ARM: mm: implement LoUIS API for cache maintenance ops
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / mm / proc-xscale.S
1 /*
2 * linux/arch/arm/mm/proc-xscale.S
3 *
4 * Author: Nicolas Pitre
5 * Created: November 2000
6 * Copyright: (C) 2000, 2001 MontaVista Software Inc.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * MMU functions for the Intel XScale CPUs
13 *
14 * 2001 Aug 21:
15 * some contributions by Brett Gaines <brett.w.gaines@intel.com>
16 * Copyright 2001 by Intel Corp.
17 *
18 * 2001 Sep 08:
19 * Completely revisited, many important fixes
20 * Nicolas Pitre <nico@fluxnic.net>
21 */
22
23 #include <linux/linkage.h>
24 #include <linux/init.h>
25 #include <asm/assembler.h>
26 #include <asm/hwcap.h>
27 #include <asm/pgtable.h>
28 #include <asm/pgtable-hwdef.h>
29 #include <asm/page.h>
30 #include <asm/ptrace.h>
31 #include "proc-macros.S"
32
33 /*
34 * This is the maximum size of an area which will be flushed. If the area
35 * is larger than this, then we flush the whole cache
36 */
37 #define MAX_AREA_SIZE 32768
38
39 /*
40 * the cache line size of the I and D cache
41 */
42 #define CACHELINESIZE 32
43
44 /*
45 * the size of the data cache
46 */
47 #define CACHESIZE 32768
48
49 /*
50 * Virtual address used to allocate the cache when flushed
51 *
52 * This must be an address range which is _never_ used. It should
53 * apparently have a mapping in the corresponding page table for
54 * compatibility with future CPUs that _could_ require it. For instance we
55 * don't care.
56 *
57 * This must be aligned on a 2*CACHESIZE boundary. The code selects one of
58 * the 2 areas in alternance each time the clean_d_cache macro is used.
59 * Without this the XScale core exhibits cache eviction problems and no one
60 * knows why.
61 *
62 * Reminder: the vector table is located at 0xffff0000-0xffff0fff.
63 */
64 #define CLEAN_ADDR 0xfffe0000
65
66 /*
67 * This macro is used to wait for a CP15 write and is needed
68 * when we have to ensure that the last operation to the co-pro
69 * was completed before continuing with operation.
70 */
71 .macro cpwait, rd
72 mrc p15, 0, \rd, c2, c0, 0 @ arbitrary read of cp15
73 mov \rd, \rd @ wait for completion
74 sub pc, pc, #4 @ flush instruction pipeline
75 .endm
76
77 .macro cpwait_ret, lr, rd
78 mrc p15, 0, \rd, c2, c0, 0 @ arbitrary read of cp15
79 sub pc, \lr, \rd, LSR #32 @ wait for completion and
80 @ flush instruction pipeline
81 .endm
82
83 /*
84 * This macro cleans the entire dcache using line allocate.
85 * The main loop has been unrolled to reduce loop overhead.
86 * rd and rs are two scratch registers.
87 */
88 .macro clean_d_cache, rd, rs
89 ldr \rs, =clean_addr
90 ldr \rd, [\rs]
91 eor \rd, \rd, #CACHESIZE
92 str \rd, [\rs]
93 add \rs, \rd, #CACHESIZE
94 1: mcr p15, 0, \rd, c7, c2, 5 @ allocate D cache line
95 add \rd, \rd, #CACHELINESIZE
96 mcr p15, 0, \rd, c7, c2, 5 @ allocate D cache line
97 add \rd, \rd, #CACHELINESIZE
98 mcr p15, 0, \rd, c7, c2, 5 @ allocate D cache line
99 add \rd, \rd, #CACHELINESIZE
100 mcr p15, 0, \rd, c7, c2, 5 @ allocate D cache line
101 add \rd, \rd, #CACHELINESIZE
102 teq \rd, \rs
103 bne 1b
104 .endm
105
106 .data
107 clean_addr: .word CLEAN_ADDR
108
109 .text
110
111 /*
112 * cpu_xscale_proc_init()
113 *
114 * Nothing too exciting at the moment
115 */
116 ENTRY(cpu_xscale_proc_init)
117 @ enable write buffer coalescing. Some bootloader disable it
118 mrc p15, 0, r1, c1, c0, 1
119 bic r1, r1, #1
120 mcr p15, 0, r1, c1, c0, 1
121 mov pc, lr
122
123 /*
124 * cpu_xscale_proc_fin()
125 */
126 ENTRY(cpu_xscale_proc_fin)
127 mrc p15, 0, r0, c1, c0, 0 @ ctrl register
128 bic r0, r0, #0x1800 @ ...IZ...........
129 bic r0, r0, #0x0006 @ .............CA.
130 mcr p15, 0, r0, c1, c0, 0 @ disable caches
131 mov pc, lr
132
133 /*
134 * cpu_xscale_reset(loc)
135 *
136 * Perform a soft reset of the system. Put the CPU into the
137 * same state as it would be if it had been reset, and branch
138 * to what would be the reset vector.
139 *
140 * loc: location to jump to for soft reset
141 *
142 * Beware PXA270 erratum E7.
143 */
144 .align 5
145 .pushsection .idmap.text, "ax"
146 ENTRY(cpu_xscale_reset)
147 mov r1, #PSR_F_BIT|PSR_I_BIT|SVC_MODE
148 msr cpsr_c, r1 @ reset CPSR
149 mcr p15, 0, r1, c10, c4, 1 @ unlock I-TLB
150 mcr p15, 0, r1, c8, c5, 0 @ invalidate I-TLB
151 mrc p15, 0, r1, c1, c0, 0 @ ctrl register
152 bic r1, r1, #0x0086 @ ........B....CA.
153 bic r1, r1, #0x3900 @ ..VIZ..S........
154 sub pc, pc, #4 @ flush pipeline
155 @ *** cache line aligned ***
156 mcr p15, 0, r1, c1, c0, 0 @ ctrl register
157 bic r1, r1, #0x0001 @ ...............M
158 mcr p15, 0, ip, c7, c7, 0 @ invalidate I,D caches & BTB
159 mcr p15, 0, r1, c1, c0, 0 @ ctrl register
160 @ CAUTION: MMU turned off from this point. We count on the pipeline
161 @ already containing those two last instructions to survive.
162 mcr p15, 0, ip, c8, c7, 0 @ invalidate I & D TLBs
163 mov pc, r0
164 ENDPROC(cpu_xscale_reset)
165 .popsection
166
167 /*
168 * cpu_xscale_do_idle()
169 *
170 * Cause the processor to idle
171 *
172 * For now we do nothing but go to idle mode for every case
173 *
174 * XScale supports clock switching, but using idle mode support
175 * allows external hardware to react to system state changes.
176 */
177 .align 5
178
179 ENTRY(cpu_xscale_do_idle)
180 mov r0, #1
181 mcr p14, 0, r0, c7, c0, 0 @ Go to IDLE
182 mov pc, lr
183
184 /* ================================= CACHE ================================ */
185
186 /*
187 * flush_icache_all()
188 *
189 * Unconditionally clean and invalidate the entire icache.
190 */
191 ENTRY(xscale_flush_icache_all)
192 mov r0, #0
193 mcr p15, 0, r0, c7, c5, 0 @ invalidate I cache
194 mov pc, lr
195 ENDPROC(xscale_flush_icache_all)
196
197 /*
198 * flush_user_cache_all()
199 *
200 * Invalidate all cache entries in a particular address
201 * space.
202 */
203 ENTRY(xscale_flush_user_cache_all)
204 /* FALLTHROUGH */
205
206 /*
207 * flush_kern_cache_all()
208 *
209 * Clean and invalidate the entire cache.
210 */
211 ENTRY(xscale_flush_kern_cache_all)
212 mov r2, #VM_EXEC
213 mov ip, #0
214 __flush_whole_cache:
215 clean_d_cache r0, r1
216 tst r2, #VM_EXEC
217 mcrne p15, 0, ip, c7, c5, 0 @ Invalidate I cache & BTB
218 mcrne p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer
219 mov pc, lr
220
221 /*
222 * flush_user_cache_range(start, end, vm_flags)
223 *
224 * Invalidate a range of cache entries in the specified
225 * address space.
226 *
227 * - start - start address (may not be aligned)
228 * - end - end address (exclusive, may not be aligned)
229 * - vma - vma_area_struct describing address space
230 */
231 .align 5
232 ENTRY(xscale_flush_user_cache_range)
233 mov ip, #0
234 sub r3, r1, r0 @ calculate total size
235 cmp r3, #MAX_AREA_SIZE
236 bhs __flush_whole_cache
237
238 1: tst r2, #VM_EXEC
239 mcrne p15, 0, r0, c7, c5, 1 @ Invalidate I cache line
240 mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line
241 mcr p15, 0, r0, c7, c6, 1 @ Invalidate D cache line
242 add r0, r0, #CACHELINESIZE
243 cmp r0, r1
244 blo 1b
245 tst r2, #VM_EXEC
246 mcrne p15, 0, ip, c7, c5, 6 @ Invalidate BTB
247 mcrne p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer
248 mov pc, lr
249
250 /*
251 * coherent_kern_range(start, end)
252 *
253 * Ensure coherency between the Icache and the Dcache in the
254 * region described by start. If you have non-snooping
255 * Harvard caches, you need to implement this function.
256 *
257 * - start - virtual start address
258 * - end - virtual end address
259 *
260 * Note: single I-cache line invalidation isn't used here since
261 * it also trashes the mini I-cache used by JTAG debuggers.
262 */
263 ENTRY(xscale_coherent_kern_range)
264 bic r0, r0, #CACHELINESIZE - 1
265 1: mcr p15, 0, r0, c7, c10, 1 @ clean D entry
266 add r0, r0, #CACHELINESIZE
267 cmp r0, r1
268 blo 1b
269 mov r0, #0
270 mcr p15, 0, r0, c7, c5, 0 @ Invalidate I cache & BTB
271 mcr p15, 0, r0, c7, c10, 4 @ Drain Write (& Fill) Buffer
272 mov pc, lr
273
274 /*
275 * coherent_user_range(start, end)
276 *
277 * Ensure coherency between the Icache and the Dcache in the
278 * region described by start. If you have non-snooping
279 * Harvard caches, you need to implement this function.
280 *
281 * - start - virtual start address
282 * - end - virtual end address
283 */
284 ENTRY(xscale_coherent_user_range)
285 bic r0, r0, #CACHELINESIZE - 1
286 1: mcr p15, 0, r0, c7, c10, 1 @ clean D entry
287 mcr p15, 0, r0, c7, c5, 1 @ Invalidate I cache entry
288 add r0, r0, #CACHELINESIZE
289 cmp r0, r1
290 blo 1b
291 mov r0, #0
292 mcr p15, 0, r0, c7, c5, 6 @ Invalidate BTB
293 mcr p15, 0, r0, c7, c10, 4 @ Drain Write (& Fill) Buffer
294 mov pc, lr
295
296 /*
297 * flush_kern_dcache_area(void *addr, size_t size)
298 *
299 * Ensure no D cache aliasing occurs, either with itself or
300 * the I cache
301 *
302 * - addr - kernel address
303 * - size - region size
304 */
305 ENTRY(xscale_flush_kern_dcache_area)
306 add r1, r0, r1
307 1: mcr p15, 0, r0, c7, c10, 1 @ clean D entry
308 mcr p15, 0, r0, c7, c6, 1 @ invalidate D entry
309 add r0, r0, #CACHELINESIZE
310 cmp r0, r1
311 blo 1b
312 mov r0, #0
313 mcr p15, 0, r0, c7, c5, 0 @ Invalidate I cache & BTB
314 mcr p15, 0, r0, c7, c10, 4 @ Drain Write (& Fill) Buffer
315 mov pc, lr
316
317 /*
318 * dma_inv_range(start, end)
319 *
320 * Invalidate (discard) the specified virtual address range.
321 * May not write back any entries. If 'start' or 'end'
322 * are not cache line aligned, those lines must be written
323 * back.
324 *
325 * - start - virtual start address
326 * - end - virtual end address
327 */
328 xscale_dma_inv_range:
329 tst r0, #CACHELINESIZE - 1
330 bic r0, r0, #CACHELINESIZE - 1
331 mcrne p15, 0, r0, c7, c10, 1 @ clean D entry
332 tst r1, #CACHELINESIZE - 1
333 mcrne p15, 0, r1, c7, c10, 1 @ clean D entry
334 1: mcr p15, 0, r0, c7, c6, 1 @ invalidate D entry
335 add r0, r0, #CACHELINESIZE
336 cmp r0, r1
337 blo 1b
338 mcr p15, 0, r0, c7, c10, 4 @ Drain Write (& Fill) Buffer
339 mov pc, lr
340
341 /*
342 * dma_clean_range(start, end)
343 *
344 * Clean the specified virtual address range.
345 *
346 * - start - virtual start address
347 * - end - virtual end address
348 */
349 xscale_dma_clean_range:
350 bic r0, r0, #CACHELINESIZE - 1
351 1: mcr p15, 0, r0, c7, c10, 1 @ clean D entry
352 add r0, r0, #CACHELINESIZE
353 cmp r0, r1
354 blo 1b
355 mcr p15, 0, r0, c7, c10, 4 @ Drain Write (& Fill) Buffer
356 mov pc, lr
357
358 /*
359 * dma_flush_range(start, end)
360 *
361 * Clean and invalidate the specified virtual address range.
362 *
363 * - start - virtual start address
364 * - end - virtual end address
365 */
366 ENTRY(xscale_dma_flush_range)
367 bic r0, r0, #CACHELINESIZE - 1
368 1: mcr p15, 0, r0, c7, c10, 1 @ clean D entry
369 mcr p15, 0, r0, c7, c6, 1 @ invalidate D entry
370 add r0, r0, #CACHELINESIZE
371 cmp r0, r1
372 blo 1b
373 mcr p15, 0, r0, c7, c10, 4 @ Drain Write (& Fill) Buffer
374 mov pc, lr
375
376 /*
377 * dma_map_area(start, size, dir)
378 * - start - kernel virtual start address
379 * - size - size of region
380 * - dir - DMA direction
381 */
382 ENTRY(xscale_dma_map_area)
383 add r1, r1, r0
384 cmp r2, #DMA_TO_DEVICE
385 beq xscale_dma_clean_range
386 bcs xscale_dma_inv_range
387 b xscale_dma_flush_range
388 ENDPROC(xscale_dma_map_area)
389
390 /*
391 * dma_map_area(start, size, dir)
392 * - start - kernel virtual start address
393 * - size - size of region
394 * - dir - DMA direction
395 */
396 ENTRY(xscale_80200_A0_A1_dma_map_area)
397 add r1, r1, r0
398 teq r2, #DMA_TO_DEVICE
399 beq xscale_dma_clean_range
400 b xscale_dma_flush_range
401 ENDPROC(xscale_80200_A0_A1_dma_map_area)
402
403 /*
404 * dma_unmap_area(start, size, dir)
405 * - start - kernel virtual start address
406 * - size - size of region
407 * - dir - DMA direction
408 */
409 ENTRY(xscale_dma_unmap_area)
410 mov pc, lr
411 ENDPROC(xscale_dma_unmap_area)
412
413 .globl xscale_flush_kern_cache_louis
414 .equ xscale_flush_kern_cache_louis, xscale_flush_kern_cache_all
415
416 @ define struct cpu_cache_fns (see <asm/cacheflush.h> and proc-macros.S)
417 define_cache_functions xscale
418
419 /*
420 * On stepping A0/A1 of the 80200, invalidating D-cache by line doesn't
421 * clear the dirty bits, which means that if we invalidate a dirty line,
422 * the dirty data can still be written back to external memory later on.
423 *
424 * The recommended workaround is to always do a clean D-cache line before
425 * doing an invalidate D-cache line, so on the affected processors,
426 * dma_inv_range() is implemented as dma_flush_range().
427 *
428 * See erratum #25 of "Intel 80200 Processor Specification Update",
429 * revision January 22, 2003, available at:
430 * http://www.intel.com/design/iio/specupdt/273415.htm
431 */
432 .macro a0_alias basename
433 .globl xscale_80200_A0_A1_\basename
434 .type xscale_80200_A0_A1_\basename , %function
435 .equ xscale_80200_A0_A1_\basename , xscale_\basename
436 .endm
437
438 /*
439 * Most of the cache functions are unchanged for these processor revisions.
440 * Export suitable alias symbols for the unchanged functions:
441 */
442 a0_alias flush_icache_all
443 a0_alias flush_user_cache_all
444 a0_alias flush_kern_cache_all
445 a0_alias flush_user_cache_range
446 a0_alias coherent_kern_range
447 a0_alias coherent_user_range
448 a0_alias flush_kern_dcache_area
449 a0_alias dma_flush_range
450 a0_alias dma_unmap_area
451
452 @ define struct cpu_cache_fns (see <asm/cacheflush.h> and proc-macros.S)
453 define_cache_functions xscale_80200_A0_A1
454
455 ENTRY(cpu_xscale_dcache_clean_area)
456 1: mcr p15, 0, r0, c7, c10, 1 @ clean D entry
457 add r0, r0, #CACHELINESIZE
458 subs r1, r1, #CACHELINESIZE
459 bhi 1b
460 mov pc, lr
461
462 /* =============================== PageTable ============================== */
463
464 /*
465 * cpu_xscale_switch_mm(pgd)
466 *
467 * Set the translation base pointer to be as described by pgd.
468 *
469 * pgd: new page tables
470 */
471 .align 5
472 ENTRY(cpu_xscale_switch_mm)
473 clean_d_cache r1, r2
474 mcr p15, 0, ip, c7, c5, 0 @ Invalidate I cache & BTB
475 mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer
476 mcr p15, 0, r0, c2, c0, 0 @ load page table pointer
477 mcr p15, 0, ip, c8, c7, 0 @ invalidate I & D TLBs
478 cpwait_ret lr, ip
479
480 /*
481 * cpu_xscale_set_pte_ext(ptep, pte, ext)
482 *
483 * Set a PTE and flush it out
484 *
485 * Errata 40: must set memory to write-through for user read-only pages.
486 */
487 cpu_xscale_mt_table:
488 .long 0x00 @ L_PTE_MT_UNCACHED
489 .long PTE_BUFFERABLE @ L_PTE_MT_BUFFERABLE
490 .long PTE_CACHEABLE @ L_PTE_MT_WRITETHROUGH
491 .long PTE_CACHEABLE | PTE_BUFFERABLE @ L_PTE_MT_WRITEBACK
492 .long PTE_EXT_TEX(1) | PTE_BUFFERABLE @ L_PTE_MT_DEV_SHARED
493 .long 0x00 @ unused
494 .long PTE_EXT_TEX(1) | PTE_CACHEABLE @ L_PTE_MT_MINICACHE
495 .long PTE_EXT_TEX(1) | PTE_CACHEABLE | PTE_BUFFERABLE @ L_PTE_MT_WRITEALLOC
496 .long 0x00 @ unused
497 .long PTE_BUFFERABLE @ L_PTE_MT_DEV_WC
498 .long 0x00 @ unused
499 .long PTE_CACHEABLE | PTE_BUFFERABLE @ L_PTE_MT_DEV_CACHED
500 .long 0x00 @ L_PTE_MT_DEV_NONSHARED
501 .long 0x00 @ unused
502 .long 0x00 @ unused
503 .long 0x00 @ unused
504
505 .align 5
506 ENTRY(cpu_xscale_set_pte_ext)
507 xscale_set_pte_ext_prologue
508
509 @
510 @ Erratum 40: must set memory to write-through for user read-only pages
511 @
512 and ip, r1, #(L_PTE_MT_MASK | L_PTE_USER | L_PTE_RDONLY) & ~(4 << 2)
513 teq ip, #L_PTE_MT_WRITEBACK | L_PTE_USER | L_PTE_RDONLY
514
515 moveq r1, #L_PTE_MT_WRITETHROUGH
516 and r1, r1, #L_PTE_MT_MASK
517 adr ip, cpu_xscale_mt_table
518 ldr ip, [ip, r1]
519 bic r2, r2, #0x0c
520 orr r2, r2, ip
521
522 xscale_set_pte_ext_epilogue
523 mov pc, lr
524
525 .ltorg
526 .align
527
528 .globl cpu_xscale_suspend_size
529 .equ cpu_xscale_suspend_size, 4 * 6
530 #ifdef CONFIG_PM_SLEEP
531 ENTRY(cpu_xscale_do_suspend)
532 stmfd sp!, {r4 - r9, lr}
533 mrc p14, 0, r4, c6, c0, 0 @ clock configuration, for turbo mode
534 mrc p15, 0, r5, c15, c1, 0 @ CP access reg
535 mrc p15, 0, r6, c13, c0, 0 @ PID
536 mrc p15, 0, r7, c3, c0, 0 @ domain ID
537 mrc p15, 0, r8, c1, c1, 0 @ auxiliary control reg
538 mrc p15, 0, r9, c1, c0, 0 @ control reg
539 bic r4, r4, #2 @ clear frequency change bit
540 stmia r0, {r4 - r9} @ store cp regs
541 ldmfd sp!, {r4 - r9, pc}
542 ENDPROC(cpu_xscale_do_suspend)
543
544 ENTRY(cpu_xscale_do_resume)
545 ldmia r0, {r4 - r9} @ load cp regs
546 mov ip, #0
547 mcr p15, 0, ip, c8, c7, 0 @ invalidate I & D TLBs
548 mcr p15, 0, ip, c7, c7, 0 @ invalidate I & D caches, BTB
549 mcr p14, 0, r4, c6, c0, 0 @ clock configuration, turbo mode.
550 mcr p15, 0, r5, c15, c1, 0 @ CP access reg
551 mcr p15, 0, r6, c13, c0, 0 @ PID
552 mcr p15, 0, r7, c3, c0, 0 @ domain ID
553 mcr p15, 0, r1, c2, c0, 0 @ translation table base addr
554 mcr p15, 0, r8, c1, c1, 0 @ auxiliary control reg
555 mov r0, r9 @ control register
556 b cpu_resume_mmu
557 ENDPROC(cpu_xscale_do_resume)
558 #endif
559
560 __CPUINIT
561
562 .type __xscale_setup, #function
563 __xscale_setup:
564 mcr p15, 0, ip, c7, c7, 0 @ invalidate I, D caches & BTB
565 mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer
566 mcr p15, 0, ip, c8, c7, 0 @ invalidate I, D TLBs
567 mov r0, #1 << 6 @ cp6 for IOP3xx and Bulverde
568 orr r0, r0, #1 << 13 @ Its undefined whether this
569 mcr p15, 0, r0, c15, c1, 0 @ affects USR or SVC modes
570
571 adr r5, xscale_crval
572 ldmia r5, {r5, r6}
573 mrc p15, 0, r0, c1, c0, 0 @ get control register
574 bic r0, r0, r5
575 orr r0, r0, r6
576 mov pc, lr
577 .size __xscale_setup, . - __xscale_setup
578
579 /*
580 * R
581 * .RVI ZFRS BLDP WCAM
582 * ..11 1.01 .... .101
583 *
584 */
585 .type xscale_crval, #object
586 xscale_crval:
587 crval clear=0x00003b07, mmuset=0x00003905, ucset=0x00001900
588
589 __INITDATA
590
591 @ define struct processor (see <asm/proc-fns.h> and proc-macros.S)
592 define_processor_functions xscale, dabort=v5t_early_abort, pabort=legacy_pabort, suspend=1
593
594 .section ".rodata"
595
596 string cpu_arch_name, "armv5te"
597 string cpu_elf_name, "v5"
598
599 string cpu_80200_A0_A1_name, "XScale-80200 A0/A1"
600 string cpu_80200_name, "XScale-80200"
601 string cpu_80219_name, "XScale-80219"
602 string cpu_8032x_name, "XScale-IOP8032x Family"
603 string cpu_8033x_name, "XScale-IOP8033x Family"
604 string cpu_pxa250_name, "XScale-PXA250"
605 string cpu_pxa210_name, "XScale-PXA210"
606 string cpu_ixp42x_name, "XScale-IXP42x Family"
607 string cpu_ixp43x_name, "XScale-IXP43x Family"
608 string cpu_ixp46x_name, "XScale-IXP46x Family"
609 string cpu_ixp2400_name, "XScale-IXP2400"
610 string cpu_ixp2800_name, "XScale-IXP2800"
611 string cpu_pxa255_name, "XScale-PXA255"
612 string cpu_pxa270_name, "XScale-PXA270"
613
614 .align
615
616 .section ".proc.info.init", #alloc, #execinstr
617
618 .macro xscale_proc_info name:req, cpu_val:req, cpu_mask:req, cpu_name:req, cache
619 .type __\name\()_proc_info,#object
620 __\name\()_proc_info:
621 .long \cpu_val
622 .long \cpu_mask
623 .long PMD_TYPE_SECT | \
624 PMD_SECT_BUFFERABLE | \
625 PMD_SECT_CACHEABLE | \
626 PMD_SECT_AP_WRITE | \
627 PMD_SECT_AP_READ
628 .long PMD_TYPE_SECT | \
629 PMD_SECT_AP_WRITE | \
630 PMD_SECT_AP_READ
631 b __xscale_setup
632 .long cpu_arch_name
633 .long cpu_elf_name
634 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
635 .long \cpu_name
636 .long xscale_processor_functions
637 .long v4wbi_tlb_fns
638 .long xscale_mc_user_fns
639 .ifb \cache
640 .long xscale_cache_fns
641 .else
642 .long \cache
643 .endif
644 .size __\name\()_proc_info, . - __\name\()_proc_info
645 .endm
646
647 xscale_proc_info 80200_A0_A1, 0x69052000, 0xfffffffe, cpu_80200_name, \
648 cache=xscale_80200_A0_A1_cache_fns
649 xscale_proc_info 80200, 0x69052000, 0xfffffff0, cpu_80200_name
650 xscale_proc_info 80219, 0x69052e20, 0xffffffe0, cpu_80219_name
651 xscale_proc_info 8032x, 0x69052420, 0xfffff7e0, cpu_8032x_name
652 xscale_proc_info 8033x, 0x69054010, 0xfffffd30, cpu_8033x_name
653 xscale_proc_info pxa250, 0x69052100, 0xfffff7f0, cpu_pxa250_name
654 xscale_proc_info pxa210, 0x69052120, 0xfffff3f0, cpu_pxa210_name
655 xscale_proc_info ixp2400, 0x69054190, 0xfffffff0, cpu_ixp2400_name
656 xscale_proc_info ixp2800, 0x690541a0, 0xfffffff0, cpu_ixp2800_name
657 xscale_proc_info ixp42x, 0x690541c0, 0xffffffc0, cpu_ixp42x_name
658 xscale_proc_info ixp43x, 0x69054040, 0xfffffff0, cpu_ixp43x_name
659 xscale_proc_info ixp46x, 0x69054200, 0xffffff00, cpu_ixp46x_name
660 xscale_proc_info pxa255, 0x69052d00, 0xfffffff0, cpu_pxa255_name
661 xscale_proc_info pxa270, 0x69054110, 0xfffffff0, cpu_pxa270_name