Merge tag 'v3.10.64' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / mm / mmu.c
1 /*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/setup.h>
26 #include <asm/smp_plat.h>
27 #include <asm/tlb.h>
28 #include <asm/highmem.h>
29 #include <asm/system_info.h>
30 #include <asm/traps.h>
31
32 #include <asm/mach/arch.h>
33 #include <asm/mach/map.h>
34 #include <asm/mach/pci.h>
35 #include <mach/mtk_memcfg.h>
36
37 #include "mm.h"
38 #include "tcm.h"
39
40 /*
41 * empty_zero_page is a special page that is used for
42 * zero-initialized data and COW.
43 */
44 struct page *empty_zero_page;
45 EXPORT_SYMBOL(empty_zero_page);
46
47 /*
48 * The pmd table for the upper-most set of pages.
49 */
50 pmd_t *top_pmd;
51
52 #define CPOLICY_UNCACHED 0
53 #define CPOLICY_BUFFERED 1
54 #define CPOLICY_WRITETHROUGH 2
55 #define CPOLICY_WRITEBACK 3
56 #define CPOLICY_WRITEALLOC 4
57
58 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
59 static unsigned int ecc_mask __initdata = 0;
60 pgprot_t pgprot_user;
61 pgprot_t pgprot_kernel;
62 pgprot_t pgprot_hyp_device;
63 pgprot_t pgprot_s2;
64 pgprot_t pgprot_s2_device;
65
66 EXPORT_SYMBOL(pgprot_user);
67 EXPORT_SYMBOL(pgprot_kernel);
68
69 struct cachepolicy {
70 const char policy[16];
71 unsigned int cr_mask;
72 pmdval_t pmd;
73 pteval_t pte;
74 pteval_t pte_s2;
75 };
76
77 #ifdef CONFIG_ARM_LPAE
78 #define s2_policy(policy) policy
79 #else
80 #define s2_policy(policy) 0
81 #endif
82
83 static struct cachepolicy cache_policies[] __initdata = {
84 {
85 .policy = "uncached",
86 .cr_mask = CR_W|CR_C,
87 .pmd = PMD_SECT_UNCACHED,
88 .pte = L_PTE_MT_UNCACHED,
89 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
90 }, {
91 .policy = "buffered",
92 .cr_mask = CR_C,
93 .pmd = PMD_SECT_BUFFERED,
94 .pte = L_PTE_MT_BUFFERABLE,
95 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
96 }, {
97 .policy = "writethrough",
98 .cr_mask = 0,
99 .pmd = PMD_SECT_WT,
100 .pte = L_PTE_MT_WRITETHROUGH,
101 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
102 }, {
103 .policy = "writeback",
104 .cr_mask = 0,
105 .pmd = PMD_SECT_WB,
106 .pte = L_PTE_MT_WRITEBACK,
107 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
108 }, {
109 .policy = "writealloc",
110 .cr_mask = 0,
111 .pmd = PMD_SECT_WBWA,
112 .pte = L_PTE_MT_WRITEALLOC,
113 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
114 }
115 };
116
117 #ifdef CONFIG_CPU_CP15
118 /*
119 * These are useful for identifying cache coherency
120 * problems by allowing the cache or the cache and
121 * writebuffer to be turned off. (Note: the write
122 * buffer should not be on and the cache off).
123 */
124 static int __init early_cachepolicy(char *p)
125 {
126 int i;
127
128 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
129 int len = strlen(cache_policies[i].policy);
130
131 if (memcmp(p, cache_policies[i].policy, len) == 0) {
132 cachepolicy = i;
133 cr_alignment &= ~cache_policies[i].cr_mask;
134 cr_no_alignment &= ~cache_policies[i].cr_mask;
135 break;
136 }
137 }
138 if (i == ARRAY_SIZE(cache_policies))
139 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
140 /*
141 * This restriction is partly to do with the way we boot; it is
142 * unpredictable to have memory mapped using two different sets of
143 * memory attributes (shared, type, and cache attribs). We can not
144 * change these attributes once the initial assembly has setup the
145 * page tables.
146 */
147 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
148 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
149 cachepolicy = CPOLICY_WRITEBACK;
150 }
151 flush_cache_all();
152 set_cr(cr_alignment);
153 return 0;
154 }
155 early_param("cachepolicy", early_cachepolicy);
156
157 static int __init early_nocache(char *__unused)
158 {
159 char *p = "buffered";
160 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
161 early_cachepolicy(p);
162 return 0;
163 }
164 early_param("nocache", early_nocache);
165
166 static int __init early_nowrite(char *__unused)
167 {
168 char *p = "uncached";
169 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
170 early_cachepolicy(p);
171 return 0;
172 }
173 early_param("nowb", early_nowrite);
174
175 #ifndef CONFIG_ARM_LPAE
176 static int __init early_ecc(char *p)
177 {
178 if (memcmp(p, "on", 2) == 0)
179 ecc_mask = PMD_PROTECTION;
180 else if (memcmp(p, "off", 3) == 0)
181 ecc_mask = 0;
182 return 0;
183 }
184 early_param("ecc", early_ecc);
185 #endif
186
187 static int __init noalign_setup(char *__unused)
188 {
189 cr_alignment &= ~CR_A;
190 cr_no_alignment &= ~CR_A;
191 set_cr(cr_alignment);
192 return 1;
193 }
194 __setup("noalign", noalign_setup);
195
196 #ifndef CONFIG_SMP
197 void adjust_cr(unsigned long mask, unsigned long set)
198 {
199 unsigned long flags;
200
201 mask &= ~CR_A;
202
203 set &= mask;
204
205 local_irq_save(flags);
206
207 cr_no_alignment = (cr_no_alignment & ~mask) | set;
208 cr_alignment = (cr_alignment & ~mask) | set;
209
210 set_cr((get_cr() & ~mask) | set);
211
212 local_irq_restore(flags);
213 }
214 #endif
215
216 #else /* ifdef CONFIG_CPU_CP15 */
217
218 static int __init early_cachepolicy(char *p)
219 {
220 pr_warning("cachepolicy kernel parameter not supported without cp15\n");
221 }
222 early_param("cachepolicy", early_cachepolicy);
223
224 static int __init noalign_setup(char *__unused)
225 {
226 pr_warning("noalign kernel parameter not supported without cp15\n");
227 }
228 __setup("noalign", noalign_setup);
229
230 #endif /* ifdef CONFIG_CPU_CP15 / else */
231
232 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
233 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
234
235 static struct mem_type mem_types[] = {
236 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
237 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
238 L_PTE_SHARED,
239 .prot_l1 = PMD_TYPE_TABLE,
240 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
241 .domain = DOMAIN_IO,
242 },
243 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
244 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
245 .prot_l1 = PMD_TYPE_TABLE,
246 .prot_sect = PROT_SECT_DEVICE,
247 .domain = DOMAIN_IO,
248 },
249 [MT_DEVICE_CACHED] = { /* ioremap_cached */
250 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
251 .prot_l1 = PMD_TYPE_TABLE,
252 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
253 .domain = DOMAIN_IO,
254 },
255 [MT_DEVICE_WC] = { /* ioremap_wc */
256 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
257 .prot_l1 = PMD_TYPE_TABLE,
258 .prot_sect = PROT_SECT_DEVICE,
259 .domain = DOMAIN_IO,
260 },
261 [MT_UNCACHED] = {
262 .prot_pte = PROT_PTE_DEVICE,
263 .prot_l1 = PMD_TYPE_TABLE,
264 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
265 .domain = DOMAIN_IO,
266 },
267 [MT_CACHECLEAN] = {
268 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
269 .domain = DOMAIN_KERNEL,
270 },
271 #ifndef CONFIG_ARM_LPAE
272 [MT_MINICLEAN] = {
273 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
274 .domain = DOMAIN_KERNEL,
275 },
276 #endif
277 [MT_LOW_VECTORS] = {
278 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
279 L_PTE_RDONLY,
280 .prot_l1 = PMD_TYPE_TABLE,
281 .domain = DOMAIN_USER,
282 },
283 [MT_HIGH_VECTORS] = {
284 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
285 L_PTE_USER | L_PTE_RDONLY,
286 .prot_l1 = PMD_TYPE_TABLE,
287 .domain = DOMAIN_USER,
288 },
289 [MT_MEMORY] = {
290 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
291 .prot_l1 = PMD_TYPE_TABLE,
292 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
293 .domain = DOMAIN_KERNEL,
294 },
295 [MT_ROM] = {
296 .prot_sect = PMD_TYPE_SECT,
297 .domain = DOMAIN_KERNEL,
298 },
299 [MT_MEMORY_NONCACHED] = {
300 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
301 L_PTE_MT_BUFFERABLE,
302 .prot_l1 = PMD_TYPE_TABLE,
303 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
304 .domain = DOMAIN_KERNEL,
305 },
306 [MT_MEMORY_DTCM] = {
307 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
308 L_PTE_XN,
309 .prot_l1 = PMD_TYPE_TABLE,
310 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
311 .domain = DOMAIN_KERNEL,
312 },
313 [MT_MEMORY_ITCM] = {
314 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
315 .prot_l1 = PMD_TYPE_TABLE,
316 .domain = DOMAIN_KERNEL,
317 },
318 [MT_MEMORY_SO] = {
319 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
320 L_PTE_MT_UNCACHED | L_PTE_XN,
321 .prot_l1 = PMD_TYPE_TABLE,
322 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
323 PMD_SECT_UNCACHED | PMD_SECT_XN,
324 .domain = DOMAIN_KERNEL,
325 },
326 [MT_MEMORY_DMA_READY] = {
327 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
328 .prot_l1 = PMD_TYPE_TABLE,
329 .domain = DOMAIN_KERNEL,
330 },
331 };
332
333 const struct mem_type *get_mem_type(unsigned int type)
334 {
335 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
336 }
337 EXPORT_SYMBOL(get_mem_type);
338
339 /*
340 * Adjust the PMD section entries according to the CPU in use.
341 */
342 static void __init build_mem_type_table(void)
343 {
344 struct cachepolicy *cp;
345 unsigned int cr = get_cr();
346 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
347 pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
348 int cpu_arch = cpu_architecture();
349 int i;
350
351 if (cpu_arch < CPU_ARCH_ARMv6) {
352 #if defined(CONFIG_CPU_DCACHE_DISABLE)
353 if (cachepolicy > CPOLICY_BUFFERED)
354 cachepolicy = CPOLICY_BUFFERED;
355 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
356 if (cachepolicy > CPOLICY_WRITETHROUGH)
357 cachepolicy = CPOLICY_WRITETHROUGH;
358 #endif
359 }
360 if (cpu_arch < CPU_ARCH_ARMv5) {
361 if (cachepolicy >= CPOLICY_WRITEALLOC)
362 cachepolicy = CPOLICY_WRITEBACK;
363 ecc_mask = 0;
364 }
365 if (is_smp())
366 cachepolicy = CPOLICY_WRITEALLOC;
367
368 /*
369 * Strip out features not present on earlier architectures.
370 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
371 * without extended page tables don't have the 'Shared' bit.
372 */
373 if (cpu_arch < CPU_ARCH_ARMv5)
374 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
375 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
376 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
377 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
378 mem_types[i].prot_sect &= ~PMD_SECT_S;
379
380 /*
381 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
382 * "update-able on write" bit on ARM610). However, Xscale and
383 * Xscale3 require this bit to be cleared.
384 */
385 if (cpu_is_xscale() || cpu_is_xsc3()) {
386 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
387 mem_types[i].prot_sect &= ~PMD_BIT4;
388 mem_types[i].prot_l1 &= ~PMD_BIT4;
389 }
390 } else if (cpu_arch < CPU_ARCH_ARMv6) {
391 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
392 if (mem_types[i].prot_l1)
393 mem_types[i].prot_l1 |= PMD_BIT4;
394 if (mem_types[i].prot_sect)
395 mem_types[i].prot_sect |= PMD_BIT4;
396 }
397 }
398
399 /*
400 * Mark the device areas according to the CPU/architecture.
401 */
402 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
403 if (!cpu_is_xsc3()) {
404 /*
405 * Mark device regions on ARMv6+ as execute-never
406 * to prevent speculative instruction fetches.
407 */
408 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
409 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
410 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
411 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
412 }
413 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
414 /*
415 * For ARMv7 with TEX remapping,
416 * - shared device is SXCB=1100
417 * - nonshared device is SXCB=0100
418 * - write combine device mem is SXCB=0001
419 * (Uncached Normal memory)
420 */
421 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
422 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
423 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
424 } else if (cpu_is_xsc3()) {
425 /*
426 * For Xscale3,
427 * - shared device is TEXCB=00101
428 * - nonshared device is TEXCB=01000
429 * - write combine device mem is TEXCB=00100
430 * (Inner/Outer Uncacheable in xsc3 parlance)
431 */
432 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
433 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
434 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
435 } else {
436 /*
437 * For ARMv6 and ARMv7 without TEX remapping,
438 * - shared device is TEXCB=00001
439 * - nonshared device is TEXCB=01000
440 * - write combine device mem is TEXCB=00100
441 * (Uncached Normal in ARMv6 parlance).
442 */
443 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
444 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
445 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
446 }
447 } else {
448 /*
449 * On others, write combining is "Uncached/Buffered"
450 */
451 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
452 }
453
454 /*
455 * Now deal with the memory-type mappings
456 */
457 cp = &cache_policies[cachepolicy];
458 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
459 s2_pgprot = cp->pte_s2;
460 hyp_device_pgprot = s2_device_pgprot = mem_types[MT_DEVICE].prot_pte;
461
462 /*
463 * We don't use domains on ARMv6 (since this causes problems with
464 * v6/v7 kernels), so we must use a separate memory type for user
465 * r/o, kernel r/w to map the vectors page.
466 */
467 #ifndef CONFIG_ARM_LPAE
468 if (cpu_arch == CPU_ARCH_ARMv6)
469 vecs_pgprot |= L_PTE_MT_VECTORS;
470 #endif
471
472 /*
473 * ARMv6 and above have extended page tables.
474 */
475 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
476 #ifndef CONFIG_ARM_LPAE
477 /*
478 * Mark cache clean areas and XIP ROM read only
479 * from SVC mode and no access from userspace.
480 */
481 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
482 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
483 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
484 #endif
485
486 if (is_smp()) {
487 /*
488 * Mark memory with the "shared" attribute
489 * for SMP systems
490 */
491 user_pgprot |= L_PTE_SHARED;
492 kern_pgprot |= L_PTE_SHARED;
493 vecs_pgprot |= L_PTE_SHARED;
494 s2_pgprot |= L_PTE_SHARED;
495 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
496 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
497 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
498 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
499 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
500 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
501 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
502 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
503 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
504 }
505 }
506
507 /*
508 * Non-cacheable Normal - intended for memory areas that must
509 * not cause dirty cache line writebacks when used
510 */
511 if (cpu_arch >= CPU_ARCH_ARMv6) {
512 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
513 /* Non-cacheable Normal is XCB = 001 */
514 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
515 PMD_SECT_BUFFERED;
516 } else {
517 /* For both ARMv6 and non-TEX-remapping ARMv7 */
518 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
519 PMD_SECT_TEX(1);
520 }
521 } else {
522 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
523 }
524
525 #ifdef CONFIG_ARM_LPAE
526 /*
527 * Do not generate access flag faults for the kernel mappings.
528 */
529 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
530 mem_types[i].prot_pte |= PTE_EXT_AF;
531 if (mem_types[i].prot_sect)
532 mem_types[i].prot_sect |= PMD_SECT_AF;
533 }
534 kern_pgprot |= PTE_EXT_AF;
535 vecs_pgprot |= PTE_EXT_AF;
536 #endif
537
538 for (i = 0; i < 16; i++) {
539 pteval_t v = pgprot_val(protection_map[i]);
540 protection_map[i] = __pgprot(v | user_pgprot);
541 }
542
543 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
544 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
545
546 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
547 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
548 L_PTE_DIRTY | kern_pgprot);
549 pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
550 pgprot_s2_device = __pgprot(s2_device_pgprot);
551 pgprot_hyp_device = __pgprot(hyp_device_pgprot);
552
553 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
554 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
555 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
556 mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
557 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
558 mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
559 mem_types[MT_ROM].prot_sect |= cp->pmd;
560
561 switch (cp->pmd) {
562 case PMD_SECT_WT:
563 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
564 break;
565 case PMD_SECT_WB:
566 case PMD_SECT_WBWA:
567 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
568 break;
569 }
570 printk("Memory policy: ECC %sabled, Data cache %s\n",
571 ecc_mask ? "en" : "dis", cp->policy);
572
573 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
574 struct mem_type *t = &mem_types[i];
575 if (t->prot_l1)
576 t->prot_l1 |= PMD_DOMAIN(t->domain);
577 if (t->prot_sect)
578 t->prot_sect |= PMD_DOMAIN(t->domain);
579 }
580 }
581
582 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
583 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
584 unsigned long size, pgprot_t vma_prot)
585 {
586 if (!pfn_valid(pfn))
587 return pgprot_noncached(vma_prot);
588 else if (file->f_flags & O_SYNC)
589 return pgprot_writecombine(vma_prot);
590 return vma_prot;
591 }
592 EXPORT_SYMBOL(phys_mem_access_prot);
593 #endif
594
595 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
596
597 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
598 {
599 void *ptr = __va(memblock_alloc(sz, align));
600 memset(ptr, 0, sz);
601 return ptr;
602 }
603
604 static void __init *early_alloc(unsigned long sz)
605 {
606 return early_alloc_aligned(sz, sz);
607 }
608
609 static pte_t * __init early_pte_alloc(pmd_t *pmd)
610 {
611 if (pmd_none(*pmd) || pmd_bad(*pmd))
612 return early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
613 return pmd_page_vaddr(*pmd);
614 }
615
616 static void __init early_pte_install(pmd_t *pmd, pte_t *pte, unsigned long prot)
617 {
618 __pmd_populate(pmd, __pa(pte), prot);
619 BUG_ON(pmd_bad(*pmd));
620 }
621
622 static pte_t * __init early_pte_alloc_and_install(pmd_t *pmd,
623 unsigned long addr, unsigned long prot)
624 {
625 if (pmd_none(*pmd)) {
626 pte_t *pte = early_pte_alloc(pmd);
627 early_pte_install(pmd, pte, prot);
628 }
629 BUG_ON(pmd_bad(*pmd));
630 return pte_offset_kernel(pmd, addr);
631 }
632
633 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
634 unsigned long end, unsigned long pfn,
635 const struct mem_type *type)
636 {
637 pte_t *start_pte = early_pte_alloc(pmd);
638 pte_t *pte = start_pte + pte_index(addr);
639
640 /* If replacing a section mapping, the whole section must be replaced */
641 BUG_ON(!pmd_none(*pmd) && pmd_bad(*pmd) && ((addr | end) & ~PMD_MASK));
642
643 do {
644 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
645 pfn++;
646 } while (pte++, addr += PAGE_SIZE, addr != end);
647 early_pte_install(pmd, start_pte, type->prot_l1);
648 }
649
650 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
651 unsigned long end, phys_addr_t phys,
652 const struct mem_type *type)
653 {
654 pmd_t *p = pmd;
655
656 #ifndef CONFIG_ARM_LPAE
657 /*
658 * In classic MMU format, puds and pmds are folded in to
659 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
660 * group of L1 entries making up one logical pointer to
661 * an L2 table (2MB), where as PMDs refer to the individual
662 * L1 entries (1MB). Hence increment to get the correct
663 * offset for odd 1MB sections.
664 * (See arch/arm/include/asm/pgtable-2level.h)
665 */
666 if (addr & SECTION_SIZE)
667 pmd++;
668 #endif
669 do {
670 *pmd = __pmd(phys | type->prot_sect);
671 phys += SECTION_SIZE;
672 } while (pmd++, addr += SECTION_SIZE, addr != end);
673
674 flush_pmd_entry(p);
675 }
676
677 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
678 unsigned long end, phys_addr_t phys,
679 const struct mem_type *type,
680 bool force_pages)
681 {
682 pmd_t *pmd = pmd_offset(pud, addr);
683 unsigned long next;
684
685 do {
686 /*
687 * With LPAE, we must loop over to map
688 * all the pmds for the given range.
689 */
690 next = pmd_addr_end(addr, end);
691
692 /*
693 * Try a section mapping - addr, next and phys must all be
694 * aligned to a section boundary.
695 */
696 if (type->prot_sect &&
697 ((addr | next | phys) & ~SECTION_MASK) == 0 &&
698 !force_pages) {
699 __map_init_section(pmd, addr, next, phys, type);
700 } else {
701 alloc_init_pte(pmd, addr, next,
702 __phys_to_pfn(phys), type);
703 }
704
705 phys += next - addr;
706
707 } while (pmd++, addr = next, addr != end);
708 }
709
710 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
711 unsigned long end, unsigned long phys, const struct mem_type *type,
712 bool force_pages)
713 {
714 pud_t *pud = pud_offset(pgd, addr);
715 unsigned long next;
716
717 do {
718 next = pud_addr_end(addr, end);
719 alloc_init_pmd(pud, addr, next, phys, type, force_pages);
720 phys += next - addr;
721 } while (pud++, addr = next, addr != end);
722 }
723
724 #ifndef CONFIG_ARM_LPAE
725 static void __init create_36bit_mapping(struct map_desc *md,
726 const struct mem_type *type)
727 {
728 unsigned long addr, length, end;
729 phys_addr_t phys;
730 pgd_t *pgd;
731
732 addr = md->virtual;
733 phys = __pfn_to_phys(md->pfn);
734 length = PAGE_ALIGN(md->length);
735
736 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
737 printk(KERN_ERR "MM: CPU does not support supersection "
738 "mapping for 0x%08llx at 0x%08lx\n",
739 (long long)__pfn_to_phys((u64)md->pfn), addr);
740 return;
741 }
742
743 /* N.B. ARMv6 supersections are only defined to work with domain 0.
744 * Since domain assignments can in fact be arbitrary, the
745 * 'domain == 0' check below is required to insure that ARMv6
746 * supersections are only allocated for domain 0 regardless
747 * of the actual domain assignments in use.
748 */
749 if (type->domain) {
750 printk(KERN_ERR "MM: invalid domain in supersection "
751 "mapping for 0x%08llx at 0x%08lx\n",
752 (long long)__pfn_to_phys((u64)md->pfn), addr);
753 return;
754 }
755
756 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
757 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
758 " at 0x%08lx invalid alignment\n",
759 (long long)__pfn_to_phys((u64)md->pfn), addr);
760 return;
761 }
762
763 /*
764 * Shift bits [35:32] of address into bits [23:20] of PMD
765 * (See ARMv6 spec).
766 */
767 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
768
769 pgd = pgd_offset_k(addr);
770 end = addr + length;
771 do {
772 pud_t *pud = pud_offset(pgd, addr);
773 pmd_t *pmd = pmd_offset(pud, addr);
774 int i;
775
776 for (i = 0; i < 16; i++)
777 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
778
779 addr += SUPERSECTION_SIZE;
780 phys += SUPERSECTION_SIZE;
781 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
782 } while (addr != end);
783 }
784 #endif /* !CONFIG_ARM_LPAE */
785
786 /*
787 * Create the page directory entries and any necessary
788 * page tables for the mapping specified by `md'. We
789 * are able to cope here with varying sizes and address
790 * offsets, and we take full advantage of sections and
791 * supersections.
792 */
793 static void __init create_mapping(struct map_desc *md, bool force_pages)
794 {
795 unsigned long addr, length, end;
796 phys_addr_t phys;
797 const struct mem_type *type;
798 pgd_t *pgd;
799
800 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
801 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
802 " at 0x%08lx in user region\n",
803 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
804 return;
805 }
806
807 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
808 md->virtual >= PAGE_OFFSET &&
809 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
810 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
811 " at 0x%08lx out of vmalloc space\n",
812 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
813 }
814
815 type = &mem_types[md->type];
816
817 #ifndef CONFIG_ARM_LPAE
818 /*
819 * Catch 36-bit addresses
820 */
821 if (md->pfn >= 0x100000) {
822 create_36bit_mapping(md, type);
823 return;
824 }
825 #endif
826
827 addr = md->virtual & PAGE_MASK;
828 phys = __pfn_to_phys(md->pfn);
829 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
830
831 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
832 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
833 "be mapped using pages, ignoring.\n",
834 (long long)__pfn_to_phys(md->pfn), addr);
835 return;
836 }
837
838 pgd = pgd_offset_k(addr);
839 end = addr + length;
840 do {
841 unsigned long next = pgd_addr_end(addr, end);
842
843 alloc_init_pud(pgd, addr, next, phys, type, force_pages);
844
845 phys += next - addr;
846 addr = next;
847 } while (pgd++, addr != end);
848 }
849
850 /*
851 * Create the architecture specific mappings
852 */
853 void __init iotable_init(struct map_desc *io_desc, int nr)
854 {
855 struct map_desc *md;
856 struct vm_struct *vm;
857 struct static_vm *svm;
858
859 if (!nr)
860 return;
861
862 svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
863
864 for (md = io_desc; nr; md++, nr--) {
865 create_mapping(md, false);
866
867 vm = &svm->vm;
868 vm->addr = (void *)(md->virtual & PAGE_MASK);
869 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
870 vm->phys_addr = __pfn_to_phys(md->pfn);
871 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
872 vm->flags |= VM_ARM_MTYPE(md->type);
873 vm->caller = iotable_init;
874 add_static_vm_early(svm++);
875 }
876 }
877
878 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
879 void *caller)
880 {
881 struct vm_struct *vm;
882 struct static_vm *svm;
883
884 svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
885
886 vm = &svm->vm;
887 vm->addr = (void *)addr;
888 vm->size = size;
889 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
890 vm->caller = caller;
891 add_static_vm_early(svm);
892 }
893
894 #ifndef CONFIG_ARM_LPAE
895
896 /*
897 * The Linux PMD is made of two consecutive section entries covering 2MB
898 * (see definition in include/asm/pgtable-2level.h). However a call to
899 * create_mapping() may optimize static mappings by using individual
900 * 1MB section mappings. This leaves the actual PMD potentially half
901 * initialized if the top or bottom section entry isn't used, leaving it
902 * open to problems if a subsequent ioremap() or vmalloc() tries to use
903 * the virtual space left free by that unused section entry.
904 *
905 * Let's avoid the issue by inserting dummy vm entries covering the unused
906 * PMD halves once the static mappings are in place.
907 */
908
909 static void __init pmd_empty_section_gap(unsigned long addr)
910 {
911 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
912 }
913
914 static void __init fill_pmd_gaps(void)
915 {
916 struct static_vm *svm;
917 struct vm_struct *vm;
918 unsigned long addr, next = 0;
919 pmd_t *pmd;
920
921 list_for_each_entry(svm, &static_vmlist, list) {
922 vm = &svm->vm;
923 addr = (unsigned long)vm->addr;
924 if (addr < next)
925 continue;
926
927 /*
928 * Check if this vm starts on an odd section boundary.
929 * If so and the first section entry for this PMD is free
930 * then we block the corresponding virtual address.
931 */
932 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
933 pmd = pmd_off_k(addr);
934 if (pmd_none(*pmd))
935 pmd_empty_section_gap(addr & PMD_MASK);
936 }
937
938 /*
939 * Then check if this vm ends on an odd section boundary.
940 * If so and the second section entry for this PMD is empty
941 * then we block the corresponding virtual address.
942 */
943 addr += vm->size;
944 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
945 pmd = pmd_off_k(addr) + 1;
946 if (pmd_none(*pmd))
947 pmd_empty_section_gap(addr);
948 }
949
950 /* no need to look at any vm entry until we hit the next PMD */
951 next = (addr + PMD_SIZE - 1) & PMD_MASK;
952 }
953 }
954
955 #else
956 #define fill_pmd_gaps() do { } while (0)
957 #endif
958
959 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
960 static void __init pci_reserve_io(void)
961 {
962 struct static_vm *svm;
963
964 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
965 if (svm)
966 return;
967
968 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
969 }
970 #else
971 #define pci_reserve_io() do { } while (0)
972 #endif
973
974 #ifdef CONFIG_DEBUG_LL
975 void __init debug_ll_io_init(void)
976 {
977 struct map_desc map;
978
979 debug_ll_addr(&map.pfn, &map.virtual);
980 if (!map.pfn || !map.virtual)
981 return;
982 map.pfn = __phys_to_pfn(map.pfn);
983 map.virtual &= PAGE_MASK;
984 map.length = PAGE_SIZE;
985 map.type = MT_DEVICE;
986 create_mapping(&map, false);
987 }
988 #endif
989
990 static void * __initdata vmalloc_min =
991 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
992
993 /*
994 * vmalloc=size forces the vmalloc area to be exactly 'size'
995 * bytes. This can be used to increase (or decrease) the vmalloc
996 * area - the default is 240m.
997 */
998 static int __init early_vmalloc(char *arg)
999 {
1000 unsigned long vmalloc_reserve = memparse(arg, NULL);
1001
1002 if (vmalloc_reserve < SZ_16M) {
1003 vmalloc_reserve = SZ_16M;
1004 printk(KERN_WARNING
1005 "vmalloc area too small, limiting to %luMB\n",
1006 vmalloc_reserve >> 20);
1007 }
1008
1009 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1010 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1011 printk(KERN_WARNING
1012 "vmalloc area is too big, limiting to %luMB\n",
1013 vmalloc_reserve >> 20);
1014 }
1015
1016 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1017 return 0;
1018 }
1019 early_param("vmalloc", early_vmalloc);
1020
1021 phys_addr_t arm_lowmem_limit __initdata = 0;
1022
1023 void __init sanity_check_meminfo(void)
1024 {
1025 int i, j, highmem = 0;
1026
1027 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
1028 struct membank *bank = &meminfo.bank[j];
1029 *bank = meminfo.bank[i];
1030
1031 #ifdef CONFIG_SPARSEMEM
1032 if (pfn_to_section_nr(bank_pfn_start(bank)) !=
1033 pfn_to_section_nr(bank_pfn_end(bank) - 1)) {
1034 phys_addr_t sz;
1035 unsigned long start_pfn = bank_pfn_start(bank);
1036 unsigned long end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1037 sz = ((phys_addr_t)(end_pfn - start_pfn) << PAGE_SHIFT);
1038
1039 if (meminfo.nr_banks >= NR_BANKS) {
1040 pr_crit("NR_BANKS too low, ignoring %lld bytes of memory\n",
1041 (unsigned long long)(bank->size - sz));
1042 } else {
1043 memmove(bank + 1, bank,
1044 (meminfo.nr_banks - i) * sizeof(*bank));
1045 meminfo.nr_banks++;
1046 bank[1].size -= sz;
1047 bank[1].start = __pfn_to_phys(end_pfn);
1048 }
1049 bank->size = sz;
1050 }
1051 #endif
1052
1053 if (bank->start > ULONG_MAX)
1054 highmem = 1;
1055
1056 #ifdef CONFIG_HIGHMEM
1057 if (__va(bank->start) >= vmalloc_min ||
1058 __va(bank->start) < (void *)PAGE_OFFSET)
1059 highmem = 1;
1060
1061 bank->highmem = highmem;
1062
1063 /*
1064 * Split those memory banks which are partially overlapping
1065 * the vmalloc area greatly simplifying things later.
1066 */
1067 if (!highmem && __va(bank->start) < vmalloc_min &&
1068 bank->size > vmalloc_min - __va(bank->start)) {
1069 if (meminfo.nr_banks >= NR_BANKS) {
1070 printk(KERN_CRIT "NR_BANKS too low, "
1071 "ignoring high memory\n");
1072 } else {
1073 memmove(bank + 1, bank,
1074 (meminfo.nr_banks - i) * sizeof(*bank));
1075 meminfo.nr_banks++;
1076 i++;
1077 bank[1].size -= vmalloc_min - __va(bank->start);
1078 bank[1].start = __pa(vmalloc_min - 1) + 1;
1079 bank[1].highmem = highmem = 1;
1080 j++;
1081 }
1082 bank->size = vmalloc_min - __va(bank->start);
1083 }
1084 #else
1085 bank->highmem = highmem;
1086
1087 /*
1088 * Highmem banks not allowed with !CONFIG_HIGHMEM.
1089 */
1090 if (highmem) {
1091 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1092 "(!CONFIG_HIGHMEM).\n",
1093 (unsigned long long)bank->start,
1094 (unsigned long long)bank->start + bank->size - 1);
1095 continue;
1096 }
1097
1098 /*
1099 * Check whether this memory bank would entirely overlap
1100 * the vmalloc area.
1101 */
1102 if (__va(bank->start) >= vmalloc_min ||
1103 __va(bank->start) < (void *)PAGE_OFFSET) {
1104 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1105 "(vmalloc region overlap).\n",
1106 (unsigned long long)bank->start,
1107 (unsigned long long)bank->start + bank->size - 1);
1108 continue;
1109 }
1110
1111 /*
1112 * Check whether this memory bank would partially overlap
1113 * the vmalloc area.
1114 */
1115 if (__va(bank->start + bank->size - 1) >= vmalloc_min ||
1116 __va(bank->start + bank->size - 1) <= __va(bank->start)) {
1117 unsigned long newsize = vmalloc_min - __va(bank->start);
1118 printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1119 "to -%.8llx (vmalloc region overlap).\n",
1120 (unsigned long long)bank->start,
1121 (unsigned long long)bank->start + bank->size - 1,
1122 (unsigned long long)bank->start + newsize - 1);
1123 bank->size = newsize;
1124 }
1125 #endif
1126 if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
1127 arm_lowmem_limit = bank->start + bank->size;
1128
1129 j++;
1130 }
1131 #ifdef CONFIG_HIGHMEM
1132 if (highmem) {
1133 const char *reason = NULL;
1134
1135 if (cache_is_vipt_aliasing()) {
1136 /*
1137 * Interactions between kmap and other mappings
1138 * make highmem support with aliasing VIPT caches
1139 * rather difficult.
1140 */
1141 reason = "with VIPT aliasing cache";
1142 }
1143 if (reason) {
1144 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1145 reason);
1146 while (j > 0 && meminfo.bank[j - 1].highmem)
1147 j--;
1148 }
1149 }
1150 #endif
1151 meminfo.nr_banks = j;
1152 high_memory = __va(arm_lowmem_limit - 1) + 1;
1153 memblock_set_current_limit(arm_lowmem_limit);
1154 }
1155
1156 static inline void prepare_page_table(void)
1157 {
1158 unsigned long addr;
1159 phys_addr_t end;
1160
1161 /*
1162 * Clear out all the mappings below the kernel image.
1163 */
1164 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1165 pmd_clear(pmd_off_k(addr));
1166
1167 #ifdef CONFIG_XIP_KERNEL
1168 /* The XIP kernel is mapped in the module area -- skip over it */
1169 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1170 #endif
1171 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1172 pmd_clear(pmd_off_k(addr));
1173
1174 /*
1175 * Find the end of the first block of lowmem.
1176 */
1177 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1178 if (end >= arm_lowmem_limit)
1179 end = arm_lowmem_limit;
1180
1181 /*
1182 * Clear out all the kernel space mappings, except for the first
1183 * memory bank, up to the vmalloc region.
1184 */
1185 for (addr = __phys_to_virt(end);
1186 addr < VMALLOC_START; addr += PMD_SIZE)
1187 pmd_clear(pmd_off_k(addr));
1188 }
1189
1190 #ifdef CONFIG_ARM_LPAE
1191 /* the first page is reserved for pgd */
1192 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1193 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1194 #else
1195 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1196 #endif
1197
1198 /*
1199 * Reserve the special regions of memory
1200 */
1201 void __init arm_mm_memblock_reserve(void)
1202 {
1203 /*
1204 * Reserve the page tables. These are already in use,
1205 * and can only be in node 0.
1206 */
1207 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1208
1209 #ifdef CONFIG_SA1111
1210 /*
1211 * Because of the SA1111 DMA bug, we want to preserve our
1212 * precious DMA-able memory...
1213 */
1214 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1215 #endif
1216 }
1217
1218 /*
1219 * Set up the device mappings. Since we clear out the page tables for all
1220 * mappings above VMALLOC_START, we will remove any debug device mappings.
1221 * This means you have to be careful how you debug this function, or any
1222 * called function. This means you can't use any function or debugging
1223 * method which may touch any device, otherwise the kernel _will_ crash.
1224 */
1225 static void __init devicemaps_init(struct machine_desc *mdesc)
1226 {
1227 struct map_desc map;
1228 unsigned long addr;
1229 void *vectors;
1230
1231 /*
1232 * Allocate the vector page early.
1233 */
1234 vectors = early_alloc(PAGE_SIZE * 2);
1235
1236 early_trap_init(vectors);
1237
1238 for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1239 pmd_clear(pmd_off_k(addr));
1240
1241 /*
1242 * Map the kernel if it is XIP.
1243 * It is always first in the modulearea.
1244 */
1245 #ifdef CONFIG_XIP_KERNEL
1246 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1247 map.virtual = MODULES_VADDR;
1248 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1249 map.type = MT_ROM;
1250 create_mapping(&map, false);
1251 #endif
1252
1253 /*
1254 * Map the cache flushing regions.
1255 */
1256 #ifdef FLUSH_BASE
1257 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1258 map.virtual = FLUSH_BASE;
1259 map.length = SZ_1M;
1260 map.type = MT_CACHECLEAN;
1261 create_mapping(&map, false);
1262 #endif
1263 #ifdef FLUSH_BASE_MINICACHE
1264 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1265 map.virtual = FLUSH_BASE_MINICACHE;
1266 map.length = SZ_1M;
1267 map.type = MT_MINICLEAN;
1268 create_mapping(&map, false);
1269 #endif
1270
1271 /*
1272 * Create a mapping for the machine vectors at the high-vectors
1273 * location (0xffff0000). If we aren't using high-vectors, also
1274 * create a mapping at the low-vectors virtual address.
1275 */
1276 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1277 map.virtual = 0xffff0000;
1278 map.length = PAGE_SIZE;
1279 #ifdef CONFIG_KUSER_HELPERS
1280 map.type = MT_HIGH_VECTORS;
1281 #else
1282 map.type = MT_LOW_VECTORS;
1283 #endif
1284 create_mapping(&map, false);
1285
1286 if (!vectors_high()) {
1287 map.virtual = 0;
1288 map.length = PAGE_SIZE * 2;
1289 map.type = MT_LOW_VECTORS;
1290 create_mapping(&map, false);
1291 }
1292
1293 /* Now create a kernel read-only mapping */
1294 map.pfn += 1;
1295 map.virtual = 0xffff0000 + PAGE_SIZE;
1296 map.length = PAGE_SIZE;
1297 map.type = MT_LOW_VECTORS;
1298 create_mapping(&map, false);
1299
1300 /*
1301 * Ask the machine support to map in the statically mapped devices.
1302 */
1303 if (mdesc->map_io)
1304 mdesc->map_io();
1305 fill_pmd_gaps();
1306
1307 /* Reserve fixed i/o space in VMALLOC region */
1308 pci_reserve_io();
1309
1310 /*
1311 * Finally flush the caches and tlb to ensure that we're in a
1312 * consistent state wrt the writebuffer. This also ensures that
1313 * any write-allocated cache lines in the vector page are written
1314 * back. After this point, we can start to touch devices again.
1315 */
1316 local_flush_tlb_all();
1317 flush_cache_all();
1318 }
1319
1320 static void __init kmap_init(void)
1321 {
1322 #ifdef CONFIG_HIGHMEM
1323 pkmap_page_table = early_pte_alloc_and_install(pmd_off_k(PKMAP_BASE),
1324 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1325 #endif
1326 }
1327
1328
1329 static void __init map_lowmem(void)
1330 {
1331 struct memblock_region *reg;
1332 phys_addr_t start;
1333 phys_addr_t end;
1334 phys_addr_t limit = 0;
1335 struct map_desc map;
1336
1337 /* Map all the lowmem memory banks. */
1338 for_each_memblock(memory, reg) {
1339 start = reg->base;
1340 end = start + reg->size;
1341 MTK_MEMCFG_LOG_AND_PRINTK(KERN_ALERT"[PHY layout]kernel : 0x%08llx - 0x%08llx (0x%08llx)\n",
1342 (unsigned long long)start,
1343 (unsigned long long)end - 1,
1344 (unsigned long long)reg->size);
1345
1346 if (end > arm_lowmem_limit)
1347 end = arm_lowmem_limit;
1348 if (start >= end)
1349 continue;
1350
1351 map.pfn = __phys_to_pfn(start);
1352 map.virtual = __phys_to_virt(start);
1353 map.length = end - start;
1354 map.type = MT_MEMORY;
1355
1356 if (!limit && !(end & ~SECTION_MASK)) {
1357 /* take first section-size aligned memblock */
1358 limit = end;
1359 memblock_set_current_limit(limit);
1360 }
1361 printk(KERN_ALERT"creating mapping start pa: 0x%08llx @ 0x%08llx "
1362 ", end pa: 0x%08llx @ 0x%08llx\n",
1363 (unsigned long long)start, (unsigned long long)map.virtual,
1364 (unsigned long long)end, (unsigned long long)__phys_to_virt(end));
1365 create_mapping(&map, false);
1366 }
1367
1368 #ifdef CONFIG_DEBUG_RODATA
1369 start = __pa((unsigned long)_stext & PMD_MASK);
1370 end = __pa(ALIGN((unsigned long)__end_rodata, PMD_SIZE));
1371
1372 map.pfn = __phys_to_pfn(start);
1373 map.virtual = __phys_to_virt(start);
1374 map.length = end - start;
1375 map.type = MT_MEMORY;
1376
1377 create_mapping(&map, true);
1378 #endif
1379 }
1380
1381 /*
1382 * paging_init() sets up the page tables, initialises the zone memory
1383 * maps, and sets up the zero page, bad page and bad page tables.
1384 */
1385 void __init paging_init(struct machine_desc *mdesc)
1386 {
1387 void *zero_page;
1388
1389 memblock_set_current_limit(arm_lowmem_limit);
1390
1391 build_mem_type_table();
1392 prepare_page_table();
1393 map_lowmem();
1394 dma_contiguous_remap();
1395 devicemaps_init(mdesc);
1396 kmap_init();
1397 tcm_init();
1398
1399 top_pmd = pmd_off_k(0xffff0000);
1400
1401 /* allocate the zero page. */
1402 zero_page = early_alloc(PAGE_SIZE);
1403
1404 bootmem_init();
1405
1406 empty_zero_page = virt_to_page(zero_page);
1407 __flush_dcache_page(NULL, empty_zero_page);
1408 }