import PULS_20180308
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm64 / kernel / perf_event.c
1 /*
2 * PMU support
3 *
4 * Copyright (C) 2012 ARM Limited
5 * Author: Will Deacon <will.deacon@arm.com>
6 *
7 * This code is based heavily on the ARMv7 perf event code.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21 #define pr_fmt(fmt) "hw perfevents: " fmt
22
23 #include <linux/bitmap.h>
24 #include <linux/interrupt.h>
25 #include <linux/kernel.h>
26 #include <linux/export.h>
27 #include <linux/perf_event.h>
28 #include <linux/platform_device.h>
29 #include <linux/spinlock.h>
30 #include <linux/uaccess.h>
31
32 #include <asm/cputype.h>
33 #include <asm/irq.h>
34 #include <asm/irq_regs.h>
35 #include <asm/pmu.h>
36 #include <asm/stacktrace.h>
37
38 /*
39 * ARMv8 supports a maximum of 32 events.
40 * The cycle counter is included in this total.
41 */
42 #define ARMPMU_MAX_HWEVENTS 32
43
44 static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
45 static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
46 static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
47
48 #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
49
50 /* Set at runtime when we know what CPU type we are. */
51 static struct arm_pmu *cpu_pmu;
52
53 int
54 armpmu_get_max_events(void)
55 {
56 int max_events = 0;
57
58 if (cpu_pmu != NULL)
59 max_events = cpu_pmu->num_events;
60
61 return max_events;
62 }
63 EXPORT_SYMBOL_GPL(armpmu_get_max_events);
64
65 int perf_num_counters(void)
66 {
67 return armpmu_get_max_events();
68 }
69 EXPORT_SYMBOL_GPL(perf_num_counters);
70
71 #define HW_OP_UNSUPPORTED 0xFFFF
72
73 #define C(_x) \
74 PERF_COUNT_HW_CACHE_##_x
75
76 #define CACHE_OP_UNSUPPORTED 0xFFFF
77
78 static int
79 armpmu_map_cache_event(const unsigned (*cache_map)
80 [PERF_COUNT_HW_CACHE_MAX]
81 [PERF_COUNT_HW_CACHE_OP_MAX]
82 [PERF_COUNT_HW_CACHE_RESULT_MAX],
83 u64 config)
84 {
85 unsigned int cache_type, cache_op, cache_result, ret;
86
87 cache_type = (config >> 0) & 0xff;
88 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
89 return -EINVAL;
90
91 cache_op = (config >> 8) & 0xff;
92 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
93 return -EINVAL;
94
95 cache_result = (config >> 16) & 0xff;
96 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
97 return -EINVAL;
98
99 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
100
101 if (ret == CACHE_OP_UNSUPPORTED)
102 return -ENOENT;
103
104 return ret;
105 }
106
107 static int
108 armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
109 {
110 int mapping;
111
112 if (config >= PERF_COUNT_HW_MAX)
113 return -EINVAL;
114
115 mapping = (*event_map)[config];
116 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
117 }
118
119 static int
120 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
121 {
122 return (int)(config & raw_event_mask);
123 }
124
125 static int map_cpu_event(struct perf_event *event,
126 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
127 const unsigned (*cache_map)
128 [PERF_COUNT_HW_CACHE_MAX]
129 [PERF_COUNT_HW_CACHE_OP_MAX]
130 [PERF_COUNT_HW_CACHE_RESULT_MAX],
131 u32 raw_event_mask)
132 {
133 u64 config = event->attr.config;
134
135 switch (event->attr.type) {
136 case PERF_TYPE_HARDWARE:
137 return armpmu_map_event(event_map, config);
138 case PERF_TYPE_HW_CACHE:
139 return armpmu_map_cache_event(cache_map, config);
140 case PERF_TYPE_RAW:
141 return armpmu_map_raw_event(raw_event_mask, config);
142 }
143
144 return -ENOENT;
145 }
146
147 int
148 armpmu_event_set_period(struct perf_event *event,
149 struct hw_perf_event *hwc,
150 int idx)
151 {
152 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
153 s64 left = local64_read(&hwc->period_left);
154 s64 period = hwc->sample_period;
155 int ret = 0;
156
157 if (unlikely(left <= -period)) {
158 left = period;
159 local64_set(&hwc->period_left, left);
160 hwc->last_period = period;
161 ret = 1;
162 }
163
164 if (unlikely(left <= 0)) {
165 left += period;
166 local64_set(&hwc->period_left, left);
167 hwc->last_period = period;
168 ret = 1;
169 }
170
171 if (left > (s64)armpmu->max_period)
172 left = armpmu->max_period;
173
174 local64_set(&hwc->prev_count, (u64)-left);
175
176 armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
177
178 perf_event_update_userpage(event);
179
180 return ret;
181 }
182
183 u64
184 armpmu_event_update(struct perf_event *event,
185 struct hw_perf_event *hwc,
186 int idx)
187 {
188 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
189 u64 delta, prev_raw_count, new_raw_count;
190
191 again:
192 prev_raw_count = local64_read(&hwc->prev_count);
193 new_raw_count = armpmu->read_counter(idx);
194
195 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
196 new_raw_count) != prev_raw_count)
197 goto again;
198
199 delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
200
201 local64_add(delta, &event->count);
202 local64_sub(delta, &hwc->period_left);
203
204 return new_raw_count;
205 }
206
207 static void
208 armpmu_read(struct perf_event *event)
209 {
210 struct hw_perf_event *hwc = &event->hw;
211
212 /* Don't read disabled counters! */
213 if (hwc->idx < 0)
214 return;
215
216 armpmu_event_update(event, hwc, hwc->idx);
217 }
218
219 static void
220 armpmu_stop(struct perf_event *event, int flags)
221 {
222 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
223 struct hw_perf_event *hwc = &event->hw;
224
225 /*
226 * ARM pmu always has to update the counter, so ignore
227 * PERF_EF_UPDATE, see comments in armpmu_start().
228 */
229 if (!(hwc->state & PERF_HES_STOPPED)) {
230 armpmu->disable(hwc, hwc->idx);
231 barrier(); /* why? */
232 armpmu_event_update(event, hwc, hwc->idx);
233 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
234 }
235 }
236
237 static void
238 armpmu_start(struct perf_event *event, int flags)
239 {
240 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
241 struct hw_perf_event *hwc = &event->hw;
242
243 /*
244 * ARM pmu always has to reprogram the period, so ignore
245 * PERF_EF_RELOAD, see the comment below.
246 */
247 if (flags & PERF_EF_RELOAD)
248 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
249
250 hwc->state = 0;
251 /*
252 * Set the period again. Some counters can't be stopped, so when we
253 * were stopped we simply disabled the IRQ source and the counter
254 * may have been left counting. If we don't do this step then we may
255 * get an interrupt too soon or *way* too late if the overflow has
256 * happened since disabling.
257 */
258 armpmu_event_set_period(event, hwc, hwc->idx);
259 armpmu->enable(hwc, hwc->idx);
260 }
261
262 static void
263 armpmu_del(struct perf_event *event, int flags)
264 {
265 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
266 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
267 struct hw_perf_event *hwc = &event->hw;
268 int idx = hwc->idx;
269
270 WARN_ON(idx < 0);
271
272 armpmu_stop(event, PERF_EF_UPDATE);
273 hw_events->events[idx] = NULL;
274 clear_bit(idx, hw_events->used_mask);
275
276 perf_event_update_userpage(event);
277 }
278
279 static int
280 armpmu_add(struct perf_event *event, int flags)
281 {
282 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
283 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
284 struct hw_perf_event *hwc = &event->hw;
285 int idx;
286 int err = 0;
287
288 perf_pmu_disable(event->pmu);
289
290 /* If we don't have a space for the counter then finish early. */
291 idx = armpmu->get_event_idx(hw_events, hwc);
292 if (idx < 0) {
293 err = idx;
294 goto out;
295 }
296
297 /*
298 * If there is an event in the counter we are going to use then make
299 * sure it is disabled.
300 */
301 event->hw.idx = idx;
302 armpmu->disable(hwc, idx);
303 hw_events->events[idx] = event;
304
305 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
306 if (flags & PERF_EF_START)
307 armpmu_start(event, PERF_EF_RELOAD);
308
309 /* Propagate our changes to the userspace mapping. */
310 perf_event_update_userpage(event);
311
312 out:
313 perf_pmu_enable(event->pmu);
314 return err;
315 }
316
317 static int
318 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
319 struct perf_event *event)
320 {
321 struct arm_pmu *armpmu;
322 struct hw_perf_event fake_event = event->hw;
323 struct pmu *leader_pmu = event->group_leader->pmu;
324
325 if (is_software_event(event))
326 return 1;
327
328 /*
329 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
330 * core perf code won't check that the pmu->ctx == leader->ctx
331 * until after pmu->event_init(event).
332 */
333 if (event->pmu != pmu)
334 return 0;
335
336 if (event->pmu != leader_pmu || event->state < PERF_EVENT_STATE_OFF)
337 return 1;
338
339 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
340 return 1;
341
342 armpmu = to_arm_pmu(event->pmu);
343 return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
344 }
345
346 static int
347 validate_group(struct perf_event *event)
348 {
349 struct perf_event *sibling, *leader = event->group_leader;
350 struct pmu_hw_events fake_pmu;
351 DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
352
353 /*
354 * Initialise the fake PMU. We only need to populate the
355 * used_mask for the purposes of validation.
356 */
357 memset(fake_used_mask, 0, sizeof(fake_used_mask));
358 fake_pmu.used_mask = fake_used_mask;
359
360 if (!validate_event(event->pmu, &fake_pmu, leader))
361 return -EINVAL;
362
363 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
364 if (!validate_event(event->pmu, &fake_pmu, sibling))
365 return -EINVAL;
366 }
367
368 if (!validate_event(event->pmu, &fake_pmu, event))
369 return -EINVAL;
370
371 return 0;
372 }
373
374 static void
375 armpmu_release_hardware(struct arm_pmu *armpmu)
376 {
377 int i, irq, irqs;
378 struct platform_device *pmu_device = armpmu->plat_device;
379
380 irqs = min(pmu_device->num_resources, num_possible_cpus());
381
382 for (i = 0; i < irqs; ++i) {
383 if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
384 continue;
385 irq = platform_get_irq(pmu_device, i);
386 if (irq >= 0)
387 free_irq(irq, armpmu);
388 }
389 }
390
391 static int
392 armpmu_reserve_hardware(struct arm_pmu *armpmu)
393 {
394 int i, err, irq, irqs;
395 struct platform_device *pmu_device = armpmu->plat_device;
396
397 if (!pmu_device) {
398 pr_err("no PMU device registered\n");
399 return -ENODEV;
400 }
401
402 irqs = min(pmu_device->num_resources, num_possible_cpus());
403 if (irqs < 1) {
404 pr_err("no irqs for PMUs defined\n");
405 return -ENODEV;
406 }
407
408 for (i = 0; i < irqs; ++i) {
409 err = 0;
410 irq = platform_get_irq(pmu_device, i);
411 if (irq < 0)
412 continue;
413
414 /*
415 * If we have a single PMU interrupt that we can't shift,
416 * assume that we're running on a uniprocessor machine and
417 * continue. Otherwise, continue without this interrupt.
418 */
419 if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
420 pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
421 irq, i);
422 continue;
423 }
424
425 err = request_irq(irq, armpmu->handle_irq,
426 IRQF_NOBALANCING,
427 "arm-pmu", armpmu);
428 if (err) {
429 pr_err("unable to request IRQ%d for ARM PMU counters\n",
430 irq);
431 armpmu_release_hardware(armpmu);
432 return err;
433 }
434
435 cpumask_set_cpu(i, &armpmu->active_irqs);
436 }
437
438 return 0;
439 }
440
441 static void
442 hw_perf_event_destroy(struct perf_event *event)
443 {
444 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
445 atomic_t *active_events = &armpmu->active_events;
446 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
447
448 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
449 armpmu_release_hardware(armpmu);
450 mutex_unlock(pmu_reserve_mutex);
451 }
452 }
453
454 static int
455 event_requires_mode_exclusion(struct perf_event_attr *attr)
456 {
457 return attr->exclude_idle || attr->exclude_user ||
458 attr->exclude_kernel || attr->exclude_hv;
459 }
460
461 static int
462 __hw_perf_event_init(struct perf_event *event)
463 {
464 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
465 struct hw_perf_event *hwc = &event->hw;
466 int mapping, err;
467
468 mapping = armpmu->map_event(event);
469
470 if (mapping < 0) {
471 pr_debug("event %x:%llx not supported\n", event->attr.type,
472 event->attr.config);
473 return mapping;
474 }
475
476 /*
477 * We don't assign an index until we actually place the event onto
478 * hardware. Use -1 to signify that we haven't decided where to put it
479 * yet. For SMP systems, each core has it's own PMU so we can't do any
480 * clever allocation or constraints checking at this point.
481 */
482 hwc->idx = -1;
483 hwc->config_base = 0;
484 hwc->config = 0;
485 hwc->event_base = 0;
486
487 /*
488 * Check whether we need to exclude the counter from certain modes.
489 */
490 if ((!armpmu->set_event_filter ||
491 armpmu->set_event_filter(hwc, &event->attr)) &&
492 event_requires_mode_exclusion(&event->attr)) {
493 pr_debug("ARM performance counters do not support mode exclusion\n");
494 return -EPERM;
495 }
496
497 /*
498 * Store the event encoding into the config_base field.
499 */
500 hwc->config_base |= (unsigned long)mapping;
501
502 if (!hwc->sample_period) {
503 /*
504 * For non-sampling runs, limit the sample_period to half
505 * of the counter width. That way, the new counter value
506 * is far less likely to overtake the previous one unless
507 * you have some serious IRQ latency issues.
508 */
509 hwc->sample_period = armpmu->max_period >> 1;
510 hwc->last_period = hwc->sample_period;
511 local64_set(&hwc->period_left, hwc->sample_period);
512 }
513
514 err = 0;
515 if (event->group_leader != event) {
516 err = validate_group(event);
517 if (err)
518 return -EINVAL;
519 }
520
521 return err;
522 }
523
524 static int armpmu_event_init(struct perf_event *event)
525 {
526 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
527 int err = 0;
528 atomic_t *active_events = &armpmu->active_events;
529
530 if (armpmu->map_event(event) == -ENOENT)
531 return -ENOENT;
532
533 event->destroy = hw_perf_event_destroy;
534
535 if (!atomic_inc_not_zero(active_events)) {
536 mutex_lock(&armpmu->reserve_mutex);
537 if (atomic_read(active_events) == 0)
538 err = armpmu_reserve_hardware(armpmu);
539
540 if (!err)
541 atomic_inc(active_events);
542 mutex_unlock(&armpmu->reserve_mutex);
543 }
544
545 if (err)
546 return err;
547
548 err = __hw_perf_event_init(event);
549 if (err)
550 hw_perf_event_destroy(event);
551
552 return err;
553 }
554
555 static void armpmu_enable(struct pmu *pmu)
556 {
557 struct arm_pmu *armpmu = to_arm_pmu(pmu);
558 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
559 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
560
561 if (enabled)
562 armpmu->start();
563 }
564
565 static void armpmu_disable(struct pmu *pmu)
566 {
567 struct arm_pmu *armpmu = to_arm_pmu(pmu);
568 armpmu->stop();
569 }
570
571 static void __init armpmu_init(struct arm_pmu *armpmu)
572 {
573 atomic_set(&armpmu->active_events, 0);
574 mutex_init(&armpmu->reserve_mutex);
575
576 armpmu->pmu = (struct pmu) {
577 .pmu_enable = armpmu_enable,
578 .pmu_disable = armpmu_disable,
579 .event_init = armpmu_event_init,
580 .add = armpmu_add,
581 .del = armpmu_del,
582 .start = armpmu_start,
583 .stop = armpmu_stop,
584 .read = armpmu_read,
585 };
586 }
587
588 int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
589 {
590 armpmu_init(armpmu);
591 return perf_pmu_register(&armpmu->pmu, name, type);
592 }
593
594 /*
595 * ARMv8 PMUv3 Performance Events handling code.
596 * Common event types.
597 */
598 enum armv8_pmuv3_perf_types {
599 /* Required events. */
600 ARMV8_PMUV3_PERFCTR_PMNC_SW_INCR = 0x00,
601 ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL = 0x03,
602 ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS = 0x04,
603 ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED = 0x10,
604 ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES = 0x11,
605 ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED = 0x12,
606
607 /* At least one of the following is required. */
608 ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED = 0x08,
609 ARMV8_PMUV3_PERFCTR_OP_SPEC = 0x1B,
610
611 /* Common architectural events. */
612 ARMV8_PMUV3_PERFCTR_MEM_READ = 0x06,
613 ARMV8_PMUV3_PERFCTR_MEM_WRITE = 0x07,
614 ARMV8_PMUV3_PERFCTR_EXC_TAKEN = 0x09,
615 ARMV8_PMUV3_PERFCTR_EXC_EXECUTED = 0x0A,
616 ARMV8_PMUV3_PERFCTR_CID_WRITE = 0x0B,
617 ARMV8_PMUV3_PERFCTR_PC_WRITE = 0x0C,
618 ARMV8_PMUV3_PERFCTR_PC_IMM_BRANCH = 0x0D,
619 ARMV8_PMUV3_PERFCTR_PC_PROC_RETURN = 0x0E,
620 ARMV8_PMUV3_PERFCTR_MEM_UNALIGNED_ACCESS = 0x0F,
621 ARMV8_PMUV3_PERFCTR_TTBR_WRITE = 0x1C,
622
623 /* Common microarchitectural events. */
624 ARMV8_PMUV3_PERFCTR_L1_ICACHE_REFILL = 0x01,
625 ARMV8_PMUV3_PERFCTR_ITLB_REFILL = 0x02,
626 ARMV8_PMUV3_PERFCTR_DTLB_REFILL = 0x05,
627 ARMV8_PMUV3_PERFCTR_MEM_ACCESS = 0x13,
628 ARMV8_PMUV3_PERFCTR_L1_ICACHE_ACCESS = 0x14,
629 ARMV8_PMUV3_PERFCTR_L1_DCACHE_WB = 0x15,
630 ARMV8_PMUV3_PERFCTR_L2_CACHE_ACCESS = 0x16,
631 ARMV8_PMUV3_PERFCTR_L2_CACHE_REFILL = 0x17,
632 ARMV8_PMUV3_PERFCTR_L2_CACHE_WB = 0x18,
633 ARMV8_PMUV3_PERFCTR_BUS_ACCESS = 0x19,
634 ARMV8_PMUV3_PERFCTR_MEM_ERROR = 0x1A,
635 ARMV8_PMUV3_PERFCTR_BUS_CYCLES = 0x1D,
636 };
637
638 /* PMUv3 HW events mapping. */
639 static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = {
640 [PERF_COUNT_HW_CPU_CYCLES] = ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES,
641 [PERF_COUNT_HW_INSTRUCTIONS] = ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED,
642 [PERF_COUNT_HW_CACHE_REFERENCES] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
643 [PERF_COUNT_HW_CACHE_MISSES] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
644 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = HW_OP_UNSUPPORTED,
645 [PERF_COUNT_HW_BRANCH_MISSES] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
646 [PERF_COUNT_HW_BUS_CYCLES] = HW_OP_UNSUPPORTED,
647 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = HW_OP_UNSUPPORTED,
648 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = HW_OP_UNSUPPORTED,
649 };
650
651 static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
652 [PERF_COUNT_HW_CACHE_OP_MAX]
653 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
654 [C(L1D)] = {
655 [C(OP_READ)] = {
656 [C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
657 [C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
658 },
659 [C(OP_WRITE)] = {
660 [C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
661 [C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
662 },
663 [C(OP_PREFETCH)] = {
664 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
665 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
666 },
667 },
668 [C(L1I)] = {
669 [C(OP_READ)] = {
670 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
671 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
672 },
673 [C(OP_WRITE)] = {
674 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
675 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
676 },
677 [C(OP_PREFETCH)] = {
678 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
679 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
680 },
681 },
682 [C(LL)] = {
683 [C(OP_READ)] = {
684 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
685 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
686 },
687 [C(OP_WRITE)] = {
688 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
689 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
690 },
691 [C(OP_PREFETCH)] = {
692 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
693 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
694 },
695 },
696 [C(DTLB)] = {
697 [C(OP_READ)] = {
698 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
699 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
700 },
701 [C(OP_WRITE)] = {
702 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
703 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
704 },
705 [C(OP_PREFETCH)] = {
706 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
707 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
708 },
709 },
710 [C(ITLB)] = {
711 [C(OP_READ)] = {
712 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
713 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
714 },
715 [C(OP_WRITE)] = {
716 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
717 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
718 },
719 [C(OP_PREFETCH)] = {
720 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
721 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
722 },
723 },
724 [C(BPU)] = {
725 [C(OP_READ)] = {
726 [C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
727 [C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
728 },
729 [C(OP_WRITE)] = {
730 [C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
731 [C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
732 },
733 [C(OP_PREFETCH)] = {
734 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
735 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
736 },
737 },
738 [C(NODE)] = {
739 [C(OP_READ)] = {
740 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
741 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
742 },
743 [C(OP_WRITE)] = {
744 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
745 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
746 },
747 [C(OP_PREFETCH)] = {
748 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
749 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
750 },
751 },
752 };
753
754 /*
755 * Perf Events' indices
756 */
757 #define ARMV8_IDX_CYCLE_COUNTER 0
758 #define ARMV8_IDX_COUNTER0 1
759 #define ARMV8_IDX_COUNTER_LAST (ARMV8_IDX_CYCLE_COUNTER + cpu_pmu->num_events - 1)
760
761 #define ARMV8_MAX_COUNTERS 32
762 #define ARMV8_COUNTER_MASK (ARMV8_MAX_COUNTERS - 1)
763
764 /*
765 * ARMv8 low level PMU access
766 */
767
768 /*
769 * Perf Event to low level counters mapping
770 */
771 #define ARMV8_IDX_TO_COUNTER(x) \
772 (((x) - ARMV8_IDX_COUNTER0) & ARMV8_COUNTER_MASK)
773
774 /*
775 * Per-CPU PMCR: config reg
776 */
777 #define ARMV8_PMCR_E (1 << 0) /* Enable all counters */
778 #define ARMV8_PMCR_P (1 << 1) /* Reset all counters */
779 #define ARMV8_PMCR_C (1 << 2) /* Cycle counter reset */
780 #define ARMV8_PMCR_D (1 << 3) /* CCNT counts every 64th cpu cycle */
781 #define ARMV8_PMCR_X (1 << 4) /* Export to ETM */
782 #define ARMV8_PMCR_DP (1 << 5) /* Disable CCNT if non-invasive debug*/
783 #define ARMV8_PMCR_N_SHIFT 11 /* Number of counters supported */
784 #define ARMV8_PMCR_N_MASK 0x1f
785 #define ARMV8_PMCR_MASK 0x3f /* Mask for writable bits */
786
787 /*
788 * PMOVSR: counters overflow flag status reg
789 */
790 #define ARMV8_OVSR_MASK 0xffffffff /* Mask for writable bits */
791 #define ARMV8_OVERFLOWED_MASK ARMV8_OVSR_MASK
792
793 /*
794 * PMXEVTYPER: Event selection reg
795 */
796 #define ARMV8_EVTYPE_MASK 0xc80000ff /* Mask for writable bits */
797 #define ARMV8_EVTYPE_EVENT 0xff /* Mask for EVENT bits */
798
799 /*
800 * Event filters for PMUv3
801 */
802 #define ARMV8_EXCLUDE_EL1 (1 << 31)
803 #define ARMV8_EXCLUDE_EL0 (1 << 30)
804 #define ARMV8_INCLUDE_EL2 (1 << 27)
805
806 static inline u32 armv8pmu_pmcr_read(void)
807 {
808 u32 val;
809 asm volatile("mrs %0, pmcr_el0" : "=r" (val));
810 return val;
811 }
812
813 static inline void armv8pmu_pmcr_write(u32 val)
814 {
815 val &= ARMV8_PMCR_MASK;
816 isb();
817 asm volatile("msr pmcr_el0, %0" :: "r" (val));
818 }
819
820 static inline int armv8pmu_has_overflowed(u32 pmovsr)
821 {
822 return pmovsr & ARMV8_OVERFLOWED_MASK;
823 }
824
825 static inline int armv8pmu_counter_valid(int idx)
826 {
827 return idx >= ARMV8_IDX_CYCLE_COUNTER && idx <= ARMV8_IDX_COUNTER_LAST;
828 }
829
830 static inline int armv8pmu_counter_has_overflowed(u32 pmnc, int idx)
831 {
832 int ret = 0;
833 u32 counter;
834
835 if (!armv8pmu_counter_valid(idx)) {
836 pr_err("CPU%u checking wrong counter %d overflow status\n",
837 smp_processor_id(), idx);
838 } else {
839 counter = ARMV8_IDX_TO_COUNTER(idx);
840 ret = pmnc & BIT(counter);
841 }
842
843 return ret;
844 }
845
846 static inline int armv8pmu_select_counter(int idx)
847 {
848 u32 counter;
849
850 if (!armv8pmu_counter_valid(idx)) {
851 pr_err("CPU%u selecting wrong PMNC counter %d\n",
852 smp_processor_id(), idx);
853 return -EINVAL;
854 }
855
856 counter = ARMV8_IDX_TO_COUNTER(idx);
857 asm volatile("msr pmselr_el0, %0" :: "r" (counter));
858 isb();
859
860 return idx;
861 }
862
863 static inline u32 armv8pmu_read_counter(int idx)
864 {
865 u32 value = 0;
866
867 if (!armv8pmu_counter_valid(idx))
868 pr_err("CPU%u reading wrong counter %d\n",
869 smp_processor_id(), idx);
870 else if (idx == ARMV8_IDX_CYCLE_COUNTER)
871 asm volatile("mrs %0, pmccntr_el0" : "=r" (value));
872 else if (armv8pmu_select_counter(idx) == idx)
873 asm volatile("mrs %0, pmxevcntr_el0" : "=r" (value));
874
875 return value;
876 }
877
878 static inline void armv8pmu_write_counter(int idx, u32 value)
879 {
880 if (!armv8pmu_counter_valid(idx))
881 pr_err("CPU%u writing wrong counter %d\n",
882 smp_processor_id(), idx);
883 else if (idx == ARMV8_IDX_CYCLE_COUNTER)
884 asm volatile("msr pmccntr_el0, %0" :: "r" (value));
885 else if (armv8pmu_select_counter(idx) == idx)
886 asm volatile("msr pmxevcntr_el0, %0" :: "r" (value));
887 }
888
889 static inline void armv8pmu_write_evtype(int idx, u32 val)
890 {
891 if (armv8pmu_select_counter(idx) == idx) {
892 val &= ARMV8_EVTYPE_MASK;
893 asm volatile("msr pmxevtyper_el0, %0" :: "r" (val));
894 }
895 }
896
897 static inline int armv8pmu_enable_counter(int idx)
898 {
899 u32 counter;
900
901 if (!armv8pmu_counter_valid(idx)) {
902 pr_err("CPU%u enabling wrong PMNC counter %d\n",
903 smp_processor_id(), idx);
904 return -EINVAL;
905 }
906
907 counter = ARMV8_IDX_TO_COUNTER(idx);
908 asm volatile("msr pmcntenset_el0, %0" :: "r" (BIT(counter)));
909 return idx;
910 }
911
912 static inline int armv8pmu_disable_counter(int idx)
913 {
914 u32 counter;
915
916 if (!armv8pmu_counter_valid(idx)) {
917 pr_err("CPU%u disabling wrong PMNC counter %d\n",
918 smp_processor_id(), idx);
919 return -EINVAL;
920 }
921
922 counter = ARMV8_IDX_TO_COUNTER(idx);
923 asm volatile("msr pmcntenclr_el0, %0" :: "r" (BIT(counter)));
924 return idx;
925 }
926
927 static inline int armv8pmu_enable_intens(int idx)
928 {
929 u32 counter;
930
931 if (!armv8pmu_counter_valid(idx)) {
932 pr_err("CPU%u enabling wrong PMNC counter IRQ enable %d\n",
933 smp_processor_id(), idx);
934 return -EINVAL;
935 }
936
937 counter = ARMV8_IDX_TO_COUNTER(idx);
938 asm volatile("msr pmintenset_el1, %0" :: "r" (BIT(counter)));
939 return idx;
940 }
941
942 static inline int armv8pmu_disable_intens(int idx)
943 {
944 u32 counter;
945
946 if (!armv8pmu_counter_valid(idx)) {
947 pr_err("CPU%u disabling wrong PMNC counter IRQ enable %d\n",
948 smp_processor_id(), idx);
949 return -EINVAL;
950 }
951
952 counter = ARMV8_IDX_TO_COUNTER(idx);
953 asm volatile("msr pmintenclr_el1, %0" :: "r" (BIT(counter)));
954 isb();
955 /* Clear the overflow flag in case an interrupt is pending. */
956 asm volatile("msr pmovsclr_el0, %0" :: "r" (BIT(counter)));
957 isb();
958 return idx;
959 }
960
961 static inline u32 armv8pmu_getreset_flags(void)
962 {
963 u32 value;
964
965 /* Read */
966 asm volatile("mrs %0, pmovsclr_el0" : "=r" (value));
967
968 /* Write to clear flags */
969 value &= ARMV8_OVSR_MASK;
970 asm volatile("msr pmovsclr_el0, %0" :: "r" (value));
971
972 return value;
973 }
974
975 static void armv8pmu_enable_event(struct hw_perf_event *hwc, int idx)
976 {
977 unsigned long flags;
978 struct pmu_hw_events *events = cpu_pmu->get_hw_events();
979
980 /*
981 * Enable counter and interrupt, and set the counter to count
982 * the event that we're interested in.
983 */
984 raw_spin_lock_irqsave(&events->pmu_lock, flags);
985
986 /*
987 * Disable counter
988 */
989 armv8pmu_disable_counter(idx);
990
991 /*
992 * Set event (if destined for PMNx counters).
993 */
994 armv8pmu_write_evtype(idx, hwc->config_base);
995
996 /*
997 * Enable interrupt for this counter
998 */
999 armv8pmu_enable_intens(idx);
1000
1001 /*
1002 * Enable counter
1003 */
1004 armv8pmu_enable_counter(idx);
1005
1006 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1007 }
1008
1009 static void armv8pmu_disable_event(struct hw_perf_event *hwc, int idx)
1010 {
1011 unsigned long flags;
1012 struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1013
1014 /*
1015 * Disable counter and interrupt
1016 */
1017 raw_spin_lock_irqsave(&events->pmu_lock, flags);
1018
1019 /*
1020 * Disable counter
1021 */
1022 armv8pmu_disable_counter(idx);
1023
1024 /*
1025 * Disable interrupt for this counter
1026 */
1027 armv8pmu_disable_intens(idx);
1028
1029 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1030 }
1031
1032 static irqreturn_t armv8pmu_handle_irq(int irq_num, void *dev)
1033 {
1034 u32 pmovsr;
1035 struct perf_sample_data data;
1036 struct pmu_hw_events *cpuc;
1037 struct pt_regs *regs;
1038 int idx;
1039
1040 /*
1041 * Get and reset the IRQ flags
1042 */
1043 pmovsr = armv8pmu_getreset_flags();
1044
1045 /*
1046 * Did an overflow occur?
1047 */
1048 if (!armv8pmu_has_overflowed(pmovsr))
1049 return IRQ_NONE;
1050
1051 /*
1052 * Handle the counter(s) overflow(s)
1053 */
1054 regs = get_irq_regs();
1055
1056 cpuc = &__get_cpu_var(cpu_hw_events);
1057 for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
1058 struct perf_event *event = cpuc->events[idx];
1059 struct hw_perf_event *hwc;
1060
1061 /* Ignore if we don't have an event. */
1062 if (!event)
1063 continue;
1064
1065 /*
1066 * We have a single interrupt for all counters. Check that
1067 * each counter has overflowed before we process it.
1068 */
1069 if (!armv8pmu_counter_has_overflowed(pmovsr, idx))
1070 continue;
1071
1072 hwc = &event->hw;
1073 armpmu_event_update(event, hwc, idx);
1074 perf_sample_data_init(&data, 0, hwc->last_period);
1075 if (!armpmu_event_set_period(event, hwc, idx))
1076 continue;
1077
1078 if (perf_event_overflow(event, &data, regs))
1079 cpu_pmu->disable(hwc, idx);
1080 }
1081
1082 /*
1083 * Handle the pending perf events.
1084 *
1085 * Note: this call *must* be run with interrupts disabled. For
1086 * platforms that can have the PMU interrupts raised as an NMI, this
1087 * will not work.
1088 */
1089 irq_work_run();
1090
1091 return IRQ_HANDLED;
1092 }
1093
1094 static void armv8pmu_start(void)
1095 {
1096 unsigned long flags;
1097 struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1098
1099 raw_spin_lock_irqsave(&events->pmu_lock, flags);
1100 /* Enable all counters */
1101 armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMCR_E);
1102 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1103 }
1104
1105 static void armv8pmu_stop(void)
1106 {
1107 unsigned long flags;
1108 struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1109
1110 raw_spin_lock_irqsave(&events->pmu_lock, flags);
1111 /* Disable all counters */
1112 armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMCR_E);
1113 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1114 }
1115
1116 static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc,
1117 struct hw_perf_event *event)
1118 {
1119 int idx;
1120 unsigned long evtype = event->config_base & ARMV8_EVTYPE_EVENT;
1121
1122 /* Always place a cycle counter into the cycle counter. */
1123 if (evtype == ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES) {
1124 if (test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask))
1125 return -EAGAIN;
1126
1127 return ARMV8_IDX_CYCLE_COUNTER;
1128 }
1129
1130 /*
1131 * For anything other than a cycle counter, try and use
1132 * the events counters
1133 */
1134 for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; ++idx) {
1135 if (!test_and_set_bit(idx, cpuc->used_mask))
1136 return idx;
1137 }
1138
1139 /* The counters are all in use. */
1140 return -EAGAIN;
1141 }
1142
1143 /*
1144 * Add an event filter to a given event. This will only work for PMUv2 PMUs.
1145 */
1146 static int armv8pmu_set_event_filter(struct hw_perf_event *event,
1147 struct perf_event_attr *attr)
1148 {
1149 unsigned long config_base = 0;
1150
1151 if (attr->exclude_idle)
1152 return -EPERM;
1153 if (attr->exclude_user)
1154 config_base |= ARMV8_EXCLUDE_EL0;
1155 if (attr->exclude_kernel)
1156 config_base |= ARMV8_EXCLUDE_EL1;
1157 if (!attr->exclude_hv)
1158 config_base |= ARMV8_INCLUDE_EL2;
1159
1160 /*
1161 * Install the filter into config_base as this is used to
1162 * construct the event type.
1163 */
1164 event->config_base = config_base;
1165
1166 return 0;
1167 }
1168
1169 static void armv8pmu_reset(void *info)
1170 {
1171 u32 idx, nb_cnt = cpu_pmu->num_events;
1172
1173 /* The counter and interrupt enable registers are unknown at reset. */
1174 for (idx = ARMV8_IDX_CYCLE_COUNTER; idx < nb_cnt; ++idx)
1175 armv8pmu_disable_event(NULL, idx);
1176
1177 /* Initialize & Reset PMNC: C and P bits. */
1178 armv8pmu_pmcr_write(ARMV8_PMCR_P | ARMV8_PMCR_C);
1179
1180 /* Disable access from userspace. */
1181 asm volatile("msr pmuserenr_el0, %0" :: "r" (0));
1182 }
1183
1184 static int armv8_pmuv3_map_event(struct perf_event *event)
1185 {
1186 return map_cpu_event(event, &armv8_pmuv3_perf_map,
1187 &armv8_pmuv3_perf_cache_map, 0xFF);
1188 }
1189
1190 static struct arm_pmu armv8pmu = {
1191 .handle_irq = armv8pmu_handle_irq,
1192 .enable = armv8pmu_enable_event,
1193 .disable = armv8pmu_disable_event,
1194 .read_counter = armv8pmu_read_counter,
1195 .write_counter = armv8pmu_write_counter,
1196 .get_event_idx = armv8pmu_get_event_idx,
1197 .start = armv8pmu_start,
1198 .stop = armv8pmu_stop,
1199 .reset = armv8pmu_reset,
1200 .max_period = (1LLU << 32) - 1,
1201 };
1202
1203 static u32 __init armv8pmu_read_num_pmnc_events(void)
1204 {
1205 u32 nb_cnt;
1206
1207 /* Read the nb of CNTx counters supported from PMNC */
1208 nb_cnt = (armv8pmu_pmcr_read() >> ARMV8_PMCR_N_SHIFT) & ARMV8_PMCR_N_MASK;
1209
1210 /* Add the CPU cycles counter and return */
1211 return nb_cnt + 1;
1212 }
1213
1214 static struct arm_pmu *__init armv8_pmuv3_pmu_init(void)
1215 {
1216 armv8pmu.name = "arm/armv8-pmuv3";
1217 armv8pmu.map_event = armv8_pmuv3_map_event;
1218 armv8pmu.num_events = armv8pmu_read_num_pmnc_events();
1219 armv8pmu.set_event_filter = armv8pmu_set_event_filter;
1220 return &armv8pmu;
1221 }
1222
1223 /*
1224 * Ensure the PMU has sane values out of reset.
1225 * This requires SMP to be available, so exists as a separate initcall.
1226 */
1227 static int __init
1228 cpu_pmu_reset(void)
1229 {
1230 if (cpu_pmu && cpu_pmu->reset)
1231 return on_each_cpu(cpu_pmu->reset, NULL, 1);
1232 return 0;
1233 }
1234 arch_initcall(cpu_pmu_reset);
1235
1236 /*
1237 * PMU platform driver and devicetree bindings.
1238 */
1239 static struct of_device_id armpmu_of_device_ids[] = {
1240 {.compatible = "arm,armv8-pmuv3"},
1241 {},
1242 };
1243
1244 static int armpmu_device_probe(struct platform_device *pdev)
1245 {
1246 if (!cpu_pmu)
1247 return -ENODEV;
1248
1249 cpu_pmu->plat_device = pdev;
1250 return 0;
1251 }
1252
1253 static struct platform_driver armpmu_driver = {
1254 .driver = {
1255 .name = "arm-pmu",
1256 .of_match_table = armpmu_of_device_ids,
1257 },
1258 .probe = armpmu_device_probe,
1259 };
1260
1261 static int __init register_pmu_driver(void)
1262 {
1263 return platform_driver_register(&armpmu_driver);
1264 }
1265 device_initcall(register_pmu_driver);
1266
1267 static struct pmu_hw_events *armpmu_get_cpu_events(void)
1268 {
1269 return &__get_cpu_var(cpu_hw_events);
1270 }
1271
1272 static void __init cpu_pmu_init(struct arm_pmu *armpmu)
1273 {
1274 int cpu;
1275 for_each_possible_cpu(cpu) {
1276 struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
1277 events->events = per_cpu(hw_events, cpu);
1278 events->used_mask = per_cpu(used_mask, cpu);
1279 raw_spin_lock_init(&events->pmu_lock);
1280 }
1281 armpmu->get_hw_events = armpmu_get_cpu_events;
1282 }
1283
1284 static int __init init_hw_perf_events(void)
1285 {
1286 u64 dfr = read_cpuid(ID_AA64DFR0_EL1);
1287
1288 switch ((dfr >> 8) & 0xf) {
1289 case 0x1: /* PMUv3 */
1290 cpu_pmu = armv8_pmuv3_pmu_init();
1291 break;
1292 }
1293
1294 if (cpu_pmu) {
1295 pr_info("enabled with %s PMU driver, %d counters available\n",
1296 cpu_pmu->name, cpu_pmu->num_events);
1297 cpu_pmu_init(cpu_pmu);
1298 armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW);
1299 } else {
1300 pr_info("no hardware support available\n");
1301 }
1302
1303 return 0;
1304 }
1305 early_initcall(init_hw_perf_events);
1306
1307 /*
1308 * Callchain handling code.
1309 */
1310 struct frame_tail {
1311 struct frame_tail __user *fp;
1312 unsigned long lr;
1313 } __attribute__((packed));
1314
1315 /*
1316 * Get the return address for a single stackframe and return a pointer to the
1317 * next frame tail.
1318 */
1319 static struct frame_tail __user *
1320 user_backtrace(struct frame_tail __user *tail,
1321 struct perf_callchain_entry *entry)
1322 {
1323 struct frame_tail buftail;
1324 unsigned long err;
1325
1326 /* Also check accessibility of one struct frame_tail beyond */
1327 if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
1328 return NULL;
1329
1330 pagefault_disable();
1331 err = __copy_from_user_inatomic(&buftail, tail, sizeof(buftail));
1332 pagefault_enable();
1333
1334 if (err)
1335 return NULL;
1336
1337 perf_callchain_store(entry, buftail.lr);
1338
1339 /*
1340 * Frame pointers should strictly progress back up the stack
1341 * (towards higher addresses).
1342 */
1343 if (tail >= buftail.fp)
1344 return NULL;
1345
1346 return buftail.fp;
1347 }
1348
1349 void perf_callchain_user(struct perf_callchain_entry *entry,
1350 struct pt_regs *regs)
1351 {
1352 struct frame_tail __user *tail;
1353
1354 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1355 /* We don't support guest os callchain now */
1356 return;
1357 }
1358
1359 perf_callchain_store(entry, regs->pc);
1360 tail = (struct frame_tail __user *)regs->regs[29];
1361
1362 while (entry->nr < PERF_MAX_STACK_DEPTH &&
1363 tail && !((unsigned long)tail & 0xf))
1364 tail = user_backtrace(tail, entry);
1365 }
1366
1367 /*
1368 * Gets called by walk_stackframe() for every stackframe. This will be called
1369 * whist unwinding the stackframe and is like a subroutine return so we use
1370 * the PC.
1371 */
1372 static int callchain_trace(struct stackframe *frame, void *data)
1373 {
1374 struct perf_callchain_entry *entry = data;
1375 perf_callchain_store(entry, frame->pc);
1376 return 0;
1377 }
1378
1379 void perf_callchain_kernel(struct perf_callchain_entry *entry,
1380 struct pt_regs *regs)
1381 {
1382 struct stackframe frame;
1383
1384 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1385 /* We don't support guest os callchain now */
1386 return;
1387 }
1388
1389 frame.fp = regs->regs[29];
1390 frame.sp = regs->sp;
1391 frame.pc = regs->pc;
1392 walk_stackframe(&frame, callchain_trace, entry);
1393 }
1394
1395 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1396 {
1397 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1398 return perf_guest_cbs->get_guest_ip();
1399
1400 return instruction_pointer(regs);
1401 }
1402
1403 unsigned long perf_misc_flags(struct pt_regs *regs)
1404 {
1405 int misc = 0;
1406
1407 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1408 if (perf_guest_cbs->is_user_mode())
1409 misc |= PERF_RECORD_MISC_GUEST_USER;
1410 else
1411 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1412 } else {
1413 if (user_mode(regs))
1414 misc |= PERF_RECORD_MISC_USER;
1415 else
1416 misc |= PERF_RECORD_MISC_KERNEL;
1417 }
1418
1419 return misc;
1420 }