vm: add VM_FAULT_SIGSEGV handling support
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / cris / mm / fault.c
1 /*
2 * arch/cris/mm/fault.c
3 *
4 * Copyright (C) 2000-2010 Axis Communications AB
5 */
6
7 #include <linux/mm.h>
8 #include <linux/interrupt.h>
9 #include <linux/module.h>
10 #include <linux/wait.h>
11 #include <asm/uaccess.h>
12 #include <arch/system.h>
13
14 extern int find_fixup_code(struct pt_regs *);
15 extern void die_if_kernel(const char *, struct pt_regs *, long);
16 extern void show_registers(struct pt_regs *regs);
17
18 /* debug of low-level TLB reload */
19 #undef DEBUG
20
21 #ifdef DEBUG
22 #define D(x) x
23 #else
24 #define D(x)
25 #endif
26
27 /* debug of higher-level faults */
28 #define DPG(x)
29
30 /* current active page directory */
31
32 DEFINE_PER_CPU(pgd_t *, current_pgd);
33 unsigned long cris_signal_return_page;
34
35 /*
36 * This routine handles page faults. It determines the address,
37 * and the problem, and then passes it off to one of the appropriate
38 * routines.
39 *
40 * Notice that the address we're given is aligned to the page the fault
41 * occurred in, since we only get the PFN in R_MMU_CAUSE not the complete
42 * address.
43 *
44 * error_code:
45 * bit 0 == 0 means no page found, 1 means protection fault
46 * bit 1 == 0 means read, 1 means write
47 *
48 * If this routine detects a bad access, it returns 1, otherwise it
49 * returns 0.
50 */
51
52 asmlinkage void
53 do_page_fault(unsigned long address, struct pt_regs *regs,
54 int protection, int writeaccess)
55 {
56 struct task_struct *tsk;
57 struct mm_struct *mm;
58 struct vm_area_struct * vma;
59 siginfo_t info;
60 int fault;
61 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
62
63 D(printk(KERN_DEBUG
64 "Page fault for %lX on %X at %lX, prot %d write %d\n",
65 address, smp_processor_id(), instruction_pointer(regs),
66 protection, writeaccess));
67
68 tsk = current;
69
70 /*
71 * We fault-in kernel-space virtual memory on-demand. The
72 * 'reference' page table is init_mm.pgd.
73 *
74 * NOTE! We MUST NOT take any locks for this case. We may
75 * be in an interrupt or a critical region, and should
76 * only copy the information from the master page table,
77 * nothing more.
78 *
79 * NOTE2: This is done so that, when updating the vmalloc
80 * mappings we don't have to walk all processes pgdirs and
81 * add the high mappings all at once. Instead we do it as they
82 * are used. However vmalloc'ed page entries have the PAGE_GLOBAL
83 * bit set so sometimes the TLB can use a lingering entry.
84 *
85 * This verifies that the fault happens in kernel space
86 * and that the fault was not a protection error (error_code & 1).
87 */
88
89 if (address >= VMALLOC_START &&
90 !protection &&
91 !user_mode(regs))
92 goto vmalloc_fault;
93
94 /* When stack execution is not allowed we store the signal
95 * trampolines in the reserved cris_signal_return_page.
96 * Handle this in the exact same way as vmalloc (we know
97 * that the mapping is there and is valid so no need to
98 * call handle_mm_fault).
99 */
100 if (cris_signal_return_page &&
101 address == cris_signal_return_page &&
102 !protection && user_mode(regs))
103 goto vmalloc_fault;
104
105 /* we can and should enable interrupts at this point */
106 local_irq_enable();
107
108 mm = tsk->mm;
109 info.si_code = SEGV_MAPERR;
110
111 /*
112 * If we're in an interrupt or "atomic" operation or have no
113 * user context, we must not take the fault.
114 */
115
116 if (in_atomic() || !mm)
117 goto no_context;
118
119 if (user_mode(regs))
120 flags |= FAULT_FLAG_USER;
121 retry:
122 down_read(&mm->mmap_sem);
123 vma = find_vma(mm, address);
124 if (!vma)
125 goto bad_area;
126 if (vma->vm_start <= address)
127 goto good_area;
128 if (!(vma->vm_flags & VM_GROWSDOWN))
129 goto bad_area;
130 if (user_mode(regs)) {
131 /*
132 * accessing the stack below usp is always a bug.
133 * we get page-aligned addresses so we can only check
134 * if we're within a page from usp, but that might be
135 * enough to catch brutal errors at least.
136 */
137 if (address + PAGE_SIZE < rdusp())
138 goto bad_area;
139 }
140 if (expand_stack(vma, address))
141 goto bad_area;
142
143 /*
144 * Ok, we have a good vm_area for this memory access, so
145 * we can handle it..
146 */
147
148 good_area:
149 info.si_code = SEGV_ACCERR;
150
151 /* first do some preliminary protection checks */
152
153 if (writeaccess == 2){
154 if (!(vma->vm_flags & VM_EXEC))
155 goto bad_area;
156 } else if (writeaccess == 1) {
157 if (!(vma->vm_flags & VM_WRITE))
158 goto bad_area;
159 flags |= FAULT_FLAG_WRITE;
160 } else {
161 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
162 goto bad_area;
163 }
164
165 /*
166 * If for any reason at all we couldn't handle the fault,
167 * make sure we exit gracefully rather than endlessly redo
168 * the fault.
169 */
170
171 fault = handle_mm_fault(mm, vma, address, flags);
172
173 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
174 return;
175
176 if (unlikely(fault & VM_FAULT_ERROR)) {
177 if (fault & VM_FAULT_OOM)
178 goto out_of_memory;
179 else if (fault & VM_FAULT_SIGSEGV)
180 goto bad_area;
181 else if (fault & VM_FAULT_SIGBUS)
182 goto do_sigbus;
183 BUG();
184 }
185
186 if (flags & FAULT_FLAG_ALLOW_RETRY) {
187 if (fault & VM_FAULT_MAJOR)
188 tsk->maj_flt++;
189 else
190 tsk->min_flt++;
191 if (fault & VM_FAULT_RETRY) {
192 flags &= ~FAULT_FLAG_ALLOW_RETRY;
193 flags |= FAULT_FLAG_TRIED;
194
195 /*
196 * No need to up_read(&mm->mmap_sem) as we would
197 * have already released it in __lock_page_or_retry
198 * in mm/filemap.c.
199 */
200
201 goto retry;
202 }
203 }
204
205 up_read(&mm->mmap_sem);
206 return;
207
208 /*
209 * Something tried to access memory that isn't in our memory map..
210 * Fix it, but check if it's kernel or user first..
211 */
212
213 bad_area:
214 up_read(&mm->mmap_sem);
215
216 bad_area_nosemaphore:
217 DPG(show_registers(regs));
218
219 /* User mode accesses just cause a SIGSEGV */
220
221 if (user_mode(regs)) {
222 printk(KERN_NOTICE "%s (pid %d) segfaults for page "
223 "address %08lx at pc %08lx\n",
224 tsk->comm, tsk->pid,
225 address, instruction_pointer(regs));
226
227 /* With DPG on, we've already dumped registers above. */
228 DPG(if (0))
229 show_registers(regs);
230
231 #ifdef CONFIG_NO_SEGFAULT_TERMINATION
232 DECLARE_WAIT_QUEUE_HEAD(wq);
233 wait_event_interruptible(wq, 0 == 1);
234 #else
235 info.si_signo = SIGSEGV;
236 info.si_errno = 0;
237 /* info.si_code has been set above */
238 info.si_addr = (void *)address;
239 force_sig_info(SIGSEGV, &info, tsk);
240 #endif
241 return;
242 }
243
244 no_context:
245
246 /* Are we prepared to handle this kernel fault?
247 *
248 * (The kernel has valid exception-points in the source
249 * when it accesses user-memory. When it fails in one
250 * of those points, we find it in a table and do a jump
251 * to some fixup code that loads an appropriate error
252 * code)
253 */
254
255 if (find_fixup_code(regs))
256 return;
257
258 /*
259 * Oops. The kernel tried to access some bad page. We'll have to
260 * terminate things with extreme prejudice.
261 */
262
263 if (!oops_in_progress) {
264 oops_in_progress = 1;
265 if ((unsigned long) (address) < PAGE_SIZE)
266 printk(KERN_ALERT "Unable to handle kernel NULL "
267 "pointer dereference");
268 else
269 printk(KERN_ALERT "Unable to handle kernel access"
270 " at virtual address %08lx\n", address);
271
272 die_if_kernel("Oops", regs, (writeaccess << 1) | protection);
273 oops_in_progress = 0;
274 }
275
276 do_exit(SIGKILL);
277
278 /*
279 * We ran out of memory, or some other thing happened to us that made
280 * us unable to handle the page fault gracefully.
281 */
282
283 out_of_memory:
284 up_read(&mm->mmap_sem);
285 if (!user_mode(regs))
286 goto no_context;
287 pagefault_out_of_memory();
288 return;
289
290 do_sigbus:
291 up_read(&mm->mmap_sem);
292
293 /*
294 * Send a sigbus, regardless of whether we were in kernel
295 * or user mode.
296 */
297 info.si_signo = SIGBUS;
298 info.si_errno = 0;
299 info.si_code = BUS_ADRERR;
300 info.si_addr = (void *)address;
301 force_sig_info(SIGBUS, &info, tsk);
302
303 /* Kernel mode? Handle exceptions or die */
304 if (!user_mode(regs))
305 goto no_context;
306 return;
307
308 vmalloc_fault:
309 {
310 /*
311 * Synchronize this task's top level page-table
312 * with the 'reference' page table.
313 *
314 * Use current_pgd instead of tsk->active_mm->pgd
315 * since the latter might be unavailable if this
316 * code is executed in a misfortunately run irq
317 * (like inside schedule() between switch_mm and
318 * switch_to...).
319 */
320
321 int offset = pgd_index(address);
322 pgd_t *pgd, *pgd_k;
323 pud_t *pud, *pud_k;
324 pmd_t *pmd, *pmd_k;
325 pte_t *pte_k;
326
327 pgd = (pgd_t *)per_cpu(current_pgd, smp_processor_id()) + offset;
328 pgd_k = init_mm.pgd + offset;
329
330 /* Since we're two-level, we don't need to do both
331 * set_pgd and set_pmd (they do the same thing). If
332 * we go three-level at some point, do the right thing
333 * with pgd_present and set_pgd here.
334 *
335 * Also, since the vmalloc area is global, we don't
336 * need to copy individual PTE's, it is enough to
337 * copy the pgd pointer into the pte page of the
338 * root task. If that is there, we'll find our pte if
339 * it exists.
340 */
341
342 pud = pud_offset(pgd, address);
343 pud_k = pud_offset(pgd_k, address);
344 if (!pud_present(*pud_k))
345 goto no_context;
346
347 pmd = pmd_offset(pud, address);
348 pmd_k = pmd_offset(pud_k, address);
349
350 if (!pmd_present(*pmd_k))
351 goto bad_area_nosemaphore;
352
353 set_pmd(pmd, *pmd_k);
354
355 /* Make sure the actual PTE exists as well to
356 * catch kernel vmalloc-area accesses to non-mapped
357 * addresses. If we don't do this, this will just
358 * silently loop forever.
359 */
360
361 pte_k = pte_offset_kernel(pmd_k, address);
362 if (!pte_present(*pte_k))
363 goto no_context;
364
365 return;
366 }
367 }
368
369 /* Find fixup code. */
370 int
371 find_fixup_code(struct pt_regs *regs)
372 {
373 const struct exception_table_entry *fixup;
374 /* in case of delay slot fault (v32) */
375 unsigned long ip = (instruction_pointer(regs) & ~0x1);
376
377 fixup = search_exception_tables(ip);
378 if (fixup != 0) {
379 /* Adjust the instruction pointer in the stackframe. */
380 instruction_pointer(regs) = fixup->fixup;
381 arch_fixup(regs);
382 return 1;
383 }
384
385 return 0;
386 }