Merge commit 'linus/master' into HEAD
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / blackfin / kernel / setup.c
1 /*
2 * arch/blackfin/kernel/setup.c
3 *
4 * Copyright 2004-2006 Analog Devices Inc.
5 *
6 * Enter bugs at http://blackfin.uclinux.org/
7 *
8 * Licensed under the GPL-2 or later.
9 */
10
11 #include <linux/delay.h>
12 #include <linux/console.h>
13 #include <linux/bootmem.h>
14 #include <linux/seq_file.h>
15 #include <linux/cpu.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/tty.h>
19 #include <linux/pfn.h>
20
21 #ifdef CONFIG_MTD_UCLINUX
22 #include <linux/mtd/map.h>
23 #include <linux/ext2_fs.h>
24 #include <linux/cramfs_fs.h>
25 #include <linux/romfs_fs.h>
26 #endif
27
28 #include <asm/cplb.h>
29 #include <asm/cacheflush.h>
30 #include <asm/blackfin.h>
31 #include <asm/cplbinit.h>
32 #include <asm/div64.h>
33 #include <asm/cpu.h>
34 #include <asm/fixed_code.h>
35 #include <asm/early_printk.h>
36
37 u16 _bfin_swrst;
38 EXPORT_SYMBOL(_bfin_swrst);
39
40 unsigned long memory_start, memory_end, physical_mem_end;
41 unsigned long _rambase, _ramstart, _ramend;
42 unsigned long reserved_mem_dcache_on;
43 unsigned long reserved_mem_icache_on;
44 EXPORT_SYMBOL(memory_start);
45 EXPORT_SYMBOL(memory_end);
46 EXPORT_SYMBOL(physical_mem_end);
47 EXPORT_SYMBOL(_ramend);
48 EXPORT_SYMBOL(reserved_mem_dcache_on);
49
50 #ifdef CONFIG_MTD_UCLINUX
51 extern struct map_info uclinux_ram_map;
52 unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
53 unsigned long _ebss;
54 EXPORT_SYMBOL(memory_mtd_end);
55 EXPORT_SYMBOL(memory_mtd_start);
56 EXPORT_SYMBOL(mtd_size);
57 #endif
58
59 char __initdata command_line[COMMAND_LINE_SIZE];
60 void __initdata *init_retx, *init_saved_retx, *init_saved_seqstat,
61 *init_saved_icplb_fault_addr, *init_saved_dcplb_fault_addr;
62
63 /* boot memmap, for parsing "memmap=" */
64 #define BFIN_MEMMAP_MAX 128 /* number of entries in bfin_memmap */
65 #define BFIN_MEMMAP_RAM 1
66 #define BFIN_MEMMAP_RESERVED 2
67 static struct bfin_memmap {
68 int nr_map;
69 struct bfin_memmap_entry {
70 unsigned long long addr; /* start of memory segment */
71 unsigned long long size;
72 unsigned long type;
73 } map[BFIN_MEMMAP_MAX];
74 } bfin_memmap __initdata;
75
76 /* for memmap sanitization */
77 struct change_member {
78 struct bfin_memmap_entry *pentry; /* pointer to original entry */
79 unsigned long long addr; /* address for this change point */
80 };
81 static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
82 static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
83 static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
84 static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
85
86 DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
87
88 static int early_init_clkin_hz(char *buf);
89
90 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
91 void __init generate_cplb_tables(void)
92 {
93 unsigned int cpu;
94
95 generate_cplb_tables_all();
96 /* Generate per-CPU I&D CPLB tables */
97 for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
98 generate_cplb_tables_cpu(cpu);
99 }
100 #endif
101
102 void __cpuinit bfin_setup_caches(unsigned int cpu)
103 {
104 #ifdef CONFIG_BFIN_ICACHE
105 bfin_icache_init(icplb_tbl[cpu]);
106 #endif
107
108 #ifdef CONFIG_BFIN_DCACHE
109 bfin_dcache_init(dcplb_tbl[cpu]);
110 #endif
111
112 /*
113 * In cache coherence emulation mode, we need to have the
114 * D-cache enabled before running any atomic operation which
115 * might invove cache invalidation (i.e. spinlock, rwlock).
116 * So printk's are deferred until then.
117 */
118 #ifdef CONFIG_BFIN_ICACHE
119 printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
120 #endif
121 #ifdef CONFIG_BFIN_DCACHE
122 printk(KERN_INFO "Data Cache Enabled for CPU%u"
123 # if defined CONFIG_BFIN_WB
124 " (write-back)"
125 # elif defined CONFIG_BFIN_WT
126 " (write-through)"
127 # endif
128 "\n", cpu);
129 #endif
130 }
131
132 void __cpuinit bfin_setup_cpudata(unsigned int cpu)
133 {
134 struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
135
136 cpudata->idle = current;
137 cpudata->loops_per_jiffy = loops_per_jiffy;
138 cpudata->imemctl = bfin_read_IMEM_CONTROL();
139 cpudata->dmemctl = bfin_read_DMEM_CONTROL();
140 }
141
142 void __init bfin_cache_init(void)
143 {
144 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
145 generate_cplb_tables();
146 #endif
147 bfin_setup_caches(0);
148 }
149
150 void __init bfin_relocate_l1_mem(void)
151 {
152 unsigned long l1_code_length;
153 unsigned long l1_data_a_length;
154 unsigned long l1_data_b_length;
155 unsigned long l2_length;
156
157 /*
158 * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
159 * we know that everything about l1 text/data is nice and aligned,
160 * so copy by 4 byte chunks, and don't worry about overlapping
161 * src/dest.
162 *
163 * We can't use the dma_memcpy functions, since they can call
164 * scheduler functions which might be in L1 :( and core writes
165 * into L1 instruction cause bad access errors, so we are stuck,
166 * we are required to use DMA, but can't use the common dma
167 * functions. We can't use memcpy either - since that might be
168 * going to be in the relocated L1
169 */
170
171 blackfin_dma_early_init();
172
173 /* if necessary, copy _stext_l1 to _etext_l1 to L1 instruction SRAM */
174 l1_code_length = _etext_l1 - _stext_l1;
175 if (l1_code_length)
176 early_dma_memcpy(_stext_l1, _l1_lma_start, l1_code_length);
177
178 /* if necessary, copy _sdata_l1 to _sbss_l1 to L1 data bank A SRAM */
179 l1_data_a_length = _sbss_l1 - _sdata_l1;
180 if (l1_data_a_length)
181 early_dma_memcpy(_sdata_l1, _l1_lma_start + l1_code_length, l1_data_a_length);
182
183 /* if necessary, copy _sdata_b_l1 to _sbss_b_l1 to L1 data bank B SRAM */
184 l1_data_b_length = _sbss_b_l1 - _sdata_b_l1;
185 if (l1_data_b_length)
186 early_dma_memcpy(_sdata_b_l1, _l1_lma_start + l1_code_length +
187 l1_data_a_length, l1_data_b_length);
188
189 early_dma_memcpy_done();
190
191 /* if necessary, copy _stext_l2 to _edata_l2 to L2 SRAM */
192 if (L2_LENGTH != 0) {
193 l2_length = _sbss_l2 - _stext_l2;
194 if (l2_length)
195 memcpy(_stext_l2, _l2_lma_start, l2_length);
196 }
197 }
198
199 /* add_memory_region to memmap */
200 static void __init add_memory_region(unsigned long long start,
201 unsigned long long size, int type)
202 {
203 int i;
204
205 i = bfin_memmap.nr_map;
206
207 if (i == BFIN_MEMMAP_MAX) {
208 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
209 return;
210 }
211
212 bfin_memmap.map[i].addr = start;
213 bfin_memmap.map[i].size = size;
214 bfin_memmap.map[i].type = type;
215 bfin_memmap.nr_map++;
216 }
217
218 /*
219 * Sanitize the boot memmap, removing overlaps.
220 */
221 static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
222 {
223 struct change_member *change_tmp;
224 unsigned long current_type, last_type;
225 unsigned long long last_addr;
226 int chgidx, still_changing;
227 int overlap_entries;
228 int new_entry;
229 int old_nr, new_nr, chg_nr;
230 int i;
231
232 /*
233 Visually we're performing the following (1,2,3,4 = memory types)
234
235 Sample memory map (w/overlaps):
236 ____22__________________
237 ______________________4_
238 ____1111________________
239 _44_____________________
240 11111111________________
241 ____________________33__
242 ___________44___________
243 __________33333_________
244 ______________22________
245 ___________________2222_
246 _________111111111______
247 _____________________11_
248 _________________4______
249
250 Sanitized equivalent (no overlap):
251 1_______________________
252 _44_____________________
253 ___1____________________
254 ____22__________________
255 ______11________________
256 _________1______________
257 __________3_____________
258 ___________44___________
259 _____________33_________
260 _______________2________
261 ________________1_______
262 _________________4______
263 ___________________2____
264 ____________________33__
265 ______________________4_
266 */
267 /* if there's only one memory region, don't bother */
268 if (*pnr_map < 2)
269 return -1;
270
271 old_nr = *pnr_map;
272
273 /* bail out if we find any unreasonable addresses in memmap */
274 for (i = 0; i < old_nr; i++)
275 if (map[i].addr + map[i].size < map[i].addr)
276 return -1;
277
278 /* create pointers for initial change-point information (for sorting) */
279 for (i = 0; i < 2*old_nr; i++)
280 change_point[i] = &change_point_list[i];
281
282 /* record all known change-points (starting and ending addresses),
283 omitting those that are for empty memory regions */
284 chgidx = 0;
285 for (i = 0; i < old_nr; i++) {
286 if (map[i].size != 0) {
287 change_point[chgidx]->addr = map[i].addr;
288 change_point[chgidx++]->pentry = &map[i];
289 change_point[chgidx]->addr = map[i].addr + map[i].size;
290 change_point[chgidx++]->pentry = &map[i];
291 }
292 }
293 chg_nr = chgidx; /* true number of change-points */
294
295 /* sort change-point list by memory addresses (low -> high) */
296 still_changing = 1;
297 while (still_changing) {
298 still_changing = 0;
299 for (i = 1; i < chg_nr; i++) {
300 /* if <current_addr> > <last_addr>, swap */
301 /* or, if current=<start_addr> & last=<end_addr>, swap */
302 if ((change_point[i]->addr < change_point[i-1]->addr) ||
303 ((change_point[i]->addr == change_point[i-1]->addr) &&
304 (change_point[i]->addr == change_point[i]->pentry->addr) &&
305 (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
306 ) {
307 change_tmp = change_point[i];
308 change_point[i] = change_point[i-1];
309 change_point[i-1] = change_tmp;
310 still_changing = 1;
311 }
312 }
313 }
314
315 /* create a new memmap, removing overlaps */
316 overlap_entries = 0; /* number of entries in the overlap table */
317 new_entry = 0; /* index for creating new memmap entries */
318 last_type = 0; /* start with undefined memory type */
319 last_addr = 0; /* start with 0 as last starting address */
320 /* loop through change-points, determining affect on the new memmap */
321 for (chgidx = 0; chgidx < chg_nr; chgidx++) {
322 /* keep track of all overlapping memmap entries */
323 if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
324 /* add map entry to overlap list (> 1 entry implies an overlap) */
325 overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
326 } else {
327 /* remove entry from list (order independent, so swap with last) */
328 for (i = 0; i < overlap_entries; i++) {
329 if (overlap_list[i] == change_point[chgidx]->pentry)
330 overlap_list[i] = overlap_list[overlap_entries-1];
331 }
332 overlap_entries--;
333 }
334 /* if there are overlapping entries, decide which "type" to use */
335 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
336 current_type = 0;
337 for (i = 0; i < overlap_entries; i++)
338 if (overlap_list[i]->type > current_type)
339 current_type = overlap_list[i]->type;
340 /* continue building up new memmap based on this information */
341 if (current_type != last_type) {
342 if (last_type != 0) {
343 new_map[new_entry].size =
344 change_point[chgidx]->addr - last_addr;
345 /* move forward only if the new size was non-zero */
346 if (new_map[new_entry].size != 0)
347 if (++new_entry >= BFIN_MEMMAP_MAX)
348 break; /* no more space left for new entries */
349 }
350 if (current_type != 0) {
351 new_map[new_entry].addr = change_point[chgidx]->addr;
352 new_map[new_entry].type = current_type;
353 last_addr = change_point[chgidx]->addr;
354 }
355 last_type = current_type;
356 }
357 }
358 new_nr = new_entry; /* retain count for new entries */
359
360 /* copy new mapping into original location */
361 memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
362 *pnr_map = new_nr;
363
364 return 0;
365 }
366
367 static void __init print_memory_map(char *who)
368 {
369 int i;
370
371 for (i = 0; i < bfin_memmap.nr_map; i++) {
372 printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
373 bfin_memmap.map[i].addr,
374 bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
375 switch (bfin_memmap.map[i].type) {
376 case BFIN_MEMMAP_RAM:
377 printk("(usable)\n");
378 break;
379 case BFIN_MEMMAP_RESERVED:
380 printk("(reserved)\n");
381 break;
382 default: printk("type %lu\n", bfin_memmap.map[i].type);
383 break;
384 }
385 }
386 }
387
388 static __init int parse_memmap(char *arg)
389 {
390 unsigned long long start_at, mem_size;
391
392 if (!arg)
393 return -EINVAL;
394
395 mem_size = memparse(arg, &arg);
396 if (*arg == '@') {
397 start_at = memparse(arg+1, &arg);
398 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
399 } else if (*arg == '$') {
400 start_at = memparse(arg+1, &arg);
401 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
402 }
403
404 return 0;
405 }
406
407 /*
408 * Initial parsing of the command line. Currently, we support:
409 * - Controlling the linux memory size: mem=xxx[KMG]
410 * - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
411 * $ -> reserved memory is dcacheable
412 * # -> reserved memory is icacheable
413 * - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
414 * @ from <start> to <start>+<mem>, type RAM
415 * $ from <start> to <start>+<mem>, type RESERVED
416 */
417 static __init void parse_cmdline_early(char *cmdline_p)
418 {
419 char c = ' ', *to = cmdline_p;
420 unsigned int memsize;
421 for (;;) {
422 if (c == ' ') {
423 if (!memcmp(to, "mem=", 4)) {
424 to += 4;
425 memsize = memparse(to, &to);
426 if (memsize)
427 _ramend = memsize;
428
429 } else if (!memcmp(to, "max_mem=", 8)) {
430 to += 8;
431 memsize = memparse(to, &to);
432 if (memsize) {
433 physical_mem_end = memsize;
434 if (*to != ' ') {
435 if (*to == '$'
436 || *(to + 1) == '$')
437 reserved_mem_dcache_on = 1;
438 if (*to == '#'
439 || *(to + 1) == '#')
440 reserved_mem_icache_on = 1;
441 }
442 }
443 } else if (!memcmp(to, "clkin_hz=", 9)) {
444 to += 9;
445 early_init_clkin_hz(to);
446 } else if (!memcmp(to, "earlyprintk=", 12)) {
447 to += 12;
448 setup_early_printk(to);
449 } else if (!memcmp(to, "memmap=", 7)) {
450 to += 7;
451 parse_memmap(to);
452 }
453 }
454 c = *(to++);
455 if (!c)
456 break;
457 }
458 }
459
460 /*
461 * Setup memory defaults from user config.
462 * The physical memory layout looks like:
463 *
464 * [_rambase, _ramstart]: kernel image
465 * [memory_start, memory_end]: dynamic memory managed by kernel
466 * [memory_end, _ramend]: reserved memory
467 * [memory_mtd_start(memory_end),
468 * memory_mtd_start + mtd_size]: rootfs (if any)
469 * [_ramend - DMA_UNCACHED_REGION,
470 * _ramend]: uncached DMA region
471 * [_ramend, physical_mem_end]: memory not managed by kernel
472 */
473 static __init void memory_setup(void)
474 {
475 #ifdef CONFIG_MTD_UCLINUX
476 unsigned long mtd_phys = 0;
477 #endif
478
479 _rambase = (unsigned long)_stext;
480 _ramstart = (unsigned long)_end;
481
482 if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
483 console_init();
484 panic("DMA region exceeds memory limit: %lu.",
485 _ramend - _ramstart);
486 }
487 memory_end = _ramend - DMA_UNCACHED_REGION;
488
489 #ifdef CONFIG_MPU
490 /* Round up to multiple of 4MB */
491 memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
492 #else
493 memory_start = PAGE_ALIGN(_ramstart);
494 #endif
495
496 #if defined(CONFIG_MTD_UCLINUX)
497 /* generic memory mapped MTD driver */
498 memory_mtd_end = memory_end;
499
500 mtd_phys = _ramstart;
501 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
502
503 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
504 if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
505 mtd_size =
506 PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
507 # endif
508
509 # if defined(CONFIG_CRAMFS)
510 if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
511 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
512 # endif
513
514 # if defined(CONFIG_ROMFS_FS)
515 if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
516 && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1)
517 mtd_size =
518 PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
519 # if (defined(CONFIG_BFIN_ICACHE) && ANOMALY_05000263)
520 /* Due to a Hardware Anomaly we need to limit the size of usable
521 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
522 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
523 */
524 # if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
525 if (memory_end >= 56 * 1024 * 1024)
526 memory_end = 56 * 1024 * 1024;
527 # else
528 if (memory_end >= 60 * 1024 * 1024)
529 memory_end = 60 * 1024 * 1024;
530 # endif /* CONFIG_DEBUG_HUNT_FOR_ZERO */
531 # endif /* ANOMALY_05000263 */
532 # endif /* CONFIG_ROMFS_FS */
533
534 memory_end -= mtd_size;
535
536 if (mtd_size == 0) {
537 console_init();
538 panic("Don't boot kernel without rootfs attached.");
539 }
540
541 /* Relocate MTD image to the top of memory after the uncached memory area */
542 uclinux_ram_map.phys = memory_mtd_start = memory_end;
543 uclinux_ram_map.size = mtd_size;
544 dma_memcpy((void *)uclinux_ram_map.phys, _end, uclinux_ram_map.size);
545 #endif /* CONFIG_MTD_UCLINUX */
546
547 #if (defined(CONFIG_BFIN_ICACHE) && ANOMALY_05000263)
548 /* Due to a Hardware Anomaly we need to limit the size of usable
549 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
550 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
551 */
552 #if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
553 if (memory_end >= 56 * 1024 * 1024)
554 memory_end = 56 * 1024 * 1024;
555 #else
556 if (memory_end >= 60 * 1024 * 1024)
557 memory_end = 60 * 1024 * 1024;
558 #endif /* CONFIG_DEBUG_HUNT_FOR_ZERO */
559 printk(KERN_NOTICE "Warning: limiting memory to %liMB due to hardware anomaly 05000263\n", memory_end >> 20);
560 #endif /* ANOMALY_05000263 */
561
562 #ifdef CONFIG_MPU
563 page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
564 page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
565 #endif
566
567 #if !defined(CONFIG_MTD_UCLINUX)
568 /*In case there is no valid CPLB behind memory_end make sure we don't get to close*/
569 memory_end -= SIZE_4K;
570 #endif
571
572 init_mm.start_code = (unsigned long)_stext;
573 init_mm.end_code = (unsigned long)_etext;
574 init_mm.end_data = (unsigned long)_edata;
575 init_mm.brk = (unsigned long)0;
576
577 printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
578 printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
579
580 printk(KERN_INFO "Memory map:\n"
581 KERN_INFO " fixedcode = 0x%p-0x%p\n"
582 KERN_INFO " text = 0x%p-0x%p\n"
583 KERN_INFO " rodata = 0x%p-0x%p\n"
584 KERN_INFO " bss = 0x%p-0x%p\n"
585 KERN_INFO " data = 0x%p-0x%p\n"
586 KERN_INFO " stack = 0x%p-0x%p\n"
587 KERN_INFO " init = 0x%p-0x%p\n"
588 KERN_INFO " available = 0x%p-0x%p\n"
589 #ifdef CONFIG_MTD_UCLINUX
590 KERN_INFO " rootfs = 0x%p-0x%p\n"
591 #endif
592 #if DMA_UNCACHED_REGION > 0
593 KERN_INFO " DMA Zone = 0x%p-0x%p\n"
594 #endif
595 , (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
596 _stext, _etext,
597 __start_rodata, __end_rodata,
598 __bss_start, __bss_stop,
599 _sdata, _edata,
600 (void *)&init_thread_union,
601 (void *)((int)(&init_thread_union) + 0x2000),
602 __init_begin, __init_end,
603 (void *)_ramstart, (void *)memory_end
604 #ifdef CONFIG_MTD_UCLINUX
605 , (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
606 #endif
607 #if DMA_UNCACHED_REGION > 0
608 , (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
609 #endif
610 );
611 }
612
613 /*
614 * Find the lowest, highest page frame number we have available
615 */
616 void __init find_min_max_pfn(void)
617 {
618 int i;
619
620 max_pfn = 0;
621 min_low_pfn = memory_end;
622
623 for (i = 0; i < bfin_memmap.nr_map; i++) {
624 unsigned long start, end;
625 /* RAM? */
626 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
627 continue;
628 start = PFN_UP(bfin_memmap.map[i].addr);
629 end = PFN_DOWN(bfin_memmap.map[i].addr +
630 bfin_memmap.map[i].size);
631 if (start >= end)
632 continue;
633 if (end > max_pfn)
634 max_pfn = end;
635 if (start < min_low_pfn)
636 min_low_pfn = start;
637 }
638 }
639
640 static __init void setup_bootmem_allocator(void)
641 {
642 int bootmap_size;
643 int i;
644 unsigned long start_pfn, end_pfn;
645 unsigned long curr_pfn, last_pfn, size;
646
647 /* mark memory between memory_start and memory_end usable */
648 add_memory_region(memory_start,
649 memory_end - memory_start, BFIN_MEMMAP_RAM);
650 /* sanity check for overlap */
651 sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
652 print_memory_map("boot memmap");
653
654 /* intialize globals in linux/bootmem.h */
655 find_min_max_pfn();
656 /* pfn of the last usable page frame */
657 if (max_pfn > memory_end >> PAGE_SHIFT)
658 max_pfn = memory_end >> PAGE_SHIFT;
659 /* pfn of last page frame directly mapped by kernel */
660 max_low_pfn = max_pfn;
661 /* pfn of the first usable page frame after kernel image*/
662 if (min_low_pfn < memory_start >> PAGE_SHIFT)
663 min_low_pfn = memory_start >> PAGE_SHIFT;
664
665 start_pfn = PAGE_OFFSET >> PAGE_SHIFT;
666 end_pfn = memory_end >> PAGE_SHIFT;
667
668 /*
669 * give all the memory to the bootmap allocator, tell it to put the
670 * boot mem_map at the start of memory.
671 */
672 bootmap_size = init_bootmem_node(NODE_DATA(0),
673 memory_start >> PAGE_SHIFT, /* map goes here */
674 start_pfn, end_pfn);
675
676 /* register the memmap regions with the bootmem allocator */
677 for (i = 0; i < bfin_memmap.nr_map; i++) {
678 /*
679 * Reserve usable memory
680 */
681 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
682 continue;
683 /*
684 * We are rounding up the start address of usable memory:
685 */
686 curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
687 if (curr_pfn >= end_pfn)
688 continue;
689 /*
690 * ... and at the end of the usable range downwards:
691 */
692 last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
693 bfin_memmap.map[i].size);
694
695 if (last_pfn > end_pfn)
696 last_pfn = end_pfn;
697
698 /*
699 * .. finally, did all the rounding and playing
700 * around just make the area go away?
701 */
702 if (last_pfn <= curr_pfn)
703 continue;
704
705 size = last_pfn - curr_pfn;
706 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
707 }
708
709 /* reserve memory before memory_start, including bootmap */
710 reserve_bootmem(PAGE_OFFSET,
711 memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
712 BOOTMEM_DEFAULT);
713 }
714
715 #define EBSZ_TO_MEG(ebsz) \
716 ({ \
717 int meg = 0; \
718 switch (ebsz & 0xf) { \
719 case 0x1: meg = 16; break; \
720 case 0x3: meg = 32; break; \
721 case 0x5: meg = 64; break; \
722 case 0x7: meg = 128; break; \
723 case 0x9: meg = 256; break; \
724 case 0xb: meg = 512; break; \
725 } \
726 meg; \
727 })
728 static inline int __init get_mem_size(void)
729 {
730 #if defined(EBIU_SDBCTL)
731 # if defined(BF561_FAMILY)
732 int ret = 0;
733 u32 sdbctl = bfin_read_EBIU_SDBCTL();
734 ret += EBSZ_TO_MEG(sdbctl >> 0);
735 ret += EBSZ_TO_MEG(sdbctl >> 8);
736 ret += EBSZ_TO_MEG(sdbctl >> 16);
737 ret += EBSZ_TO_MEG(sdbctl >> 24);
738 return ret;
739 # else
740 return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
741 # endif
742 #elif defined(EBIU_DDRCTL1)
743 u32 ddrctl = bfin_read_EBIU_DDRCTL1();
744 int ret = 0;
745 switch (ddrctl & 0xc0000) {
746 case DEVSZ_64: ret = 64 / 8;
747 case DEVSZ_128: ret = 128 / 8;
748 case DEVSZ_256: ret = 256 / 8;
749 case DEVSZ_512: ret = 512 / 8;
750 }
751 switch (ddrctl & 0x30000) {
752 case DEVWD_4: ret *= 2;
753 case DEVWD_8: ret *= 2;
754 case DEVWD_16: break;
755 }
756 if ((ddrctl & 0xc000) == 0x4000)
757 ret *= 2;
758 return ret;
759 #endif
760 BUG();
761 }
762
763 void __init setup_arch(char **cmdline_p)
764 {
765 unsigned long sclk, cclk;
766
767 #ifdef CONFIG_DUMMY_CONSOLE
768 conswitchp = &dummy_con;
769 #endif
770
771 #if defined(CONFIG_CMDLINE_BOOL)
772 strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
773 command_line[sizeof(command_line) - 1] = 0;
774 #endif
775
776 /* Keep a copy of command line */
777 *cmdline_p = &command_line[0];
778 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
779 boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
780
781 /* setup memory defaults from the user config */
782 physical_mem_end = 0;
783 _ramend = get_mem_size() * 1024 * 1024;
784
785 memset(&bfin_memmap, 0, sizeof(bfin_memmap));
786
787 parse_cmdline_early(&command_line[0]);
788
789 if (physical_mem_end == 0)
790 physical_mem_end = _ramend;
791
792 memory_setup();
793
794 /* Initialize Async memory banks */
795 bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
796 bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
797 bfin_write_EBIU_AMGCTL(AMGCTLVAL);
798 #ifdef CONFIG_EBIU_MBSCTLVAL
799 bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
800 bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
801 bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
802 #endif
803
804 cclk = get_cclk();
805 sclk = get_sclk();
806
807 if ((ANOMALY_05000273 || ANOMALY_05000274) && (cclk >> 1) < sclk)
808 panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK");
809
810 #ifdef BF561_FAMILY
811 if (ANOMALY_05000266) {
812 bfin_read_IMDMA_D0_IRQ_STATUS();
813 bfin_read_IMDMA_D1_IRQ_STATUS();
814 }
815 #endif
816 printk(KERN_INFO "Hardware Trace ");
817 if (bfin_read_TBUFCTL() & 0x1)
818 printk("Active ");
819 else
820 printk("Off ");
821 if (bfin_read_TBUFCTL() & 0x2)
822 printk("and Enabled\n");
823 else
824 printk("and Disabled\n");
825
826 #if defined(CONFIG_CHR_DEV_FLASH) || defined(CONFIG_BLK_DEV_FLASH)
827 /* we need to initialize the Flashrom device here since we might
828 * do things with flash early on in the boot
829 */
830 flash_probe();
831 #endif
832
833 printk(KERN_INFO "Boot Mode: %i\n", bfin_read_SYSCR() & 0xF);
834
835 /* Newer parts mirror SWRST bits in SYSCR */
836 #if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
837 defined(CONFIG_BF538) || defined(CONFIG_BF539)
838 _bfin_swrst = bfin_read_SWRST();
839 #else
840 _bfin_swrst = bfin_read_SYSCR();
841 #endif
842
843 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
844 bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
845 #endif
846 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
847 bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
848 #endif
849
850 #ifdef CONFIG_SMP
851 if (_bfin_swrst & SWRST_DBL_FAULT_A) {
852 #else
853 if (_bfin_swrst & RESET_DOUBLE) {
854 #endif
855 printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
856 #ifdef CONFIG_DEBUG_DOUBLEFAULT
857 /* We assume the crashing kernel, and the current symbol table match */
858 printk(KERN_EMERG " While handling exception (EXCAUSE = 0x%x) at %pF\n",
859 (int)init_saved_seqstat & SEQSTAT_EXCAUSE, init_saved_retx);
860 printk(KERN_NOTICE " DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr);
861 printk(KERN_NOTICE " ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr);
862 #endif
863 printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
864 init_retx);
865 } else if (_bfin_swrst & RESET_WDOG)
866 printk(KERN_INFO "Recovering from Watchdog event\n");
867 else if (_bfin_swrst & RESET_SOFTWARE)
868 printk(KERN_NOTICE "Reset caused by Software reset\n");
869
870 printk(KERN_INFO "Blackfin support (C) 2004-2009 Analog Devices, Inc.\n");
871 if (bfin_compiled_revid() == 0xffff)
872 printk(KERN_INFO "Compiled for ADSP-%s Rev any\n", CPU);
873 else if (bfin_compiled_revid() == -1)
874 printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
875 else
876 printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
877
878 if (unlikely(CPUID != bfin_cpuid()))
879 printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
880 CPU, bfin_cpuid(), bfin_revid());
881 else {
882 if (bfin_revid() != bfin_compiled_revid()) {
883 if (bfin_compiled_revid() == -1)
884 printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
885 bfin_revid());
886 else if (bfin_compiled_revid() != 0xffff) {
887 printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
888 bfin_compiled_revid(), bfin_revid());
889 if (bfin_compiled_revid() > bfin_revid())
890 panic("Error: you are missing anomaly workarounds for this rev");
891 }
892 }
893 if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
894 printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
895 CPU, bfin_revid());
896 }
897
898 /* We can't run on BF548-0.1 due to ANOMALY 05000448 */
899 if (bfin_cpuid() == 0x27de && bfin_revid() == 1)
900 panic("You can't run on this processor due to 05000448");
901
902 printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
903
904 printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
905 cclk / 1000000, sclk / 1000000);
906
907 setup_bootmem_allocator();
908
909 paging_init();
910
911 /* Copy atomic sequences to their fixed location, and sanity check that
912 these locations are the ones that we advertise to userspace. */
913 memcpy((void *)FIXED_CODE_START, &fixed_code_start,
914 FIXED_CODE_END - FIXED_CODE_START);
915 BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
916 != SIGRETURN_STUB - FIXED_CODE_START);
917 BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
918 != ATOMIC_XCHG32 - FIXED_CODE_START);
919 BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
920 != ATOMIC_CAS32 - FIXED_CODE_START);
921 BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
922 != ATOMIC_ADD32 - FIXED_CODE_START);
923 BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
924 != ATOMIC_SUB32 - FIXED_CODE_START);
925 BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
926 != ATOMIC_IOR32 - FIXED_CODE_START);
927 BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
928 != ATOMIC_AND32 - FIXED_CODE_START);
929 BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
930 != ATOMIC_XOR32 - FIXED_CODE_START);
931 BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
932 != SAFE_USER_INSTRUCTION - FIXED_CODE_START);
933
934 #ifdef CONFIG_SMP
935 platform_init_cpus();
936 #endif
937 init_exception_vectors();
938 bfin_cache_init(); /* Initialize caches for the boot CPU */
939 }
940
941 static int __init topology_init(void)
942 {
943 unsigned int cpu;
944 /* Record CPU-private information for the boot processor. */
945 bfin_setup_cpudata(0);
946
947 for_each_possible_cpu(cpu) {
948 register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
949 }
950
951 return 0;
952 }
953
954 subsys_initcall(topology_init);
955
956 /* Get the input clock frequency */
957 static u_long cached_clkin_hz = CONFIG_CLKIN_HZ;
958 static u_long get_clkin_hz(void)
959 {
960 return cached_clkin_hz;
961 }
962 static int __init early_init_clkin_hz(char *buf)
963 {
964 cached_clkin_hz = simple_strtoul(buf, NULL, 0);
965 #ifdef BFIN_KERNEL_CLOCK
966 if (cached_clkin_hz != CONFIG_CLKIN_HZ)
967 panic("cannot change clkin_hz when reprogramming clocks");
968 #endif
969 return 1;
970 }
971 early_param("clkin_hz=", early_init_clkin_hz);
972
973 /* Get the voltage input multiplier */
974 static u_long get_vco(void)
975 {
976 static u_long cached_vco;
977 u_long msel, pll_ctl;
978
979 /* The assumption here is that VCO never changes at runtime.
980 * If, someday, we support that, then we'll have to change this.
981 */
982 if (cached_vco)
983 return cached_vco;
984
985 pll_ctl = bfin_read_PLL_CTL();
986 msel = (pll_ctl >> 9) & 0x3F;
987 if (0 == msel)
988 msel = 64;
989
990 cached_vco = get_clkin_hz();
991 cached_vco >>= (1 & pll_ctl); /* DF bit */
992 cached_vco *= msel;
993 return cached_vco;
994 }
995
996 /* Get the Core clock */
997 u_long get_cclk(void)
998 {
999 static u_long cached_cclk_pll_div, cached_cclk;
1000 u_long csel, ssel;
1001
1002 if (bfin_read_PLL_STAT() & 0x1)
1003 return get_clkin_hz();
1004
1005 ssel = bfin_read_PLL_DIV();
1006 if (ssel == cached_cclk_pll_div)
1007 return cached_cclk;
1008 else
1009 cached_cclk_pll_div = ssel;
1010
1011 csel = ((ssel >> 4) & 0x03);
1012 ssel &= 0xf;
1013 if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */
1014 cached_cclk = get_vco() / ssel;
1015 else
1016 cached_cclk = get_vco() >> csel;
1017 return cached_cclk;
1018 }
1019 EXPORT_SYMBOL(get_cclk);
1020
1021 /* Get the System clock */
1022 u_long get_sclk(void)
1023 {
1024 static u_long cached_sclk;
1025 u_long ssel;
1026
1027 /* The assumption here is that SCLK never changes at runtime.
1028 * If, someday, we support that, then we'll have to change this.
1029 */
1030 if (cached_sclk)
1031 return cached_sclk;
1032
1033 if (bfin_read_PLL_STAT() & 0x1)
1034 return get_clkin_hz();
1035
1036 ssel = bfin_read_PLL_DIV() & 0xf;
1037 if (0 == ssel) {
1038 printk(KERN_WARNING "Invalid System Clock\n");
1039 ssel = 1;
1040 }
1041
1042 cached_sclk = get_vco() / ssel;
1043 return cached_sclk;
1044 }
1045 EXPORT_SYMBOL(get_sclk);
1046
1047 unsigned long sclk_to_usecs(unsigned long sclk)
1048 {
1049 u64 tmp = USEC_PER_SEC * (u64)sclk;
1050 do_div(tmp, get_sclk());
1051 return tmp;
1052 }
1053 EXPORT_SYMBOL(sclk_to_usecs);
1054
1055 unsigned long usecs_to_sclk(unsigned long usecs)
1056 {
1057 u64 tmp = get_sclk() * (u64)usecs;
1058 do_div(tmp, USEC_PER_SEC);
1059 return tmp;
1060 }
1061 EXPORT_SYMBOL(usecs_to_sclk);
1062
1063 /*
1064 * Get CPU information for use by the procfs.
1065 */
1066 static int show_cpuinfo(struct seq_file *m, void *v)
1067 {
1068 char *cpu, *mmu, *fpu, *vendor, *cache;
1069 uint32_t revid;
1070 int cpu_num = *(unsigned int *)v;
1071 u_long sclk, cclk;
1072 u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
1073 struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num);
1074
1075 cpu = CPU;
1076 mmu = "none";
1077 fpu = "none";
1078 revid = bfin_revid();
1079
1080 sclk = get_sclk();
1081 cclk = get_cclk();
1082
1083 switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
1084 case 0xca:
1085 vendor = "Analog Devices";
1086 break;
1087 default:
1088 vendor = "unknown";
1089 break;
1090 }
1091
1092 seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor);
1093
1094 if (CPUID == bfin_cpuid())
1095 seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
1096 else
1097 seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1098 CPUID, bfin_cpuid());
1099
1100 seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1101 "stepping\t: %d\n",
1102 cpu, cclk/1000000, sclk/1000000,
1103 #ifdef CONFIG_MPU
1104 "mpu on",
1105 #else
1106 "mpu off",
1107 #endif
1108 revid);
1109
1110 seq_printf(m, "cpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1111 cclk/1000000, cclk%1000000,
1112 sclk/1000000, sclk%1000000);
1113 seq_printf(m, "bogomips\t: %lu.%02lu\n"
1114 "Calibration\t: %lu loops\n",
1115 (cpudata->loops_per_jiffy * HZ) / 500000,
1116 ((cpudata->loops_per_jiffy * HZ) / 5000) % 100,
1117 (cpudata->loops_per_jiffy * HZ));
1118
1119 /* Check Cache configutation */
1120 switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
1121 case ACACHE_BSRAM:
1122 cache = "dbank-A/B\t: cache/sram";
1123 dcache_size = 16;
1124 dsup_banks = 1;
1125 break;
1126 case ACACHE_BCACHE:
1127 cache = "dbank-A/B\t: cache/cache";
1128 dcache_size = 32;
1129 dsup_banks = 2;
1130 break;
1131 case ASRAM_BSRAM:
1132 cache = "dbank-A/B\t: sram/sram";
1133 dcache_size = 0;
1134 dsup_banks = 0;
1135 break;
1136 default:
1137 cache = "unknown";
1138 dcache_size = 0;
1139 dsup_banks = 0;
1140 break;
1141 }
1142
1143 /* Is it turned on? */
1144 if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1145 dcache_size = 0;
1146
1147 if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
1148 icache_size = 0;
1149
1150 seq_printf(m, "cache size\t: %d KB(L1 icache) "
1151 "%d KB(L1 dcache%s) %d KB(L2 cache)\n",
1152 icache_size, dcache_size,
1153 #if defined CONFIG_BFIN_WB
1154 "-wb"
1155 #elif defined CONFIG_BFIN_WT
1156 "-wt"
1157 #endif
1158 "", 0);
1159
1160 seq_printf(m, "%s\n", cache);
1161
1162 if (icache_size)
1163 seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1164 BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1165 else
1166 seq_printf(m, "icache setup\t: off\n");
1167
1168 seq_printf(m,
1169 "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1170 dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1171 BFIN_DLINES);
1172 #ifdef __ARCH_SYNC_CORE_DCACHE
1173 seq_printf(m, "SMP Dcache Flushes\t: %lu\n\n", cpudata->dcache_invld_count);
1174 #endif
1175 #ifdef CONFIG_BFIN_ICACHE_LOCK
1176 switch ((cpudata->imemctl >> 3) & WAYALL_L) {
1177 case WAY0_L:
1178 seq_printf(m, "Way0 Locked-Down\n");
1179 break;
1180 case WAY1_L:
1181 seq_printf(m, "Way1 Locked-Down\n");
1182 break;
1183 case WAY01_L:
1184 seq_printf(m, "Way0,Way1 Locked-Down\n");
1185 break;
1186 case WAY2_L:
1187 seq_printf(m, "Way2 Locked-Down\n");
1188 break;
1189 case WAY02_L:
1190 seq_printf(m, "Way0,Way2 Locked-Down\n");
1191 break;
1192 case WAY12_L:
1193 seq_printf(m, "Way1,Way2 Locked-Down\n");
1194 break;
1195 case WAY012_L:
1196 seq_printf(m, "Way0,Way1 & Way2 Locked-Down\n");
1197 break;
1198 case WAY3_L:
1199 seq_printf(m, "Way3 Locked-Down\n");
1200 break;
1201 case WAY03_L:
1202 seq_printf(m, "Way0,Way3 Locked-Down\n");
1203 break;
1204 case WAY13_L:
1205 seq_printf(m, "Way1,Way3 Locked-Down\n");
1206 break;
1207 case WAY013_L:
1208 seq_printf(m, "Way 0,Way1,Way3 Locked-Down\n");
1209 break;
1210 case WAY32_L:
1211 seq_printf(m, "Way3,Way2 Locked-Down\n");
1212 break;
1213 case WAY320_L:
1214 seq_printf(m, "Way3,Way2,Way0 Locked-Down\n");
1215 break;
1216 case WAY321_L:
1217 seq_printf(m, "Way3,Way2,Way1 Locked-Down\n");
1218 break;
1219 case WAYALL_L:
1220 seq_printf(m, "All Ways are locked\n");
1221 break;
1222 default:
1223 seq_printf(m, "No Ways are locked\n");
1224 }
1225 #endif
1226
1227 if (cpu_num != num_possible_cpus() - 1)
1228 return 0;
1229
1230 if (L2_LENGTH)
1231 seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
1232 seq_printf(m, "board name\t: %s\n", bfin_board_name);
1233 seq_printf(m, "board memory\t: %ld kB (0x%p -> 0x%p)\n",
1234 physical_mem_end >> 10, (void *)0, (void *)physical_mem_end);
1235 seq_printf(m, "kernel memory\t: %d kB (0x%p -> 0x%p)\n",
1236 ((int)memory_end - (int)_stext) >> 10,
1237 _stext,
1238 (void *)memory_end);
1239 seq_printf(m, "\n");
1240
1241 return 0;
1242 }
1243
1244 static void *c_start(struct seq_file *m, loff_t *pos)
1245 {
1246 if (*pos == 0)
1247 *pos = first_cpu(cpu_online_map);
1248 if (*pos >= num_online_cpus())
1249 return NULL;
1250
1251 return pos;
1252 }
1253
1254 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1255 {
1256 *pos = next_cpu(*pos, cpu_online_map);
1257
1258 return c_start(m, pos);
1259 }
1260
1261 static void c_stop(struct seq_file *m, void *v)
1262 {
1263 }
1264
1265 const struct seq_operations cpuinfo_op = {
1266 .start = c_start,
1267 .next = c_next,
1268 .stop = c_stop,
1269 .show = show_cpuinfo,
1270 };
1271
1272 void __init cmdline_init(const char *r0)
1273 {
1274 if (r0)
1275 strncpy(command_line, r0, COMMAND_LINE_SIZE);
1276 }