/workqueue.h>
67
68 #include <asm/delay.h>
69 #include <asm/machvec.h>
70 #include <asm/meminit.h>
71 #include <asm/page.h>
72 #include <asm/ptrace.h>
73 #include <asm/system.h>
74 #include <asm/sal.h>
75 #include <asm/mca.h>
76
77 #include <asm/irq.h>
78 #include <asm/hw_irq.h>
79
80 #if defined(IA64_MCA_DEBUG_INFO)
81 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
82 #else
83 # define IA64_MCA_DEBUG(fmt...)
84 #endif
85
86 /* Used by mca_asm.S */
87 ia64_mca_sal_to_os_state_t ia64_sal_to_os_handoff_state;
88 ia64_mca_os_to_sal_state_t ia64_os_to_sal_handoff_state;
89 u64 ia64_mca_serialize;
90 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
91 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
92 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
93 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
94
95 unsigned long __per_cpu_mca[NR_CPUS];
96
97 /* In mca_asm.S */
98 extern void ia64_monarch_init_handler (void);
99 extern void ia64_slave_init_handler (void);
100
101 static ia64_mc_info_t ia64_mc_info;
102
103 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
104 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
105 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
106 #define CPE_HISTORY_LENGTH 5
107 #define CMC_HISTORY_LENGTH 5
108
109 static struct timer_list cpe_poll_timer;
110 static struct timer_list cmc_poll_timer;
111 /*
112 * This variable tells whether we are currently in polling mode.
113 * Start with this in the wrong state so we won't play w/ timers
114 * before the system is ready.
115 */
116 static int cmc_polling_enabled = 1;
117
118 /*
119 * Clearing this variable prevents CPE polling from getting activated
120 * in mca_late_init. Use it if your system doesn't provide a CPEI,
121 * but encounters problems retrieving CPE logs. This should only be
122 * necessary for debugging.
123 */
124 static int cpe_poll_enabled = 1;
125
126 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
127
128 static int mca_init;
129
130 /*
131 * IA64_MCA log support
132 */
133 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
134 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
135
136 typedef struct ia64_state_log_s
137 {
138 spinlock_t isl_lock;
139 int isl_index;
140 unsigned long isl_count;
141 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
142 } ia64_state_log_t;
143
144 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
145
146 #define IA64_LOG_ALLOCATE(it, size) \
147 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
148 (ia64_err_rec_t *)alloc_bootmem(size); \
149 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
150 (ia64_err_rec_t *)alloc_bootmem(size);}
151 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
152 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
153 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
154 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
155 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
156 #define IA64_LOG_INDEX_INC(it) \
157 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
158 ia64_state_log[it].isl_count++;}
159 #define IA64_LOG_INDEX_DEC(it) \
160 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
161 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
162 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
163 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
164
165 /*
166 * ia64_log_init
167 * Reset the OS ia64 log buffer
168 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
169 * Outputs : None
170 */
171 static void
172 ia64_log_init(int sal_info_type)
173 {
174 u64 max_size = 0;
175
176 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
177 IA64_LOG_LOCK_INIT(sal_info_type);
178
179 // SAL will tell us the maximum size of any error record of this type
180 max_size = ia64_sal_get_state_info_size(sal_info_type);
181 if (!max_size)
182 /* alloc_bootmem() doesn't like zero-sized allocations! */
183 return;
184
185 // set up OS data structures to hold error info
186 IA64_LOG_ALLOCATE(sal_info_type, max_size);
187 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
188 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
189 }
190
191 /*
192 * ia64_log_get
193 *
194 * Get the current MCA log from SAL and copy it into the OS log buffer.
195 *
196 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
197 * irq_safe whether you can use printk at this point
198 * Outputs : size (total record length)
199 * *buffer (ptr to error record)
200 *
201 */
202 static u64
203 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
204 {
205 sal_log_record_header_t *log_buffer;
206 u64 total_len = 0;
207 int s;
208
209 IA64_LOG_LOCK(sal_info_type);
210
211 /* Get the process state information */
212 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
213
214 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
215
216 if (total_len) {
217 IA64_LOG_INDEX_INC(sal_info_type);
218 IA64_LOG_UNLOCK(sal_info_type);
219 if (irq_safe) {
220 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
221 "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
222 }
223 *buffer = (u8 *) log_buffer;
224 return total_len;
225 } else {
226 IA64_LOG_UNLOCK(sal_info_type);
227 return 0;
228 }
229 }
230
231 /*
232 * ia64_mca_log_sal_error_record
233 *
234 * This function retrieves a specified error record type from SAL
235 * and wakes up any processes waiting for error records.
236 *
237 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE/INIT)
238 */
239 static void
240 ia64_mca_log_sal_error_record(int sal_info_type)
241 {
242 u8 *buffer;
243 sal_log_record_header_t *rh;
244 u64 size;
245 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA && sal_info_type != SAL_INFO_TYPE_INIT;
246 #ifdef IA64_MCA_DEBUG_INFO
247 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
248 #endif
249
250 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
251 if (!size)
252 return;
253
254 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
255
256 if (irq_safe)
257 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
258 smp_processor_id(),
259 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
260
261 /* Clear logs from corrected errors in case there's no user-level logger */
262 rh = (sal_log_record_header_t *)buffer;
263 if (rh->severity == sal_log_severity_corrected)
264 ia64_sal_clear_state_info(sal_info_type);
265 }
266
267 /*
268 * platform dependent error handling
269 */
270 #ifndef PLATFORM_MCA_HANDLERS
271
272 #ifdef CONFIG_ACPI
273
274 static int cpe_vector = -1;
275
276 static irqreturn_t
277 ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs)
278 {
279 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
280 static int index;
281 static DEFINE_SPINLOCK(cpe_history_lock);
282
283 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
284 __FUNCTION__, cpe_irq, smp_processor_id());
285
286 /* SAL spec states this should run w/ interrupts enabled */
287 local_irq_enable();
288
289 /* Get the CPE error record and log it */
290 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
291
292 spin_lock(&cpe_history_lock);
293 if (!cpe_poll_enabled && cpe_vector >= 0) {
294
295 int i, count = 1; /* we know 1 happened now */
296 unsigned long now = jiffies;
297
298 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
299 if (now - cpe_history[i] <= HZ)
300 count++;
301 }
302
303 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
304 if (count >= CPE_HISTORY_LENGTH) {
305
306 cpe_poll_enabled = 1;
307 spin_unlock(&cpe_history_lock);
308 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
309
310 /*
311 * Corrected errors will still be corrected, but
312 * make sure there's a log somewhere that indicates
313 * something is generating more than we can handle.
314 */
315 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
316
317 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
318
319 /* lock already released, get out now */
320 return IRQ_HANDLED;
321 } else {
322 cpe_history[index++] = now;
323 if (index == CPE_HISTORY_LENGTH)
324 index = 0;
325 }
326 }
327 spin_unlock(&cpe_history_lock);
328 return IRQ_HANDLED;
329 }
330
331 #endif /* CONFIG_ACPI */
332
333 static void
334 show_min_state (pal_min_state_area_t *minstate)
335 {
336 u64 iip = minstate->pmsa_iip + ((struct ia64_psr *)(&minstate->pmsa_ipsr))->ri;
337 u64 xip = minstate->pmsa_xip + ((struct ia64_psr *)(&minstate->pmsa_xpsr))->ri;
338
339 printk("NaT bits\t%016lx\n", minstate->pmsa_nat_bits);
340 printk("pr\t\t%016lx\n", minstate->pmsa_pr);
341 printk("b0\t\t%016lx ", minstate->pmsa_br0); print_symbol("%s\n", minstate->pmsa_br0);
342 printk("ar.rsc\t\t%016lx\n", minstate->pmsa_rsc);
343 printk("cr.iip\t\t%016lx ", iip); print_symbol("%s\n", iip);
344 printk("cr.ipsr\t\t%016lx\n", minstate->pmsa_ipsr);
345 printk("cr.ifs\t\t%016lx\n", minstate->pmsa_ifs);
346 printk("xip\t\t%016lx ", xip); print_symbol("%s\n", xip);
347 printk("xpsr\t\t%016lx\n", minstate->pmsa_xpsr);
348 printk("xfs\t\t%016lx\n", minstate->pmsa_xfs);
349 printk("b1\t\t%016lx ", minstate->pmsa_br1);
350 print_symbol("%s\n", minstate->pmsa_br1);
351
352 printk("\nstatic registers r0-r15:\n");
353 printk(" r0- 3 %016lx %016lx %016lx %016lx\n",
354 0UL, minstate->pmsa_gr[0], minstate->pmsa_gr[1], minstate->pmsa_gr[2]);
355 printk(" r4- 7 %016lx %016lx %016lx %016lx\n",
356 minstate->pmsa_gr[3], minstate->pmsa_gr[4],
357 minstate->pmsa_gr[5], minstate->pmsa_gr[6]);
358 printk(" r8-11 %016lx %016lx %016lx %016lx\n",
359 minstate->pmsa_gr[7], minstate->pmsa_gr[8],
360 minstate->pmsa_gr[9], minstate->pmsa_gr[10]);
361 printk("r12-15 %016lx %016lx %016lx %016lx\n",
362 minstate->pmsa_gr[11], minstate->pmsa_gr[12],
363 minstate->pmsa_gr[13], minstate->pmsa_gr[14]);
364
365 printk("\nbank 0:\n");
366 printk("r16-19 %016lx %016lx %016lx %016lx\n",
367 minstate->pmsa_bank0_gr[0], minstate->pmsa_bank0_gr[1],
368 minstate->pmsa_bank0_gr[2], minstate->pmsa_bank0_gr[3]);
369 printk("r20-23 %016lx %016lx %016lx %016lx\n",
370 minstate->pmsa_bank0_gr[4], minstate->pmsa_bank0_gr[5],
371 minstate->pmsa_bank0_gr[6], minstate->pmsa_bank0_gr[7]);
372 printk("r24-27 %016lx %016lx %016lx %016lx\n",
373 minstate->pmsa_bank0_gr[8], minstate->pmsa_bank0_gr[9],
374 minstate->pmsa_bank0_gr[10], minstate->pmsa_bank0_gr[11]);
375 printk("r28-31 %016lx %016lx %016lx %016lx\n",
376 minstate->pmsa_bank0_gr[12], minstate->pmsa_bank0_gr[13],
377 minstate->pmsa_bank0_gr[14], minstate->pmsa_bank0_gr[15]);
378
379 printk("\nbank 1:\n");
380 printk("r16-19 %016lx %016lx %016lx %016lx\n",
381 minstate->pmsa_bank1_gr[0], minstate->pmsa_bank1_gr[1],
382 minstate->pmsa_bank1_gr[2], minstate->pmsa_bank1_gr[3]);
383 printk("r20-23 %016lx %016lx %016lx %016lx\n",
384 minstate->pmsa_bank1_gr[4], minstate->pmsa_bank1_gr[5],
385 minstate->pmsa_bank1_gr[6], minstate->pmsa_bank1_gr[7]);
386 printk("r24-27 %016lx %016lx %016lx %016lx\n",
387 minstate->pmsa_bank1_gr[8], minstate->pmsa_bank1_gr[9],
388 minstate->pmsa_bank1_gr[10], minstate->pmsa_bank1_gr[11]);
389 printk("r28-31 %016lx %016lx %016lx %016lx\n",
390 minstate->pmsa_bank1_gr[12], minstate->pmsa_bank1_gr[13],
391 minstate->pmsa_bank1_gr[14], minstate->pmsa_bank1_gr[15]);
392 }
393
394 static void
395 fetch_min_state (pal_min_state_area_t *ms, struct pt_regs *pt, struct switch_stack *sw)
396 {
397 u64 *dst_banked, *src_banked, bit, shift, nat_bits;
398 int i;
399
400 /*
401 * First, update the pt-regs and switch-stack structures with the contents stored
402 * in the min-state area:
403 */
404 if (((struct ia64_psr *) &ms->pmsa_ipsr)->ic == 0) {
405 pt->cr_ipsr = ms->pmsa_xpsr;
406 pt->cr_iip = ms->pmsa_xip;
407 pt->cr_ifs = ms->pmsa_xfs;
408 } else {
409 pt->cr_ipsr = ms->pmsa_ipsr;
410 pt->cr_iip = ms->pmsa_iip;
411 pt->cr_ifs = ms->pmsa_ifs;
412 }
413 pt->ar_rsc = ms->pmsa_rsc;
414 pt->pr = ms->pmsa_pr;
415 pt->r1 = ms->pmsa_gr[0];
416 pt->r2 = ms->pmsa_gr[1];
417 pt->r3 = ms->pmsa_gr[2];
418 sw->r4 = ms->pmsa_gr[3];
419 sw->r5 = ms->pmsa_gr[4];
420 sw->r6 = ms->pmsa_gr[5];
421 sw->r7 = ms->pmsa_gr[6];
422 pt->r8 = ms->pmsa_gr[7];
423 pt->r9 = ms->pmsa_gr[8];
424 pt->r10 = ms->pmsa_gr[9];
425 pt->r11 = ms->pmsa_gr[10];
426 pt->r12 = ms->pmsa_gr[11];
427 pt->r13 = ms->pmsa_gr[12];
428 pt->r14 = ms->pmsa_gr[13];
429 pt->r15 = ms->pmsa_gr[14];
430 dst_banked = &pt->r16; /* r16-r31 are contiguous in struct pt_regs */
431 src_banked = ms->pmsa_bank1_gr;
432 for (i = 0; i < 16; ++i)
433 dst_banked[i] = src_banked[i];
434 pt->b0 = ms->pmsa_br0;
435 sw->b1 = ms->pmsa_br1;
436
437 /* construct the NaT bits for the pt-regs structure: */
438 # define PUT_NAT_BIT(dst, addr) \
439 do { \
440 bit = nat_bits & 1; nat_bits >>= 1; \
441 shift = ((unsigned long) addr >> 3) & 0x3f; \
442 dst = ((dst) & ~(1UL << shift)) | (bit << shift); \
443 } while (0)
444
445 /* Rotate the saved NaT bits such that bit 0 corresponds to pmsa_gr[0]: */
446 shift = ((unsigned long) &ms->pmsa_gr[0] >> 3) & 0x3f;
447 nat_bits = (ms->pmsa_nat_bits >> shift) | (ms->pmsa_nat_bits << (64 - shift));
448
449 PUT_NAT_BIT(sw->caller_unat, &pt->r1);
450 PUT_NAT_BIT(sw->caller_unat, &pt->r2);
451 PUT_NAT_BIT(sw->caller_unat, &pt->r3);
452 PUT_NAT_BIT(sw->ar_unat, &sw->r4);
453 PUT_NAT_BIT(sw->ar_unat, &sw->r5);
454 PUT_NAT_BIT(sw->ar_unat, &sw->r6);
455 PUT_NAT_BIT(sw->ar_unat, &sw->r7);
456 PUT_NAT_BIT(sw->caller_unat, &pt->r8); PUT_NAT_BIT(sw->caller_unat, &pt->r9);
457 PUT_NAT_BIT(sw->caller_unat, &pt->r10); PUT_NAT_BIT(sw->caller_unat, &pt->r11);
458 PUT_NAT_BIT(sw->caller_unat, &pt->r12); PUT_NAT_BIT(sw->caller_unat, &pt->r13);
459 PUT_NAT_BIT(sw->caller_unat, &pt->r14); PUT_NAT_BIT(sw->caller_unat, &pt->r15);
460 nat_bits >>= 16; /* skip over bank0 NaT bits */
461 PUT_NAT_BIT(sw->caller_unat, &pt->r16); PUT_NAT_BIT(sw->caller_unat, &pt->r17);
462 PUT_NAT_BIT(sw->caller_unat, &pt->r18); PUT_NAT_BIT(sw->caller_unat, &pt->r19);
463 PUT_NAT_BIT(sw->caller_unat, &pt->r20); PUT_NAT_BIT(sw->caller_unat, &pt->r21);
464 PUT_NAT_BIT(sw->caller_unat, &pt->r22); PUT_NAT_BIT(sw->caller_unat, &pt->r23);
465 PUT_NAT_BIT(sw->caller_unat, &pt->r24); PUT_NAT_BIT(sw->caller_unat, &pt->r25);
466 PUT_NAT_BIT(sw->caller_unat, &pt->r26); PUT_NAT_BIT(sw->caller_unat, &pt->r27);
467 PUT_NAT_BIT(sw->caller_unat, &pt->r28); PUT_NAT_BIT(sw->caller_unat, &pt->r29);
468 PUT_NAT_BIT(sw->caller_unat, &pt->r30); PUT_NAT_BIT(sw->caller_unat, &pt->r31);
469 }
470
471 static void
472 init_handler_platform (pal_min_state_area_t *ms,
473 struct pt_regs *pt, struct switch_stack *sw)
474 {
475 struct unw_frame_info info;
476
477 /* if a kernel debugger is available call it here else just dump the registers */
478
479 /*
480 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
481 * generated via the BMC's command-line interface, but since the console is on the
482 * same serial line, the user will need some time to switch out of the BMC before
483 * the dump begins.
484 */
485 printk("Delaying for 5 seconds...\n");
486 udelay(5*1000000);
487 show_min_state(ms);
488
489 printk("Backtrace of current task (pid %d, %s)\n", current->pid, current->comm);
490 fetch_min_state(ms, pt, sw);
491 unw_init_from_interruption(&info, current, pt, sw);
492 ia64_do_show_stack(&info, NULL);
493
494 #ifdef CONFIG_SMP
495 /* read_trylock() would be handy... */
496 if (!tasklist_lock.write_lock)
497 read_lock(&tasklist_lock);
498 #endif
499 {
500 struct task_struct *g, *t;
501 do_each_thread (g, t) {
502 if (t == current)
503 continue;
504
505 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
506 show_stack(t, NULL);
507 } while_each_thread (g, t);
508 }
509 #ifdef CONFIG_SMP
510 if (!tasklist_lock.write_lock)
511 read_unlock(&tasklist_lock);
512 #endif
513
514 printk("\nINIT dump complete. Please reboot now.\n");
515 while (1); /* hang city if no debugger */
516 }
517
518 #ifdef CONFIG_ACPI
519 /*
520 * ia64_mca_register_cpev
521 *
522 * Register the corrected platform error vector with SAL.
523 *
524 * Inputs
525 * cpev Corrected Platform Error Vector number
526 *
527 * Outputs
528 * None
529 */
530 static void
531 ia64_mca_register_cpev (int cpev)
532 {
533 /* Register the CPE interrupt vector with SAL */
534 struct ia64_sal_retval isrv;
535
536 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
537 if (isrv.status) {
538 printk(KERN_ERR "Failed to register Corrected Platform "
539 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
540 return;
541 }
542
543 IA64_MCA_DEBUG("%s: corrected platform error "
544 "vector %#x registered\n", __FUNCTION__, cpev);
545 }
546 #endif /* CONFIG_ACPI */
547
548 #endif /* PLATFORM_MCA_HANDLERS */
549
550 /*
551 * ia64_mca_cmc_vector_setup
552 *
553 * Setup the corrected machine check vector register in the processor.
554 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
555 * This function is invoked on a per-processor basis.
556 *
557 * Inputs
558 * None
559 *
560 * Outputs
561 * None
562 */
563 void
564 ia64_mca_cmc_vector_setup (void)
565 {
566 cmcv_reg_t cmcv;
567
568 cmcv.cmcv_regval = 0;
569 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
570 cmcv.cmcv_vector = IA64_CMC_VECTOR;
571 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
572
573 IA64_MCA_DEBUG("%s: CPU %d corrected "
574 "machine check vector %#x registered.\n",
575 __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
576
577 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
578 __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
579 }
580
581 /*
582 * ia64_mca_cmc_vector_disable
583 *
584 * Mask the corrected machine check vector register in the processor.
585 * This function is invoked on a per-processor basis.
586 *
587 * Inputs
588 * dummy(unused)
589 *
590 * Outputs
591 * None
592 */
593 static void
594 ia64_mca_cmc_vector_disable (void *dummy)
595 {
596 cmcv_reg_t cmcv;
597
598 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
599
600 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
601 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
602
603 IA64_MCA_DEBUG("%s: CPU %d corrected "
604 "machine check vector %#x disabled.\n",
605 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
606 }
607
608 /*
609 * ia64_mca_cmc_vector_enable
610 *
611 * Unmask the corrected machine check vector register in the processor.
612 * This function is invoked on a per-processor basis.
613 *
614 * Inputs
615 * dummy(unused)
616 *
617 * Outputs
618 * None
619 */
620 static void
621 ia64_mca_cmc_vector_enable (void *dummy)
622 {
623 cmcv_reg_t cmcv;
624
625 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
626
627 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
628 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
629
630 IA64_MCA_DEBUG("%s: CPU %d corrected "
631 "machine check vector %#x enabled.\n",
632 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
633 }
634
635 /*
636 * ia64_mca_cmc_vector_disable_keventd
637 *
638 * Called via keventd (smp_call_function() is not safe in interrupt context) to
639 * disable the cmc interrupt vector.
640 */
641 static void
642 ia64_mca_cmc_vector_disable_keventd(void *unused)
643 {
644 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
645 }
646
647 /*
648 * ia64_mca_cmc_vector_enable_keventd
649 *
650 * Called via keventd (smp_call_function() is not safe in interrupt context) to
651 * enable the cmc interrupt vector.
652 */
653 static void
654 ia64_mca_cmc_vector_enable_keventd(void *unused)
655 {
656 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
657 }
658
659 /*
660 * ia64_mca_wakeup_ipi_wait
661 *
662 * Wait for the inter-cpu interrupt to be sent by the
663 * monarch processor once it is done with handling the
664 * MCA.
665 *
666 * Inputs : None
667 * Outputs : None
668 */
669 static void
670 ia64_mca_wakeup_ipi_wait(void)
671 {
672 int irr_num = (IA64_MCA_WAKEUP_VECTOR >> 6);
673 int irr_bit = (IA64_MCA_WAKEUP_VECTOR & 0x3f);
674 u64 irr = 0;
675
676 do {
677 switch(irr_num) {
678 case 0:
679 irr = ia64_getreg(_IA64_REG_CR_IRR0);
680 break;
681 case 1:
682 irr = ia64_getreg(_IA64_REG_CR_IRR1);
683 break;
684 case 2:
685 irr = ia64_getreg(_IA64_REG_CR_IRR2);
686 break;
687 case 3:
688 irr = ia64_getreg(_IA64_REG_CR_IRR3);
689 break;
690 }
691 cpu_relax();
692 } while (!(irr & (1UL << irr_bit))) ;
693 }
694
695 /*
696 * ia64_mca_wakeup
697 *
698 * Send an inter-cpu interrupt to wake-up a particular cpu
699 * and mark that cpu to be out of rendez.
700 *
701 * Inputs : cpuid
702 * Outputs : None
703 */
704 static void
705 ia64_mca_wakeup(int cpu)
706 {
707 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
708 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
709
710 }
711
712 /*
713 * ia64_mca_wakeup_all
714 *
715 * Wakeup all the cpus which have rendez'ed previously.
716 *
717 * Inputs : None
718 * Outputs : None
719 */
720 static void
721 ia64_mca_wakeup_all(void)
722 {
723 int cpu;
724
725 /* Clear the Rendez checkin flag for all cpus */
726 for(cpu = 0; cpu < NR_CPUS; cpu++) {
727 if (!cpu_online(cpu))
728 continue;
729 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
730 ia64_mca_wakeup(cpu);
731 }
732
733 }
734
735 /*
736 * ia64_mca_rendez_interrupt_handler
737 *
738 * This is handler used to put slave processors into spinloop
739 * while the monarch processor does the mca handling and later
740 * wake each slave up once the monarch is done.
741 *
742 * Inputs : None
743 * Outputs : None
744 */
745 static irqreturn_t
746 ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *ptregs)
747 {
748 unsigned long flags;
749 int cpu = smp_processor_id();
750
751 /* Mask all interrupts */
752 local_irq_save(flags);
753
754 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
755 /* Register with the SAL monarch that the slave has
756 * reached SAL
757 */
758 ia64_sal_mc_rendez();
759
760 /* Wait for the wakeup IPI from the monarch
761 * This waiting is done by polling on the wakeup-interrupt
762 * vector bit in the processor's IRRs
763 */
764 ia64_mca_wakeup_ipi_wait();
765
766 /* Enable all interrupts */
767 local_irq_restore(flags);
768 return IRQ_HANDLED;
769 }
770
771 /*
772 * ia64_mca_wakeup_int_handler
773 *
774 * The interrupt handler for processing the inter-cpu interrupt to the
775 * slave cpu which was spinning in the rendez loop.
776 * Since this spinning is done by turning off the interrupts and
777 * polling on the wakeup-interrupt bit in the IRR, there is
778 * nothing useful to be done in the handler.
779 *
780 * Inputs : wakeup_irq (Wakeup-interrupt bit)
781 * arg (Interrupt handler specific argument)
782 * ptregs (Exception frame at the time of the interrupt)
783 * Outputs : None
784 *
785 */
786 static irqreturn_t
787 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs)
788 {
789 return IRQ_HANDLED;
790 }
791
792 /*
793 * ia64_return_to_sal_check
794 *
795 * This is function called before going back from the OS_MCA handler
796 * to the OS_MCA dispatch code which finally takes the control back
797 * to the SAL.
798 * The main purpose of this routine is to setup the OS_MCA to SAL
799 * return state which can be used by the OS_MCA dispatch code
800 * just before going back to SAL.
801 *
802 * Inputs : None
803 * Outputs : None
804 */
805
806 static void
807 ia64_return_to_sal_check(int recover)
808 {
809
810 /* Copy over some relevant stuff from the sal_to_os_mca_handoff
811 * so that it can be used at the time of os_mca_to_sal_handoff
812 */
813 ia64_os_to_sal_handoff_state.imots_sal_gp =
814 ia64_sal_to_os_handoff_state.imsto_sal_gp;
815
816 ia64_os_to_sal_handoff_state.imots_sal_check_ra =
817 ia64_sal_to_os_handoff_state.imsto_sal_check_ra;
818
819 if (recover)
820 ia64_os_to_sal_handoff_state.imots_os_status = IA64_MCA_CORRECTED;
821 else
822 ia64_os_to_sal_handoff_state.imots_os_status = IA64_MCA_COLD_BOOT;
823
824 /* Default = tell SAL to return to same context */
825 ia64_os_to_sal_handoff_state.imots_context = IA64_MCA_SAME_CONTEXT;
826
827 ia64_os_to_sal_handoff_state.imots_new_min_state =
828 (u64 *)ia64_sal_to_os_handoff_state.pal_min_state;
829
830 }
831
832 /* Function pointer for extra MCA recovery */
833 int (*ia64_mca_ucmc_extension)
834 (void*,ia64_mca_sal_to_os_state_t*,ia64_mca_os_to_sal_state_t*)
835 = NULL;
836
837 int
838 ia64_reg_MCA_extension(void *fn)
839 {
840 if (ia64_mca_ucmc_extension)
841 return 1;
842
843 ia64_mca_ucmc_extension = fn;
844 return 0;
845 }
846
847 void
848 ia64_unreg_MCA_extension(void)
849 {
850 if (ia64_mca_ucmc_extension)
851 ia64_mca_ucmc_extension = NULL;
852 }
853
854 EXPORT_SYMBOL(ia64_reg_MCA_extension);
855 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
856
857 /*
858 * ia64_mca_ucmc_handler
859 *
860 * This is uncorrectable machine check handler called from OS_MCA
861 * dispatch code which is in turn called from SAL_CHECK().
862 * This is the place where the core of OS MCA handling is done.
863 * Right now the logs are extracted and displayed in a well-defined
864 * format. This handler code is supposed to be run only on the
865 * monarch processor. Once the monarch is done with MCA handling
866 * further MCA logging is enabled by clearing logs.
867 * Monarch also has the duty of sending wakeup-IPIs to pull the
868 * slave processors out of rendezvous spinloop.
869 *
870 * Inputs : None
871 * Outputs : None
872 */
873 void
874 ia64_mca_ucmc_handler(void)
875 {
876 pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
877 &ia64_sal_to_os_handoff_state.proc_state_param;
878 int recover;
879
880 /* Get the MCA error record and log it */
881 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
882
883 /* TLB error is only exist in this SAL error record */
884 recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc))
885 /* other error recovery */
886 || (ia64_mca_ucmc_extension
887 && ia64_mca_ucmc_extension(
888 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
889 &ia64_sal_to_os_handoff_state,
890 &ia64_os_to_sal_handoff_state));
891
892 if (recover) {
893 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
894 rh->severity = sal_log_severity_corrected;
895 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
896 }
897 /*
898 * Wakeup all the processors which are spinning in the rendezvous
899 * loop.
900 */
901 ia64_mca_wakeup_all();
902
903 /* Return to SAL */
904 ia64_return_to_sal_check(recover);
905 }
906
907 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL);
908 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL);
909
910 /*
911 * ia64_mca_cmc_int_handler
912 *
913 * This is corrected machine check interrupt handler.
914 * Right now the logs are extracted and displayed in a well-defined
915 * format.
916 *
917 * Inputs
918 * interrupt number
919 * client data arg ptr
920 * saved registers ptr
921 *
922 * Outputs
923 * None
924 */
925 static irqreturn_t
926 ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs)
927 {
928 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
929 static int index;
930 static DEFINE_SPINLOCK(cmc_history_lock);
931
932 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
933 __FUNCTION__, cmc_irq, smp_processor_id());
934
935 /* SAL spec states this should run w/ interrupts enabled */
936 local_irq_enable();
937
938 /* Get the CMC error record and log it */
939 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
940
941 spin_lock(&cmc_history_lock);
942 if (!cmc_polling_enabled) {
943 int i, count = 1; /* we know 1 happened now */
944 unsigned long now = jiffies;
945
946 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
947 if (now - cmc_history[i] <= HZ)
948 count++;
949 }
950
951 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
952 if (count >= CMC_HISTORY_LENGTH) {
953
954 cmc_polling_enabled = 1;
955 spin_unlock(&cmc_history_lock);
956 schedule_work(&cmc_disable_work);
957
958 /*
959 * Corrected errors will still be corrected, but
960 * make sure there's a log somewhere that indicates
961 * something is generating more than we can handle.
962 */
963 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
964
965 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
966
967 /* lock already released, get out now */
968 return IRQ_HANDLED;
969 } else {
970 cmc_history[index++] = now;
971 if (index == CMC_HISTORY_LENGTH)
972 index = 0;
973 }
974 }
975 spin_unlock(&cmc_history_lock);
976 return IRQ_HANDLED;
977 }
978
979 /*
980 * ia64_mca_cmc_int_caller
981 *
982 * Triggered by sw interrupt from CMC polling routine. Calls
983 * real interrupt handler and either triggers a sw interrupt
984 * on the next cpu or does cleanup at the end.
985 *
986 * Inputs
987 * interrupt number
988 * client data arg ptr
989 * saved registers ptr
990 * Outputs
991 * handled
992 */
993 static irqreturn_t
994 ia64_mca_cmc_int_caller(int cmc_irq, void *arg, struct pt_regs *ptregs)
995 {
996 static int start_count = -1;
997 unsigned int cpuid;
998
999 cpuid = smp_processor_id();
1000
1001 /* If first cpu, update count */
1002 if (start_count == -1)
1003 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1004
1005 ia64_mca_cmc_int_handler(cmc_irq, arg, ptregs);
1006
1007 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1008
1009 if (cpuid < NR_CPUS) {
1010 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1011 } else {
1012 /* If no log record, switch out of polling mode */
1013 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1014
1015 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1016 schedule_work(&cmc_enable_work);
1017 cmc_polling_enabled = 0;
1018
1019 } else {
1020
1021 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1022 }
1023
1024 start_count = -1;
1025 }
1026
1027 return IRQ_HANDLED;
1028 }
1029
1030 /*
1031 * ia64_mca_cmc_poll
1032 *
1033 * Poll for Corrected Machine Checks (CMCs)
1034 *
1035 * Inputs : dummy(unused)
1036 * Outputs : None
1037 *
1038 */
1039 static void
1040 ia64_mca_cmc_poll (unsigned long dummy)
1041 {
1042 /* Trigger a CMC interrupt cascade */
1043 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1044 }
1045
1046 /*
1047 * ia64_mca_cpe_int_caller
1048 *
1049 * Triggered by sw interrupt from CPE polling routine. Calls
1050 * real interrupt handler and either triggers a sw interrupt
1051 * on the next cpu or does cleanup at the end.
1052 *
1053 * Inputs
1054 * interrupt number
1055 * client data arg ptr
1056 * saved registers ptr
1057 * Outputs
1058 * handled
1059 */
1060 #ifdef CONFIG_ACPI
1061
1062 static irqreturn_t
1063 ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs)
1064 {
1065 static int start_count = -1;
1066 static int poll_time = MIN_CPE_POLL_INTERVAL;
1067 unsigned int cpuid;
1068
1069 cpuid = smp_processor_id();
1070
1071 /* If first cpu, update count */
1072 if (start_count == -1)
1073 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1074
1075 ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs);
1076
1077 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1078
1079 if (cpuid < NR_CPUS) {
1080 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1081 } else {
1082 /*
1083 * If a log was recorded, increase our polling frequency,
1084 * otherwise, backoff or return to interrupt mode.
1085 */
1086 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1087 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1088 } else if (cpe_vector < 0) {
1089 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1090 } else {
1091 poll_time = MIN_CPE_POLL_INTERVAL;
1092
1093 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1094 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1095 cpe_poll_enabled = 0;
1096 }
1097
1098 if (cpe_poll_enabled)
1099 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1100 start_count = -1;
1101 }
1102
1103 return IRQ_HANDLED;
1104 }
1105
1106 #endif /* CONFIG_ACPI */
1107
1108 /*
1109 * ia64_mca_cpe_poll
1110 *
1111 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1112 * on first cpu, from there it will trickle through all the cpus.
1113 *
1114 * Inputs : dummy(unused)
1115 * Outputs : None
1116 *
1117 */
1118 static void
1119 ia64_mca_cpe_poll (unsigned long dummy)
1120 {
1121 /* Trigger a CPE interrupt cascade */
1122 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1123 }
1124
1125 /*
1126 * C portion of the OS INIT handler
1127 *
1128 * Called from ia64_monarch_init_handler
1129 *
1130 * Inputs: pointer to pt_regs where processor info was saved.
1131 *
1132 * Returns:
1133 * 0 if SAL must warm boot the System
1134 * 1 if SAL must return to interrupted context using PAL_MC_RESUME
1135 *
1136 */
1137 void
1138 ia64_init_handler (struct pt_regs *pt, struct switch_stack *sw)
1139 {
1140 pal_min_state_area_t *ms;
1141
1142 oops_in_progress = 1; /* avoid deadlock in printk, but it makes recovery dodgy */
1143 console_loglevel = 15; /* make sure printks make it to console */
1144
1145 printk(KERN_INFO "Entered OS INIT handler. PSP=%lx\n",
1146 ia64_sal_to_os_handoff_state.proc_state_param);
1147
1148 /*
1149 * Address of minstate area provided by PAL is physical,
1150 * uncacheable (bit 63 set). Convert to Linux virtual
1151 * address in region 6.
1152 */
1153 ms = (pal_min_state_area_t *)(ia64_sal_to_os_handoff_state.pal_min_state | (6ul<<61));
1154
1155 init_handler_platform(ms, pt, sw); /* call platform specific routines */
1156 }
1157
1158 static int __init
1159 ia64_mca_disable_cpe_polling(char *str)
1160 {
1161 cpe_poll_enabled = 0;
1162 return 1;
1163 }
1164
1165 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1166
1167 static struct irqaction cmci_irqaction = {
1168 .handler = ia64_mca_cmc_int_handler,
1169 .flags = SA_INTERRUPT,
1170 .name = "cmc_hndlr"
1171 };
1172
1173 static struct irqaction cmcp_irqaction = {
1174 .handler = ia64_mca_cmc_int_caller,
1175 .flags = SA_INTERRUPT,
1176 .name = "cmc_poll"
1177 };
1178
1179 static struct irqaction mca_rdzv_irqaction = {
1180 .handler = ia64_mca_rendez_int_handler,
1181 .flags = SA_INTERRUPT,
1182 .name = "mca_rdzv"
1183 };
1184
1185 static struct irqaction mca_wkup_irqaction = {
1186 .handler = ia64_mca_wakeup_int_handler,
1187 .flags = SA_INTERRUPT,
1188 .name = "mca_wkup"
1189 };
1190
1191 #ifdef CONFIG_ACPI
1192 static struct irqaction mca_cpe_irqaction = {
1193 .handler = ia64_mca_cpe_int_handler,
1194 .flags = SA_INTERRUPT,
1195 .name = "cpe_hndlr"
1196 };
1197
1198 static struct irqaction mca_cpep_irqaction = {
1199 .handler = ia64_mca_cpe_int_caller,
1200 .flags = SA_INTERRUPT,
1201 .name = "cpe_poll"
1202 };
1203 #endif /* CONFIG_ACPI */
1204
1205 /* Do per-CPU MCA-related initialization. */
1206
1207 void __devinit
1208 ia64_mca_cpu_init(void *cpu_data)
1209 {
1210 void *pal_vaddr;
1211
1212 if (smp_processor_id() == 0) {
1213 void *mca_data;
1214 int cpu;
1215
1216 mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
1217 * NR_CPUS);
1218 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1219 __per_cpu_mca[cpu] = __pa(mca_data);
1220 mca_data += sizeof(struct ia64_mca_cpu);
1221 }
1222 }
1223
1224 /*
1225 * The MCA info structure was allocated earlier and its
1226 * physical address saved in __per_cpu_mca[cpu]. Copy that
1227 * address * to ia64_mca_data so we can access it as a per-CPU
1228 * variable.
1229 */
1230 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1231
1232 /*
1233 * Stash away a copy of the PTE needed to map the per-CPU page.
1234 * We may need it during MCA recovery.
1235 */
1236 __get_cpu_var(ia64_mca_per_cpu_pte) =
1237 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1238
1239 /*
1240 * Also, stash away a copy of the PAL address and the PTE
1241 * needed to map it.
1242 */
1243 pal_vaddr = efi_get_pal_addr();
1244 if (!pal_vaddr)
1245 return;
1246 __get_cpu_var(ia64_mca_pal_base) =
1247 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1248 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1249 PAGE_KERNEL));
1250 }
1251
1252 /*
1253 * ia64_mca_init
1254 *
1255 * Do all the system level mca specific initialization.
1256 *
1257 * 1. Register spinloop and wakeup request interrupt vectors
1258 *
1259 * 2. Register OS_MCA handler entry point
1260 *
1261 * 3. Register OS_INIT handler entry point
1262 *
1263 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1264 *
1265 * Note that this initialization is done very early before some kernel
1266 * services are available.
1267 *
1268 * Inputs : None
1269 *
1270 * Outputs : None
1271 */
1272 void __init
1273 ia64_mca_init(void)
1274 {
1275 ia64_fptr_t *mon_init_ptr = (ia64_fptr_t *)ia64_monarch_init_handler;
1276 ia64_fptr_t *slave_init_ptr = (ia64_fptr_t *)ia64_slave_init_handler;
1277 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1278 int i;
1279 s64 rc;
1280 struct ia64_sal_retval isrv;
1281 u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1282
1283 IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1284
1285 /* Clear the Rendez checkin flag for all cpus */
1286 for(i = 0 ; i < NR_CPUS; i++)
1287 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1288
1289 /*
1290 * Register the rendezvous spinloop and wakeup mechanism with SAL
1291 */
1292
1293 /* Register the rendezvous interrupt vector with SAL */
1294 while (1) {
1295 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1296 SAL_MC_PARAM_MECHANISM_INT,
1297 IA64_MCA_RENDEZ_VECTOR,
1298 timeout,
1299 SAL_MC_PARAM_RZ_ALWAYS);
1300 rc = isrv.status;
1301 if (rc == 0)
1302 break;
1303 if (rc == -2) {
1304 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1305 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1306 timeout = isrv.v0;
1307 continue;
1308 }
1309 printk(KERN_ERR "Failed to register rendezvous interrupt "
1310 "with SAL (status %ld)\n", rc);
1311 return;
1312 }
1313
1314 /* Register the wakeup interrupt vector with SAL */
1315 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1316 SAL_MC_PARAM_MECHANISM_INT,
1317 IA64_MCA_WAKEUP_VECTOR,
1318 0, 0);
1319 rc = isrv.status;
1320 if (rc) {
1321 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1322 "(status %ld)\n", rc);
1323 return;
1324 }
1325
1326 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1327
1328 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1329 /*
1330 * XXX - disable SAL checksum by setting size to 0; should be
1331 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1332 */
1333 ia64_mc_info.imi_mca_handler_size = 0;
1334
1335 /* Register the os mca handler with SAL */
1336 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1337 ia64_mc_info.imi_mca_handler,
1338 ia64_tpa(mca_hldlr_ptr->gp),
1339 ia64_mc_info.imi_mca_handler_size,
1340 0, 0, 0)))
1341 {
1342 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1343 "(status %ld)\n", rc);
1344 return;
1345 }
1346
1347 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1348 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1349
1350 /*
1351 * XXX - disable SAL checksum by setting size to 0, should be
1352 * size of the actual init handler in mca_asm.S.
1353 */
1354 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(mon_init_ptr->fp);
1355 ia64_mc_info.imi_monarch_init_handler_size = 0;
1356 ia64_mc_info.imi_slave_init_handler = ia64_tpa(slave_init_ptr->fp);
1357 ia64_mc_info.imi_slave_init_handler_size = 0;
1358
1359 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1360 ia64_mc_info.imi_monarch_init_handler);
1361
1362 /* Register the os init handler with SAL */
1363 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1364 ia64_mc_info.imi_monarch_init_handler,
1365 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1366 ia64_mc_info.imi_monarch_init_handler_size,
1367 ia64_mc_info.imi_slave_init_handler,
1368 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1369 ia64_mc_info.imi_slave_init_handler_size)))
1370 {
1371 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1372 "(status %ld)\n", rc);
1373 return;
1374 }
1375
1376 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1377
1378 /*
1379 * Configure the CMCI/P vector and handler. Interrupts for CMC are
1380 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1381 */
1382 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1383 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1384 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
1385
1386 /* Setup the MCA rendezvous interrupt vector */
1387 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1388
1389 /* Setup the MCA wakeup interrupt vector */
1390 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1391
1392 #ifdef CONFIG_ACPI
1393 /* Setup the CPEI/P vector and handler */
1394 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
1395 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1396 #endif
1397
1398 /* Initialize the areas set aside by the OS to buffer the
1399 * platform/processor error states for MCA/INIT/CMC
1400 * handling.
1401 */
1402 ia64_log_init(SAL_INFO_TYPE_MCA);
1403 ia64_log_init(SAL_INFO_TYPE_INIT);
1404 ia64_log_init(SAL_INFO_TYPE_CMC);
1405 ia64_log_init(SAL_INFO_TYPE_CPE);
1406
1407 mca_init = 1;
1408 printk(KERN_INFO "MCA related initialization done\n");
1409 }
1410
1411 /*
1412 * ia64_mca_late_init
1413 *
1414 * Opportunity to setup things that require initialization later
1415 * than ia64_mca_init. Setup a timer to poll for CPEs if the
1416 * platform doesn't support an interrupt driven mechanism.
1417 *
1418 * Inputs : None
1419 * Outputs : Status
1420 */
1421 static int __init
1422 ia64_mca_late_init(void)
1423 {
1424 if (!mca_init)
1425 return 0;
1426
1427 /* Setup the CMCI/P vector and handler */
1428 init_timer(&cmc_poll_timer);
1429 cmc_poll_timer.function = ia64_mca_cmc_poll;
1430
1431 /* Unmask/enable the vector */
1432 cmc_polling_enabled = 0;
1433 schedule_work(&cmc_enable_work);
1434
1435 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
1436
1437 #ifdef CONFIG_ACPI
1438 /* Setup the CPEI/P vector and handler */
1439 init_timer(&cpe_poll_timer);
1440 cpe_poll_timer.function = ia64_mca_cpe_poll;
1441
1442 {
1443 irq_desc_t *desc;
1444 unsigned int irq;
1445
1446 if (cpe_vector >= 0) {
1447 /* If platform supports CPEI, enable the irq. */
1448 cpe_poll_enabled = 0;
1449 for (irq = 0; irq < NR_IRQS; ++irq)
1450 if (irq_to_vector(irq) == cpe_vector) {
1451 desc = irq_descp(irq);
1452 desc->status |= IRQ_PER_CPU;
1453 setup_irq(irq, &mca_cpe_irqaction);
1454 }
1455 ia64_mca_register_cpev(cpe_vector);
1456 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
1457 } else {
1458 /* If platform doesn't support CPEI, get the timer going. */
1459 if (cpe_poll_enabled) {
1460 ia64_mca_cpe_poll(0UL);
1461 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
1462 }
1463 }
1464 }
1465 #endif
1466
1467 return 0;
1468 }
1469
1470 device_initcall(ia64_mca_late_init);